The invention relates to a starter for AC fed low pressure discharge lamps in accordance with the preamble of patent claim 1.
Such a starter is disclosed, for example, in DE 91 04 136 U1. Said starter essentially comprises a glow igniter and a switch off device that switches off the starter after a number of unsuccessful attempts to ignite the fluorescent lamp. To this end, the switch off device has an NTC thermistor, an ohmic resistance connected in parallel and a resettable bimetallic switch that is arranged in series with the parallel circuit of NTC thermistor and ohmic resistance. The bimetallic switch is in thermal contact with the NTC thermistor and the ohmic resistance, and serves the purpose of switching off the starter for safety in the event of a defective glow igniter or defective fluorescent lamp. The resistance value of the ohmic resistance is substantially smaller than the resistance value of the NTC thermistor, and so the NTC thermistor, which is of high resistance during startup is short circuited by the ohmic resistance at the beginning of the starting phase, and electrodes of the fluorescent lamp are preheated. After a number of unsuccessful attempts at igniting the fluorescent lamp, the ohmic resistance and the NTC thermistor heat up, the conductivity of the latter increases substantially.
The heat produced is transferred via a mounting plate or by direct heat emission to the bimetallic switch, which opens under the influence of heat and interrupts the electrical heating circuit (safety switch off).
It is disadvantageous for these types of starter that upon malfunction of the starter, for example failure of the starter to switch off, overheating of the ohmic resistance can occur, and it is thereby possible for the starter cannister to melt and for the starter to be destroyed. It is necessary for this reason to provide the ohmic resistance with an additional protective covering, for example made from silicone cement, which reduces the heat emission thereof, and thus prevents the starter housing from melting. However, such protective coverings are associated with an increased outlay on production.
It is the object of the invention to provide a starter for AC fed low pressure discharge lamps, in the case of which, by contrast with conventional solutions, it is rendered possible to ignite the fluorescent lamp quickly and switch it off reliably, and overheating is prevented in conjunction with reduced outlay on production.
This object is achieved according to the invention by means of the features of claim 1. Particularly advantageous embodiments of the invention are described in the dependent claims.
The inventive starter for AC fed low pressure discharge lamps operated on a series inductor comprises a glow igniter, an NTC thermistor that is connected in series with the glow igniter, and a resettable bimetallic switch that is connected in series with the glow igniter and the NTC thermistor and is in thermal contact therewith, the NTC thermistor having in the cold state a high ohmic resistance that is transformed into a low ohmic resistance by intrinsic heating, and the bimetallic switch interrupts the electrode heating circuit upon nonignition of the low pressure discharge lamp. According to the invention, the current is conducted via the NTC thermistor both for igniting the low pressure discharge lamp and for switching off upon nonignition. Said NTC thermistor is designed such that at the beginning of the starting operation it has a high ohmic resistance that leads to rapid heating. This delivers a faster transition of the NTC thermistor into a low ohmic resistance range, and thus delivers a high switch on current for the low pressure discharge lamp. This enables the lamp to be ignited quickly, thus pleasing the customer. By contrast with the prior art, according to the invention there is no need for an additional ohmic resistance, the result of which is to prevent overheating of the starter and to reduce the outlay on production substantially.
In accordance with a preferred exemplary embodiment, at a temperature of 25° C. the resistance of the NTC thermistor lies in a range from approximately 400 to 650 O, that is to say substantially higher than in the prior art. This high ohmic resistance leads to a fast intrinsic heating of the NTC thermistor, a rapid transition into a low ohmic resistance range, and thus to a high switch on current required for a switch on time satisfactory to the customer.
At a temperature of 100° C. the resistance of the NTC thermistor lies in a range from approximately 30 to 50 O.
At 25° C. and at 100° C. the electrical resistance values preferably have a ratio of R1/R2>10.
The mean starting time of the starter lies preferably in a range from approximately 1.3 to 6.0 s. This ensures the low pressure discharge lamp is operated without an inconvenient delay in switching on, which satisfies the customer.
In a preferred exemplary embodiment, the mean switch off time of the starter is more than approximately 20 s and less than approximately 70 s. It has proved to be particularly advantageous to arrange the NTC thermistor in the immediate vicinity of an electrode of the bimetallic switch.
The electrode of the bimetallic switch, and the NTC thermistor are preferably connected to a mounting plate in an electrically and thermally conducting fashion. The good transfer of heat between the NTC thermistor and the bimetallic switch enables reliable switching off in the event of nonignition of the low pressure discharge lamp.
In a preferred embodiment of the invention, the electronic components of the starter are arranged in a starter canister made from an insulating plastic of the fire protection class V0. An improved fire protection behavior of the starter canister is thereby ensured in the event of a fault, and the formation of burning drops, for example, is prevented.
The invention is explained below in more detail with the aid of a preferred exemplary embodiment. In the drawing:
In accordance with
In
The function of the starter 1 is explained by way of example below with reference to
If, because of a fault, the fluorescent lamp 2 does not ignite, and if the starter 1 has unsuccessfully undertaken attempts at ignition over a defined time period, the temperature of the NTC thermistor 12 thus rises further, the heat produced being transferred to the bimetallic electrode 22 of the bimetallic switch 14 via the mounting plate 30 and by heat emission. The bimetallic electrode 22 bends under the thermal effect of the NTC thermistor 12, and the offset end section 24 and clears the horizontal limb 44 of the biased spring wire electrode 26 and thereby opens the electrical contact. The electrical heating circuit is thereby interrupted, and the starter 1 is in the state of safety switch off. After the fault has been cleared, for example by replacing the fluorescent lamp 2 at the end of its service life, the spring wire electrode 26 can be latched tight again behind the offset end section 24 of the bimetallic electrode 22 by actuating the switch button (not illustrated).
The starter 1 embodied in accordance with the invention ensures the lamp starts quickly and therefore satisfactorily for the customer, and reliably switches off the preheating circuit in the case of a fault. Since, however, in contrast with the prior art, no use is made of an ohmic resistance, overheating, and therefore melting of the starter canister 20 is prevented, as is the destruction of the starter 1. Furthermore, the design of the starter 1 is considerably simplified.
What is disclosed is a starter 1 for AC fed low pressure discharge lamps 2 operated in a series inductor 8, having a glow igniter 10, an NTC thermistor 12 that is connected in series with the glow igniter 10, and a resettable bimetallic switch 14 that is connected in series with the glow igniter 10 and the NTC thermistor 12 and is in thermal contact therewith, the NTC thermistor 12 having in the cold state a high ohmic resistance that is transformed into a low ohmic resistance by intrinsic heating, and the bimetallic switch 14 interrupts the electrode heating circuit upon nonignition of the low pressure discharge lamp. According to the invention, the current is conducted via the NTC thermistor 12 both for igniting the low pressure discharge lamp 2 and for switching off upon nonignition.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 009 057 | Feb 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2006/000184 | 2/6/2006 | WO | 00 | 8/28/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/089506 | 8/31/2006 | WO | A |
Number | Date | Country |
---|---|---|
23 21 212 | Nov 1974 | DE |
24 52 417 | May 1976 | DE |
91 04 136 | Jun 1991 | DE |
2 100 135 | Mar 1972 | FR |
Number | Date | Country | |
---|---|---|---|
20080129228 A1 | Jun 2008 | US |