STARTER

Information

  • Patent Application
  • 20140265680
  • Publication Number
    20140265680
  • Date Filed
    March 15, 2013
    11 years ago
  • Date Published
    September 18, 2014
    10 years ago
Abstract
Embodiments of the invention provide a starter that includes a motor with an armature that is coupled to a pinion. In some embodiments, the starter can include a main field coil that can be configured and arranged to produce a main magnetic field flux. Some embodiments of the invention provide a starter that includes an auxiliary field coil capable of being electrically coupled with the main field coil and can be configured and arranged to produce a supplemental magnetic field flux. In some embodiments, the auxiliary field coil is capable of being electrically coupled in series with the main field coil. In some other embodiments, the auxiliary field coil is capable of being electrically coupled in parallel with the main field coil. Some embodiments include a starter system. In some embodiments, a control system can operatively power the main field coil and the auxiliary field coil within the starter system.
Description
BACKGROUND

Some electric machines can play important roles in vehicle operation. For example, some vehicles can include a starter, which can, upon a user closing an ignition switch, lead to cranking of engine components of the vehicle. Drive train systems capable of frequent start and stop conditions are becoming a requirement in modern vehicles. Frequent start-stop conditions require the starter to operate in high efficiency in cold engine crank and warm engine crank environments. The demands of frequent start-stop conditions require various components and systems that function more rapidly and more efficiently to increase reliability, reduce energy consumption and enhance the driving experience. The specifications of modern vehicles are also driving the need for drivetrain systems with increasing vehicle engine torque support during starting to aid engine acceleration during the start-up process. Electric machines deploying starters with much higher speed operation have been introduced; however the higher rotational speeds create high centrifugal forces that can cause commutator or armature winding failure. For some electric machines, the torque-speed characteristics need to be modified to reduce undesirable high speed operation while maintaining acceptable crank torque requirements.


SUMMARY

Some embodiments of the invention comprise electric starters that utilize starter motors with much higher speed operation than conventional starter. These high speed starters can have ring gear to pinion gear ratios reaching 10-15:1 in advanced designs with an internal gear ratio of 3.6-5:1. Armature speeds of the starter can reach into the 30,000+ RPM range, and these high speeds can create forces that in turn cause failure of the commutator or armature winding. Increasing vehicle efficiency and reliability demands are driving the need for starting motors that are integrated within electric machine start-stop systems where the starter may be required to provide lifetime operational range of 300,000 to 400,000 start cycles.


Some embodiments of the invention provide a starter that can perform well at high-speeds having low torque demand while also operating well at low speeds having high torque demanded of the starter. In some embodiments, the starter is able to meet the cold crank requirement and function under a warm start scenario while reducing the pinion speed at low pinion torque. In conjunction with this operating parameter, some embodiments of the invention provide components and systems that are configured and arranged to function to allow better engagement of the starter system with the drivetrain of the vehicle.


Some starters include various magnetic flux assemblies. Some starters include at least one auxiliary field coil designed to enhance the speed and torque characteristics of the starter to enable the starter system to provide synchronous engagement.


In some embodiments of the invention, the use of one or more conductor wires within the main field coil circuit, independent from the current flow through the armature, provides an auxiliary field coil. In some embodiments, the additional flux provided by the conductor wires serves to supplement the excitation provided by the main field flux, and acts to limit, (“trim” or “clip”) the starter speed during high speed and low torque conditions. This enables the high end speed of the motor to be limited, and lowers the top end speed to below a limit known to cause motor damage, or reduced duty cycle.


Some embodiments include a starter comprising a motor at least partially disposed within a frame and including an armature where the motor is coupled to a pinion. In some embodiments, the motor includes a main field coil capable of producing a main magnetic flux field, and at least one auxiliary field coil capable of producing a supplemental field flux. In some embodiments, the at least one auxiliary field coil is electrically coupled to the main field coil. In some embodiments, the at least one auxiliary field coil is electrically connected in series with the main field coil, and in other embodiments, the at least one auxiliary field coil is electrically connected in parallel with the main field coil.


Some embodiments include a starter comprising at least one pole shoe substantially circularly arranged around an inner periphery of the frame. In some embodiments, the at least one pole shoe is configured and arranged to at least partially support the main field coil, and the at least one auxiliary field coil is adjacent to and supported by the inner periphery of the frame, positioned adjacent to the at least one pole shoe and between at least one other pole shoe.


In some embodiments, a non-circular conductor wire is used to form the main field coil and/or the auxiliary field coil. In other embodiments, a circular conductor wire is used.


Some embodiments provide a starter system including a starter capable of being controlled by an electronic control unit. In some embodiments, the starter comprises a motor including a drive shaft coupled to a pinion and is at least partially disposed within a frame. In some embodiments, the motor further includes a main field coil capable of producing a main magnetic flux field, and at least one auxiliary field coil. In some embodiments, the at least one auxiliary field coil is electrically coupled to the main field coil and configured and arranged to provide a supplemental magnetic flux field. In some embodiments the motor further comprises an armature configured and arranged to electromagnetically couple with the main magnetic field flux and the supplementary magnetic field flux. In some embodiments, in response to a signal from the electronic control unit, the pinion can be actuated to engage with a ring gear of an engine.


In some embodiments of the invention, the starter system comprises at least one pole shoe substantially circularly arranged around an inner periphery of the frame. In some embodiments, the at least one pole shoe is configured and arranged to at least partially support the main field coil, and the at least one auxiliary field coil is adjacent to and supported by the inner periphery of the frame, positioned adjacent to the at least one pole shoe and between at least one other pole shoe. In some embodiments, a non-circular conductor wire is used to form the main field coil and/or the auxiliary field coil. In other embodiments, a circular conductor wire is used.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of a starter control system according to one embodiment of the invention.



FIG. 2A shows a starter according to one embodiment of the invention.



FIG. 2B shows an illustration of a solenoid assembly according to one embodiment of the invention.



FIG. 3 is a graph showing typical pinion torque and speed curve.



FIG. 4 is a graph showing modeled starter torque and speed performance and cranking performance for cold and warm starting conditions.



FIG. 5 is a graph showing modeled comparison of starter torque and speed performance and cold and warm start cranking performance for a conventional design and in the starter according to one embodiment of the invention.



FIG. 6 is a graph showing a conventional starting motor circuit.



FIG. 7 shows a starting motor circuit according to one embodiment of the invention.



FIG. 8 shows a starting motor circuit according to one embodiment of the invention.



FIG. 9 shows two possible embodiments of main field coils with integrated auxiliary field foils in the starter of some embodiments of the invention.



FIG. 10A shows a cross-sectional view of one embodiment of the invention showing an auxiliary field coil in the starter of some embodiments of the invention.



FIG. 10B shows a perspective view of one embodiment of the invention showing a main and supplemental flux fields in the starter of some embodiments of the invention.



FIG. 11 shows a modeled data representation of the pinion torque and pinion speed for a conventional starter and a starter according to some embodiments of the invention





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.


The primary functionality for the disclosed starter 12 remains consistent with those that preceded it. However, the disclosed starter 12 must function to start an engine 20 on a much more frequent basis and under a wider variance of conditions. More significantly, while traditional starters 12 are configured to begin rotation of an engine 20 crankshaft that is at complete rest, the disclosed starter 12 may be engaged to start an engine 20 that is already moving. That is, the engine 20 may be in a state where it is not “running” under its own power. The vehicle to which the engine 20 provides power can remain in motion for a time, even after the electronic ignition for the engine 20 is turned off. In other words, the vehicle and engine 20 can be in a state of “coasting.”


In an effort to create more fuel efficient vehicles, manufacturers are engineering vehicles that turn their engines off when there is no demand for power from the engine 20 (i.e., the engine 20 would traditionally have been idling). As such, there will likely be situations where the vehicle is in motion and the crankshaft of the engine 20 is turning due to coasting. A primary goal of such systems is to make the start-stop procedure virtually transparent to the operator, and therefore the engine needs to be able to start substantially immediately when required. For example, when the driver of a vehicle stops at a red light, the start-stop control system turns off the ignition thereby shutting down the engine 20. When the light turns green and the driver presses the accelerator pedal, the engine should start substantially immediately, such that forward movement can resume as though the engine had simply remained in an idle state during the stop at the red light. Subtle differences in the conditions at the time of engine 20 startup can affect the performance of the starter 12, and lead to possible start delay. While this delay may be insignificant when starting a vehicle in the morning in order to drive to the workplace (i.e. a cold start), for example; a delay can create problems when a start is required while the vehicle is on a road and in travel, (i.e. a warm start).


Depending on the situation, there may be times when the pinion 150 needs to mesh with the ring gear 36 while the flywheel is still in motion. For example, as the driver approaches a stop a stop sign and puts his foot on the brake, the ignition system will shut down and engine combustion will stop. Several seconds later, the driver may depress the accelerator and the engine 20 restarts. Although the vehicle's forward movement is stopped, the rotation of the flywheel may continue to rotate for several seconds. Therefore, the pinion 150 must engage a moving gear 36 without causing damage to the starter 12, pinion 150, or ring gear 36. In addition, vehicle manufacturers have expressed the desire for greater run-up torque support during engine 20 starting to aid in engine acceleration up until the engine is fully started.


The following discussion, particularly in relation to FIG. 1 and FIG. 2, provides a general overview of a starter 12 and how its features and functionality fit within the electrical and mechanical systems of a vehicle. Practitioners will appreciate that the following discussion is for explanation only, and does not limit the scope of the disclosed starter 12. Moreover, the following explanation does not disclose every configuration of a typical starter 12, recognizing that many such configurations exists. Those of ordinary skill in the art will appreciate that the starter 12 construction and types of materials as disclosed herein may be applicable to many different types and configurations of starters 12, generators, and the like.



FIG. 1 illustrates a starter control system 10 according to one embodiment of the invention. The system 10 can include a motor 12, including a motor 170, a power source 14 such as a battery, an electronic control unit 16, one or more sensors 18 for detection of engine speed, (in this case shown as the detection of ring-gear speed), and an engine 20 such as an internal combustion engine. In some embodiments, the engine speed sensor 18 can communicate with the engine control unit 16 via wired and/or wireless communication protocols. In some embodiments, the system 10 can include a pinion 150 and a pinion coil (shown as 120 in FIG. 2A), wherein the pinion 150 is coupled to the motor 170 via a gear train 165 and a clutch 130. In some embodiments, a vehicle, such as an automobile, can comprise the system 10, although other vehicles can include the system 10. In some embodiments, non-mobile apparatuses, such as stationary engines, can comprise the system 10.


In addition to the conventional engine 20 starting episode (i.e., a “cold start” starting episode), the starter control system 10 can be used in other starting episodes. In some embodiments, the control system 10 can be configured and arranged to enable a “stop-start” starting episode. For example, the control system 10 can start an engine 20 when the engine 20 has already been started (e.g., during a “cold start” starting episode) and the vehicle continues to be in an active state (e.g., operational), but the engine 20 is temporarily inactivated (e.g., the engine 20 has substantially or completely ceased moving at a stop light).


Moreover, in some embodiments, in addition to, or in lieu of being configured and arranged to enable a stop-start starting episode, the control system 10 can be configured and arranged to enable the previously described “change of mind stop-start” starting episode. The control system 10 can start an engine 20 when the engine 20 has already been started by a cold start starting episode and the vehicle continues to be in an active state and the engine 20 has been automatically deactivated, but continues to move (i.e., the engine 20 is coasting). For example, after the engine 20 receives a deactivation signal, but before the engine 20 substantially or completely ceases moving, the user can decide to reactivate the engine 20 (i.e. vehicle operator removes his foot from the brake pedal) so that the pinion 150 engages the ring gear 36 as the ring gear 36 is coasting. After engaging the pinion 150 with the ring gear 36, the motor 170 can restart the engine 20 with the pinion 150 already engaged with the ring gear 36. In some embodiments, the control system 10 can be configured for other starting episodes, such as a conventional “soft start” starting episodes (e.g., the motor 170 is at least partially activated during engagement of the pinion 150 and the ring gear 36).


As previously mentioned, in some embodiments, the control system 10 can be configured and arranged to start the engine 20 during a change of mind stop-start starting episode. In order to reduce the potential risk of damage to the pinion 150, and/or the ring gear 36, a speed of the pinion 150 (the pinion speed multiplied by the ring gear and pinion ratio) can be substantially synchronized with a speed of the ring gear 36 (i.e., a speed of the engine 20) when the starter 12 attempts to engage the pinion 150 with the ring gear 36. The engine control unit 16 can then use at least some portions of the starter control system 10 to restart the engine 20.



FIG. 2A is a cross-sectional view of a conventional starter 12 according to one embodiment of the invention. In some embodiments, the starter 12 comprises a housing 115, a motor 170 including a drive shaft 171, a gear train 165, a solenoid assembly 125, a clutch 130 (e.g., an over-running clutch), and a pinion 150. In some embodiments, the starter 12 can operate in a generally conventional manner. For example, in response to a signal (e.g., a user closing a switch, such as an ignition switch), the solenoid assembly 125 can cause a plunger 135 to move the pinion 150 into an engagement position with a ring gear 36 of a crankshaft of a conventional engine (not shown). Further, the signal can lead to the motor 170 generating an electromotive force, which can be translated through the gear train 165 to the pinion 150 engaged with the ring gear 36. As a result, in some embodiments, the pinion 150 can move the ring gear 36, which can crank the engine 20 leading to ignition of the engine 20. Further, in some embodiments, the over-running clutch 130 can aid in reducing a risk of damage to the starter 12 and the motor 170 by disengaging the pinion 150 from a shaft 162 connecting the pinion 150 and the motor 170 (e.g., allowing the pinion 150 to free spin if it is still engaged with the ring gear 36). In some embodiments, the pinion 150 can be directly coupled to a shaft of the motor 170 and can function without a gear train 165.


In some embodiments, the solenoid assembly 125 that allows for the speed synchronization can comprise one or more configurations. Referring to FIGS. 2A and 2B, in some embodiments, the solenoid assembly 125 can comprise the pinion plunger 135, a pinion coil 120, and a plurality of biasing members 145 (e.g., springs or other structures capable of biasing portions of the solenoid assembly 125), a motor coil 121 and a motor plunger 136. In some embodiments, a first end of a shift lever 155 can be coupled to the pinion plunger 135 and a second end of the shift lever 158 can be coupled to the clutch 130 and/or a drive shaft 162 that can operatively couple together the motor 170 and the pinion 150. As a result, in some embodiments, the activation of the pinion coil 120 causes the pinion plunger 135 to move which is then transferred to the pinion 150 via the shift lever 155, 158 to engage the pinion 150 with the ring gear 36. In the same embodiments, the motor coil 121 is activated to cause the motor plunger 136 to move which closes the switch 137 which sends power from the battery bolt 138 to the motor bolt 139 and finally to the motor 170 to cause the motor to spin. The synchronization process occurs as follows: the motor coil 121 is activated first, and when the pinion and ring gear speeds are synchronized, the pinion coil 120 is activated to engage the pinion 150 with the ring gear.


Practitioners will appreciate that the ability to provide variable flux within the above described starter 12 would be highly beneficial to the overall performance of the starter 12, especially within a start-stop application. Various solutions have been developed in order to provide variable flux including, for example, the manipulation of the starter 12 windings by magnetically varying the strength of the field coil. Another method includes the positioning of a relay in series with, or in parallel across the series field. As such, when a higher speed is required of the starter 12, a relay may be closed, shorting out a portion of the excitation that is passing through the series field and thereby weakening the excitations. This can be thought of as being similar to executing a gear shift on an engine.



FIG. 3 is a graph showing typical starter 12 torque and speed curve. As shown, the starter 12 speed asymptotically reaches its maximum speed limit 330 when the pinion 150 torque is at or substantially near zero. Conversely at or near substantially zero starter 12 speed, the pinion 150 torque is at a maximum 325. Factors influencing the ratio of the pinion 150 torque and pinion 150 speed include the size and mass of the starter 12, and the overall electromagnetic design, (number and type of magnetic coils, internal resistance of the coils).



FIG. 4 illustrates a graph 400 showing modeled starter 12 for pinion 150 speed (represented as 410) and pinion 150 torque (represented as 405) with cranking performance for cold start (represented as 415) and warm start (represented as 420) starters. The curves shown compare starters that were designed to perform to meet both cold crank and warm crank requirements (represented as curve 430) as compared with a typical starter (represented as curve 425) that is not designed to meet both cold and warm start requirements. In some embodiments as shown, starters that are designed to perform to meet both cold crank and warm crank requirements 430 can have an extended torque range at higher operating speeds.


In a warm start scenario, as is often the situation for the disclosed starter 12, the automobile engine 20 is already warm and its moving parts more freely move with less exertion of energy. For example, when the engine 20 oil is warm, not as much torque is needed for the starter 12 to turn the engine 20, and therefore there is a much faster crank speed from the starter 12. In other words, the engine 20 cranks easier when the engine 20 is warm, requiring less torque from the starter 12. As a result, the starter 12 may crank the engine 20 at a speed that is greater than the warm start requirement, (as illustrated in FIG. 4, warm crank 420). Further still, in order to meet the typical cold crank requirement 415 while also meeting warm crank requirements 420, the conventional approach has been to construct a starter 12 with altered electromagnetic designs, (start motors with reduced conductor count in the armature, or fewer turns in the field coil for example). Although these designs are able to function to meet both cranking environments, they suffer from undesirably high, and potentially damaging speeds at low pinion 150 torque. As the motor 170 speed increases past a limit of functional safety, (shown as 430 in FIG. 4), damage may occur to one or more internal components causing degradation of motor 170 performance or sudden failure. Even if the motor 170 does not suffer a catastrophic failure, structural damage may occur that may shorten the lifetime of the motor 170.


In some embodiments of the invention, the starter 12 is able to meet the cold crank requirement and function under a warm start scenario while reducing the pinion 150 speed at low pinion 150 torque. FIG. 5 is a graph 500 showing modeled comparison of starter 12 start pinion 150 torque 505 and pinion 150 speed 510 performance, with cold and warm start cranking performance for conventional design 525, and in the starter 12 according to one embodiment of the invention, (shown as 530 in FIG. 5). As shown, both the conventional starter 12 and the starter 12 according to one embodiment of the invention meet cold crank 515 and warm crank 520 requirements. However in some embodiments, changes to the starter 12 design create a speed-limiting supplemental flux that alters the behavior of the pinion 150 speed and torque relationship (see 530 in FIG. 5 as compared to conventional approaches 525 that do not have the improved supplemental torque feature). In some embodiments, this serves to yield performance improvements as evidenced by speed trimming 535 at higher pinion speeds and lower ranges of pinion 150 torque. In other words, the cold start and warm start requirements of improved “start-stop” starters can be met by these new embodiments of the invention without introducing excessive and potentially damaging pinion 150 speeds. As described earlier, this excessive pinion 150 speed is potentially undesirable, and provides no benefit to the efficiency of the starter 12 and vehicle drivetrain as a whole.


In some embodiments, the use of an auxiliary flux wire provides a supplemental magnetic flux field to the main flux field. In some embodiments, the supplemental magnetic flux acts to limit, (“trim” or “clip”) pinion 150 speed at higher speeds and low torque. In some embodiments, this enables the high end speed of the motor 170 to be limited, and moves the top end speed to below a limit known to cause damage to the motor 170. The speed of the motor is determined by the point where the back voltage produced by the motor (which is a function of flux and speed of the motor) equals the applied voltage to the motor less the resistive drop through the motor. The enhancements provided by the embodiments as described have minimal impact on the torque-speed curve from stall to the warm crank point. However beyond this point, there is a dramatic, desirable impact on the torque-speed curve as it works to “trim” or “clip” the ultra-high speed. In some embodiments, this is accomplished by adding a small amount of flux to the high speed operation points so that the balance speed point between the back-EMF, (which is a function of speed and flux), and the applied voltage is reached at a lower speed level. This balance point dictates how fast the motor 170 will spin. The higher the speed, the more impact that a small amount of additional flux will have on the equilibrium point. The additional flux provided by the auxiliary flux wire functions to supplement the excitation provided by the wound field.



FIG. 6 is a graph showing a starter circuit 600 used in one or more of the embodiments as disclosed. As disclosed, in some embodiments of the circuit 600, current passes through the conductor in the field winding 610 resulting in lines of a magnetic flux generated around the conductor. In some embodiments, the magnetic field flux produced in the field winding 610 interacts with the armature 620. In some embodiments, the torque available at the motor shaft is at least partially dependent on the magnetic flux acting on the armature 620.


In some embodiments, a further magnetic flux can be introduced that acts as a supplement to the main field flux acting on the armature 620. As shown in circuit 700 in FIG. 7, and circuit 800 in FIG. 8, in some embodiments, a further auxiliary flux wire can be added to the circuit 600. For example, FIG. 7 shows a starting motor circuit 700 according to one embodiment of the invention with the auxiliary field coil 730, and FIG. 8 shows a starting motor circuit 800 according to one embodiment of the invention which shows the auxiliary field coil 830.



FIG. 9 shows two possible embodiments of the main field coils 940 and 960 with integrated auxiliary field coils 950 in the starter of some embodiments of the invention. As shown, some embodiments of the invention provides pole shoes 930 that are circularly arranged around the inner periphery 920 of a frame or housing 910, and provide a structural hold for the main field windings 940 and 960. In some embodiments, a small additional speed-limiting flux is achieved by adding a small wire (integrated auxiliary field coils 950) to the circuit. In some embodiments, the addition of the coils 950 can create a small amount of magnetic flux that is independent of the current flow through the armature 620. This is important because the main flux produced by the field windings 940,960 raises and lowers exactly in sync with the armature 620 current, and leads to the asymptotic speed curve as previously discussed. In some embodiments, by breaking this relationship, and making this supplemental flux independent of armature 620 current, the high-speed operation of the motor 170 can be effectively trimmed.


In some embodiments, the auxiliary field coil 950 does not wrap around the iron pole shoes 930, but rather tucks in the (typically void) space between two adjacent field winding coils without encircling (360 degrees) around the pole shoes 930. In some embodiments, the auxiliary field coil 950 generates auxiliary flux to all poles in the field instead of just one (as is more typical in the prior art.)


The auxiliary field coil 950 is one continuous winding in some embodiments, which enables the beneficial results described in this paragraph without a separate winding for each pole shoe 930.


In some embodiments, the auxiliary flux wire 950 is physically smaller or a different geometry in comparison to the main field wire. For example, as shown in FIG. 9, with auxiliary field coil 950 with rectangular main wires 940 and with round conductors 960. In some embodiments, the use of wire with a substantially square or substantially rectangular cross-section can enable a denser assembly and packing of a coil. In some embodiments, the use of wire with a substantially square or substantially rectangular cross-section can enable a higher torque. Furthermore, in some embodiments, the auxiliary flux wire 950 can be a few turns of a small gage wire. In these embodiments, the auxiliary field coil 950 will conduct only low currents and be orders of magnitude smaller in current and flux than the main field 940,960. In some further embodiments of the invention, the auxiliary flux wire 950 is assembled neatly in between the main field coils 940,960 as shown in FIG. 9. As shown, in some embodiments, the space between the main field coils 940 and 960 is conveniently available due to the geometric layout of the windings around the pole shoe 930 and within the circular frame 910. In some embodiments, this configuration is not prone to disrupting the normal electromagnetic design and causing power loss, and operates to trim the high speed operation.



FIG. 10A shows a cross-sectional view of one embodiment of the invention showing an auxiliary field coil 950 in the starter 12 of some embodiments of the invention. FIG. 10B shows a perspective view of one embodiment of the invention showing a main flux field 1010 and a supplemental flux field 1020 in the starter 12 of some embodiments of the invention. As shown, the supplemental flux field 1020 is smaller than the main flux field 1010. In some other embodiments, the main flux field 1010 may be larger or smaller than illustrated in FIG. 10B, and in some embodiments, the supplemental flux field 1020 may be larger or smaller than that illustrated in FIG. 10B.



FIG. 11 shows a modeled data representation of the pinion 150 torque and speed for a conventional starter and a starter 12 according to some embodiments of the invention. In some embodiments, both conventional and supplemental flux improved motor designs meet the cold and warm crank points. However, as shown, in some embodiments, the supplemental flux concept added to the same design allows the high speed operation can be neatly trimmed by using some embodiments of the invention as described earlier where supplemental flux is added to the main field flux. In some embodiments of the invention, the starter 12 is able to meet the cold crank requirement and function under a warm start scenario while reducing the pinion 150 speed at low pinion 150 torque. As shown, both the conventional starter 12 and the starter 12 according to one embodiment of the invention meet cold crank 1115 and warm crank 1120 requirements. However in some embodiments, changes to the starter 12 design create a speed-limiting supplemental flux that alters the behavior of the pinion 150 speed and torque relationship (see 1135 in FIG. 11 as compared to conventional approaches 1140 that do not have the improved supplemental flux design). In some embodiments, this serves to yield performance improvements as evidenced by speed trimming at higher pinion speeds and lower ranges of pinion 150 torque (as shown, the speed at substantially zero torque 1105 is just over 5000 revolutions per minute, however the torque 1105 at the same speed is significantly above zero). In other words, the cold start and warm start requirements of improved “start-stop” starters 12 can be met by these new embodiments of the invention without introducing excessive and potentially damaging pinion 150 speeds.


It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A starter comprising: a motor coupled to a pinion and being at least partially disposed within a frame, the motor including:a main field coil capable of producing a main magnetic flux field;at least one auxiliary field coil comprising one continuous winding, the at least one auxiliary field coil located between adjacent pole shoes without encircling the pole shoes, and the auxiliary field coil electrically being coupled to the main field coil and configured and arranged to provide a supplemental magnetic flux field to all of the pole shoes; andan armature, the armature configured and arranged to electromagnetically couple with the main magnetic field flux and the supplementary magnetic field flux.
  • 2. The starter of claim 1, wherein the at least one auxiliary field coil is electrically connected in series with the main field coil.
  • 3. The starter of claim 1, wherein the at least one auxiliary field coil is electrically connected in parallel with the main field coil.
  • 4. The starter of claim 1, further comprising at least one pole shoe substantially circularly arranged around an inner periphery of the frame, the at least one pole shoe configured and arranged to at least partially support the main field coil; and wherein the at least one auxiliary field coil is adjacent to and supported by the inner periphery of the frame and is positioned adjacent to the at least one pole shoe and between at least one other pole shoe.
  • 5. The starter of claim 4, wherein the main field coil comprises a non-circular conductor wire.
  • 6. The starter of claim 4, wherein the main field coil comprises a circular conductor wire.
  • 7. The starter of claim 4, wherein the auxiliary field coil comprises a non-circular conductor wire.
  • 8. The starter of claim 4, wherein the auxiliary field coil comprises a circular conductor wire.
  • 9. A starter system comprising: a starter capable of being controlled by an electronic control unit, the starter further comprising:a motor including a drive shaft coupled to a pinion and being at least partially disposed within a frame, the motor further including:a main field coil capable of producing a main magnetic flux field;at least one auxiliary field coil comprising one continuous winding, the at least one auxiliary field coil located between adjacent pole shoes without encircling the pole shoes, and the auxiliary field coil electrically being coupled to the main field coil and configured and arranged to provide a supplemental magnetic flux field to all of the pole shoes; andan armature, the armature configured and arranged to electromagnetically couple with the main magnetic field flux and the supplementary magnetic field flux; andwherein in response to a signal from the electronic control unit, the pinion can be actuated to engage with a ring gear of an engine.
  • 10. The starter system of claim 9, wherein the electronic control unit is configured and arranged to enable a current flow through the main field coil and the auxiliary field coil.
  • 11. The starter system of claim 10, wherein the field strength of the supplemental magnetic flux field is less than the field strength of the main magnetic field flux.
  • 12. The starter system of claim 9, wherein the at least one auxiliary field coil is electrically connected in series with the main field coil.
  • 13. The starter system of claim 9, wherein the at least one auxiliary field coil is electrically connected in parallel with the main field coil.
  • 14. The starter system of claim 9, further comprising at least one pole shoe substantially circularly arranged around an inner periphery of the frame, the at least one pole shoe configured and arranged to at least partially support the main field coil; and wherein the at least one auxiliary field coil is adjacent to and supported by the inner periphery of the frame and is positioned adjacent to the at least one pole shoe and between at least one other pole shoe.
  • 15. The starter system of claim 14, wherein the main field coil comprises a non-circular conductor wire.
  • 16. The starter system of claim 14, wherein the main field coil comprises a circular conductor wire.
  • 17. The starter system of claim 14, wherein the auxiliary field coil comprises a non-circular conductor wire.
  • 18. The starter system of claim 14, wherein the auxiliary field coil comprises a circular conductor wire.