This application claims priority of German patent application no. 10 2015 001 119.7, filed Jan. 29, 2015, the entire content of which is incorporated herein by reference.
The invention relates to a starter device for an internal combustion engine, having an actuating device which has to be set in rotation in order to start the internal combustion engine, and having an entrainer, which has at least one coupling device for coupling to a crankshaft of the internal combustion engine. The entrainer and the actuating device are mounted rotatably about a rotational axis and a damper spring is arranged in operative connection between the entrainer and the actuating device. The starter device has at least one stud, on whose outer periphery the damper spring is mounted. The damper spring is a hinge spring wound from a spring wire, wherein the spring wire, in a sectional plane containing the rotational axis, has a cross section, wherein the spring wire has in the cross section an axially measured width and a radially measured thickness. The spring wire has a radially inner-lying inner side and a radially outer-lying outer side. The cross section of the spring wire on the inner side of the spring wire is rounded, and further relates to a handheld work apparatus having an internal combustion engine and having a starter device.
From EP 1 312 798 A2, a starter device for starting an internal combustion engine, which starter device has a damper spring, is known. One end of the damper spring is coupled to a rope pulley, and the other end of the damper spring is connected by a coupling device to a component that rotates with the crankshaft. The spring wire of the damper spring has a circular cross section.
It has been shown that starter devices having damper springs of circular cross section are comparatively insensitive to dirt. However, in the case of a circular cross-sectional area of the spring wire, the section modulus against bending is comparatively small, for instance, in relation to rectangular cross-sectional areas. In order to obtain the same spring constant, a damper spring of circular spring cross section must therefore have a larger outer diameter than a damper spring of rectangular cross section. A starter device having a damper spring of rectangular cross section is known, for instance, from U.S. Pat. No. 7,963,266.
It is an object of the invention to provide a starter device having a robust structure and a low weight. A further object of the invention is to provide a handheld work apparatus having an internal combustion engine and having a starter device.
With respect to the starter device, this object is achieved by a starter device wherein at least a portion of the cross section of the spring wire on the outer side of the spring wire runs straight. With respect to the handheld work apparatus, the object is achieved by a handheld work apparatus having an internal combustion engine and having a starter device for the internal combustion engine, wherein the starter device includes an actuating device, which has to be set in rotation in order to start the internal combustion engine, and an entrainer, wherein the entrainer has at least one coupling means for coupling to a crankshaft of the internal combustion engine. The entrainer and the actuating device are mounted rotatably about a rotational axis and a damper spring is arranged in operative connection between the entrainer and the actuating device. The starter device has at least one stud, on whose outer periphery the damper spring is mounted. The damper spring is a hinge spring wound from a spring wire, wherein the spring wire, in a sectional plane containing the rotational axis, has a cross section. The spring wire in cross section has an axially measured width and a radially measured thickness. The spring wire has a radially innermost inner side and a radially outermost outer side and the cross section of the spring wire on the inner side of the spring wire is rounded and at least a portion of the cross section on the outer side of the spring wire runs straight.
For the damper spring of the starter device, at least a portion of the cross section of the spring wire on the outer side of the spring wire runs straight. As a result of the straight portion, the section modulus of the spring wire against bending is increased. Accordingly, a damper spring of smaller outer diameter can be used than is the case with a damper spring having the same spring constant and a round spring wire cross section. Since the cross section of the spring wire on the inner side of the spring wire is rounded, the attachment and compaction of dirt deposits on the inner side of the spring wire, and on the outer side of the at least one stud on which the damper spring is mounted, is avoided. If the damper spring performs movements in the direction of the rotational axis, then dirt deposits on the inner side of the spring wire, which are disposed between the spring wire and the stud, are removed and not compacted on the outer periphery of the stud. Due to the rounding on the inner side of the spring wire, a softer performance of the starter device in relation to a damper spring of rectangular cross section is achieved if the damper spring is pulled to the limit on the stud since the rounded cross section on the inner side promotes a slight deformation of the stud, whereby a higher elasticity of the arrangement is achieved. Since the damper spring is rounded on its inner side, damaging of the stud by innermost edges of the damper spring is avoided.
The terms “radially” and “axially” relate to the rotational axis of entrainer and actuating device. The radially measured thickness is thus measured parallel to the rotational axis, and the radially measured thickness is measured perpendicular to the rotational axis.
Advantageously, the inner side of the spring wire runs in a continuous radius. Advantageously, the radius of the inner side of the spring wire is larger than half the width of the spring wire. As a result of the enlarged radius compared with a spring wire of circular cross section, the section modulus against bending is increased, whereby the overall weight of the arrangement can be reduced yet the damping characteristics remain the same.
Advantageously, the portion in which the outer side of the spring wire runs straight extends over at least 30% of the width of the spring wire. Advantageously, the straight portion on the outer side of the spring wire extends over at least 50%, particularly preferably over at least 70% of the width of the spring wire. Therefore, a large increase in section modulus in relation to a spring of round cross section, and at the same time a small outer diameter and thus a low weight of the damper spring, is achieved. In the straight portion, the outer side of the spring wire here advantageously runs parallel to the rotational axis of the starter device. The spring wire advantageously has transverse sides running transversely to the rotational axis, wherein at least a portion of the cross section on the transverse sides of the spring wire runs straight. The transverse sides are that region of the cross section which connects the inner side and the outer side. The straight portion on the transverse sides of the cross section of the spring wire here advantageously runs perpendicular to the rotational axis of the starter device. As a result of the straight portion on the transverse sides, a good mutual lateral contact of adjacent coils of the damper spring is obtained. Sliding of adjacent coils one over another, as can occur in the linear contact of helical springs of round cross section, is thereby largely avoided.
At the transition of the outer side into the transverse sides, the cross section of the spring wire advantageously extends with a radius. The radius with which the outer side passes into the transverse sides is here advantageously markedly smaller than the radius on the inner side. Advantageously, the radius with which the outer side passes into the transverse sides is smaller than one-quarter of the width of the spring wire. The thickness of the spring wire, measured perpendicular to the rotational axis, is advantageously at least as large as the width of the spring wire, measured parallel to the rotational axis. Particularly advantageously, the thickness of the spring wire is greater than the width. Hence, an increased section modulus against bending, and thus a higher spring constant, with same outer diameter, of the damper spring, is achieved. The weight of the starter device can thereby be kept small overall.
Advantageously, the entrainer and the actuating device have respective studs and the damper spring is disposed on the outer periphery of the two studs. The damper spring advantageously has a substantially constant coil diameter. Accordingly, a simple structure and a uniform damping effect over the whole of the starter path are obtained. The coil diameter here corresponds to the outer diameter of the damper spring. Advantageously, the damper spring is held with a first, inwardly bent end on the actuating device and with a second, inwardly bent end on the entrainer. A simple, compact structure of the arrangement is thereby obtained. In order largely to avoid the accommodation of dirt deposits on the outer periphery of the stud, it is advantageously provided that at least one stud has depressions on its outer periphery. Dirt, which has collected between the damper spring and the stud, can pass into the depressions. In this way, the working of the starter device is not impeded by the dirt deposits.
A simple structure is obtained if the at least one coupling means on the entrainer includes a pivotably mounted pawl, which, for the coupling of the starter device to the crankshaft of the internal combustion engine, cooperates with a cam contour, wherein the cam contour is connected in a rotationally secure manner to the crankshaft so as to rotate therewith. The actuating device is advantageously a rope pulley, which is manually set in rotation by a starter rope or pull rope. Advantageously, a plurality of, in particular two pawls, are provided.
The starter device is advantageously intended for a handheld work apparatus having an internal combustion engine.
The invention will now be described with reference to the drawings wherein:
As shown by
As shown in
The assembly of the starter device 8 is shown in detail in
The stud 21 of the rope pulley 18 has an inner region 46, which is journalled on the bearing shaft 32, and an outer region 49, on whose outer periphery the damper spring 23 is mounted. The outer region 49 has an outer diameter (c), which in the embodiment shown corresponds to the outer diameter (a) of the disc 22 (
The entrainer 24 has a stud 42, which projects in the direction of the rope pulley 18. The stud 42 has an outer region 50, on whose outer periphery the damper spring 23 is mounted. The stud 42 has an inner region 47, which serves for the rotatable mounting of the entrainer 24 on the bearing shaft 32. Also, the inner region 47 of stud 42 lies with its end against the inner region 46 of the stud 21 adjacent to the outer periphery of the bearing shaft 32 in the embodiment shown. The stud 42 can also bear against the disc 22, which for its part bears against the stud 21 of the rope pulley 18. The bearing contact can here be provided against the inner regions (47, 46) or the outer regions (49, 50). As
The damper spring 23 has a radially inner side 56 referred to the rotational axis 14. This inner side 56 lies facing the studs 21 and 42. The damper spring 23 also has radially outermost outer side 57, which lies facing the peripheral wall 51 of the receiving space 20. As shown by
In
During the starting operation, the damper spring 23 is tensioned when the pull rope 43 is pulled. The inner side 56 of the damper spring 23 can here be pulled as far as it will go onto the studs 21 and 42. If the damper spring 23 is pulled to the limit, then, upon further pulling on the pull rope 43, the tensile force is transmitted to the crankshaft 13 directly via the coupling device formed by the pawls 25 and the cam contour 34. If the damper spring 23 is not pulled to the limit, then the force of the damper spring 23 and the force applied to the pull rope 43 by the operator act jointly on the crankshaft 13.
For the avoidance of dirt deposits, the studs 21 and 42 have, on their outer side, a multiplicity of depressions (44, 45), as shown schematically in
The damper spring 23 is wound from spring wire 58.
The damper spring 73 occupies the same structural space as a damper spring whose spring wire has a circular cross section of diameter corresponding to the width (e) or the thickness (g). In relation to such a damper spring of circular cross section, the spring wire 78 has however a larger section modulus against bending due to the material accumulation on the outer side 77. Due to the radius (r), which is greater than half the width (e), a flatter course of the rounding on the inner side 76 is additionally obtained. The damper spring 63 has, in relation to the damper spring 73, an increased section modulus against bending, and hence a higher spring constant due to the smaller radius (t) and the larger width of the straight portion 71.
The damper spring 23 too has a larger spring constant than the damper spring 73 due to the larger thickness (d). A desired spring constant can be set by an appropriate configuration of the cross-sectional form of the spring wire (58, 68, 78). Since the inner side (56, 66, 76) is of rounded-off configuration, the susceptibility to the formation of dirt on the inner side is reduced. As a result of the straight portions (62, 82) on the transverse sides (59, 60, 69, 70, 79, 80), adjacent coils, when they come to bear one against another, are in mutual contact not only linearly, but over a larger area. This prevents adjacent coils from sliding one over the other.
It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 001 119.7 | Jan 2015 | DE | national |