Starter

Information

  • Patent Grant
  • 6225718
  • Patent Number
    6,225,718
  • Date Filed
    Thursday, December 2, 1999
    24 years ago
  • Date Issued
    Tuesday, May 1, 2001
    23 years ago
Abstract
To prevent powder caused by wear of brushes from entering a contact chamber, a first stationary contact is electrically connected to a battery and a second stationary contact is connected to positive brushes, wherein a contact bracket is provided to hold the first stationary contact, and a contact chamber cover is provided to interpose and hold the second stationary contact between the contact chamber cover and the contact bracket so that the contact chamber can be kept in an airtight state.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a starter for starting an engine.




2. Description of the Prior Art





FIG. 14

is a sectional view showing one example of a conventional starter that was disclosed in Japanese Published Unexamined Patent Application No. 266933/1998.




In

FIG. 14

,


1


A is an output shaft. An electromagnetic switch


2


A, an over-running clutch


30


A provided with a pinion


30


P which meshes with a ring gear


50


A, a plunger


40


A comprising an inner plunger


4


A and an outer plunger


4


B are arranged on the same shaft as the output shaft


1


A. A starter with this structure is generally called a coaxial type starter.






12


A is an armature of a DC motor and


16


A is a shaft (a motor shaft).


18


A is a reduction mechanism which reduces the rotational force of the shaft


16


A and transmits it to the output shaft


1


A.






8


A is a contact shaft supported by an inner gear


17


A of the reduction mechanism


18


A almost parallel with the plunger


40


A through a supporting hole


17




m.








100


is a bracket and


800


is a shift plate which connects the plunger outer


4


B with the contact shaft


8


A.




Further, the upper side from the center axis in

FIG. 14

shows the state of a starter not in operation and the lower side shows the state wherein the starter is in operation with an electromagnetic switch turned ON and the pinion meshed with the ring gear.




Next, the operation of the starter is explained.




First, when an ignition switch is turned ON and current flows to an exciting coil


2


B of the electromagnetic switch


2


A, the outer plunger


4


B is attracted by an exciting core


2


C of the electromagnetic switch


2


A. This conventional starter has such a structure that the outer plunger


4


B is directly connected with the contact shaft


8


A via the shift plate


800


and when the outer plunger


4


B is attracted by the exciting coil


2


B, the contact shaft


8


A is also moved simultaneously. Between the outer plunger


4


B and the inner plunger


4


A, there is a coil spring


401


mounted on a spring bracket


400


and the inner plunger


4


A is kept in the stationary state because the coil spring


401


deflects at the initial stage even when the outer plunger


4


B is attracted and begins to move. In front of the inner plunger


4


A, an inner clutch


30


B is mounted via a shifter member


402


and as long as the inner plunger


4


A is kept in the stationary state, the inner clutch


30


B is also kept in the stationary state. After a short interval when the plunger


4


B is attracted and begins to move, a movable contact


80


A mounted on the contact shaft


8


A comes into contact with a stationary contact


80


B mounted in a contact chamber ZA. When the movable contact


80


A is brought into contact with the stationary contact


80


B, electric power is supplied from an external power source via a contact bolt


11


A, and an armature


12


A begins to turn. When the output shaft


1


A begins to turn by way of the reduction mechanism


18


A, the pinion


30


P is caused to move toward the ring gear


50


A by a thrust generated in a helical spline portion


1


B, and the threads and the thread grooves of the pinion


30


P and the ring gear


50


A agree and mesh. Thereafter, when the engine starts, the output shaft


1


A and the pinion


30


P are separated by the action of the overrunning clutch


30


A and the pinion


30


P runs idle. When the power supply to the exciting coil


2


B is stopped, the pinion


30


P is disengaged from the ring gear


50


A by return springs


403


,


404


.




However, in the case of a conventional starter disclosed in Japanese Published Unexamined Patent Application No. 266933/1998, there have been problems whereby a pigtail


42


(a lead wire) for electrical connection with a brush


43


is connected to the movable contact


80


A and whenever the contacts


80


A,


80


B are opened/closed, a repetitive stress is applied to the pigtail


42


. Also, worn powder from the brush


43


enters the contact chamber ZA because this chamber is not airtight.




Further, in the case of a conventional starter disclosed in Japanese Published Unexamined Patent Application No. 319926/1996 shown in

FIG. 15

, a contact chamber cover


45


is provided but a repetitive stress is applied to the pigtail


42


of the brush


43


similar to the case of the starter disclosed in Japanese Published Unexamined Patent Application No. 266933/1998 as the pigtail


42


is connected to the movable contact


80


A. Further, in the conventional technology shown in this

FIG. 15

, the contact chamber ZA is covered by the contact chamber cover


45


but under this contact chamber cover


45


, a space is formed for the movable contact


80


A to move and the contact chamber ZA is not kept in an airtight state. Therefore, there has been a problem whereby worn powder from the brush enters the contact chamber ZA in the same manner as with the starter shown in FIG.


14


.




SUMMARY OF THE INVENTION




The present invention was made to solve such problems as those mentioned above and its object is to provide a highly reliable starter with a structure wherein no repetitive stress is applied to the pigtail and worn powder from the brush can be prevented entering the contact chamber, thus preventing improper contact.




In the starter of the present invention comprising a first stationary contact that is electrically connected to a battery, a second stationary contact that is electrically connected to a positive brush, and a contact chamber where the electricity is sent between the first and second stationary contacts by a movable contact, a contact bracket is provided to hold the first stationary contact, and a contact chamber cover is provided to interpose and hold the second stationary contact between the contact chamber cover and the contact bracket so that the contact chamber can be kept in an airtight state.




The above and other objects, features and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a sectional view showing the structure of a starter according to a first embodiment of the present invention;





FIG. 2

is a sectional view for explaining the structure of a contact chamber of a starter according to the first embodiment;





FIG. 3

is a top view when viewed from the direction A in

FIG. 1

;





FIG. 4

is a perspective view showing a contact bracket and stationary contacts forming the contact chamber;





FIG. 5

is a perspective view showing a contact chamber cover forming the contact chamber;





FIG. 6

is a perspective view of the exterior of the contact chamber;





FIG. 7

is a sectional view for explaining the structure of the contact chamber of a starter according to a second embodiment;





FIG. 8

is a perspective view showing a contact chamber cover forming the contact chamber according to the second embodiment


2


;





FIG. 9

is a sectional view of a reduction mechanism;





FIG. 10

is a sectional view of an over-running clutch;





FIG. 11

is a perspective view of an output shaft;




FIG.


12


(


a


) FIG.


12


(


b


) are perspective views of the over-running clutch;





FIG. 13

is a perspective view of a plunger and a shift plate;





FIG. 14

is a sectional view showing one example of a conventional starter; and





FIG. 15

is a partial sectional view showing another example of a conventional starter.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




[First Embodiment]




A first embodiment of a starter according to the present invention will be described below referring to the attached drawings.





FIG. 1

is a sectional view showing the structure of a starter according to the first embodiment. In

FIG. 1

, the left side portion is a DC motor portion X, the right side portion is an operating portion Y and the substantially central upper side portion is a contact chamber Z. Further, the electric motor side in

FIG. 1

is referred to as the rear and the ring gear side is referred to as the front in the following explanation.




The starter in the first embodiment is covered with such outer wall members as a front bracket


20


, a center bracket


30


and a rear bracket


40


, and presents a substantially bullet-shaped external appearance. Further, a portion where a ring gear


50


enters forms an opening.




In the starter, there are arranged a DC motor M and an output shaft


1


that is driven by this DC motor M, and around the output shaft


1


, a ring-shaped electromagnetic switch


2


, an over-running clutch


3


and a plunger (a movable core)


4


are arranged.




In other words, the starter according to the first embodiment is a coaxial type starter with the electromagnetic switch


2


, the over-running clutch


3


and the plunger


4


arranged on the same axle as the output shaft


1


.




As is well known, the DC motor M comprises an armature


12


, a yoke


13


that covers this armature


12


, a stationary magnetic pole


13




a


provided inside this yoke


13


, a commutator


14


, brushes


15


and a shaft


16


. The armature


12


is an armature core with an armature coil wound around it. The front side of the shaft


16


penetrates the cylindrical space of the cylindrical commutator


14


and is connected to a reduction mechanism


18


.




The armature coil is connected to the commutator


14


. The DC motor M is available in 2-pole, 4-pole and 6-pole types depending on the number of stationary magnetic poles. For instance, taking a case using a 6-pole DC motor as a sample, a total of 6 units of the stationary magnetic pole


13


are provided by arranging a N-pole and a S-pole alternately, and the brushes


15


kept in contact with the commutator


14


are arranged along the circumference of the commutator


14






Further,


15




a


is a spring that pushes the brush


15


against the commutator


14


.


15




h


is a brush holder.




The output shaft


1


is driven by the DC motor M in the structure as described above.




The operating portion Y comprises the reduction mechanism


18


, the output shaft


1


, the electromagnetic switch


2


, the over-running clutch


3


, and the plunger


4


.






17


is an inner gear member. This member comprises a first tubular portion


17




a


which is fitted to the outer circumference of the output shaft


1


via a bearing


1




y


, a tubular disk shape bottom plate portion


17




b


which extends in the direction perpendicular to the outer circumference of the output shaft


1


from the first tubular portion


17




a


, and a second tubular portion


17




c


that has an inner gear


18




c


on the inner circumference.




The reduction mechanism


18


comprises the inner gear


18




c


of the inner gear member


17


, a sun gear


18




a


provided on the shaft


16


, a plurality of planet gears


18




b


arranged around this sun gear


18




a


engaging with the sun gear


18




a


and the inner gear


18




c


, and a pin


1


P that projects from a flange


1


F of the output shaft


1


inserted between this group of planet gears


18




b


and a bottom plate


17




b


of the inner gear member


17


and connects each of the planet gears


18




b


to the flange


1


F of the output shaft


1


.




Further, the rotational force of each planet gear


18




b


is transmitted to each pin


1


P via a bearing


1




z.






Further, a round groove


1




h


is formed at the center of the flange


1


F of the output shaft


1


and the forward end of the shaft


16


is supported rotatably via a bearing


1




x


provided in the round groove


1




h.






Accordingly, as shown in the sectional view in FIG.


9


, when the planet gears


18




b


move round the sun gear


18




a


, the rotational force of the shaft


16


is reduced and transmitted to the output shaft


1


through the pins


1


P.




Further, a helical spline


1




a


is formed on a part of the outer circumference at the central side of the output shaft


1


. On the outer circumference of the part where this helical spline


1




a


is formed, the overrunning clutch


3


is arranged so that a tubular portion


3




a


of a thrust spline


3


A corresponds thereto. Further, on the inner surface of the tubular portion


3




a


of the thrust spline


3


A, a helical spline


3




x


is formed to mesh with the helical spline


1




a


. That is, the overrunning clutch


3


is spline connected to the output shaft


1


.




Further, the electromagnetic switch


2


is arranged on the outer circumference side of the thrust spline


3


A.




Further, the plunger


4


is arranged on the outer circumference at the flange


1


F side of the output shaft


1


.




The over-running clutch


3


comprises the thrust spline


3


A that is formed of the tubular portion


3




a


having the helical spline


3




x


formed on its inner surface for meshing with the helical spline


1




a


that is formed on a part of outer circumference at the central side of said output shaft


1


and the flange portion


3




b


that is provided at the front side of this tubular portion


3




a


and becomes the cam bottom of a roller cam that is described later, a roller cam


3




a


interposed between the flange portion


3




b


of this thrust spline


3


A and a washer


3




e


, a pinion


3


P, a inner clutch


3




y


composed of a tubular portion at the base of the pinion


3


P, a clutch roller


3




r


and a spring


3




s


that are arranged in a groove


3




t


formed on the roller cam


3




c


, and a clutch cover


3




w


that covers the outside of the flange portion


3




b


of the thrust spline


3


A, the roller cam


3




c


and the washer


3




e.






Further, said thrust spline


3


A and the roller cam


3




c


form an outer clutch


3


X.




Further, the over-running clutch


3


acts as a so-called one-way clutch. The sectional view of the over-running clutch is shown in FIG.


10


. At several points on the inner circumference of the roller cam


3




c


, grooves


3




t


are provided to form a narrow space and a wide space between the outer circumference of the inner clutch


3




y


. The clutch roller


3




r


is arranged in each of these grooves


3




t


.


3




s


is a spring for pressing the clutch roller


3




t


toward the narrow space of the groove


3




t.






When the output shaft


1


is driven by the DC motor M, the roller cam


3




c


is rotated, the clutch roller


3




r


moves to the narrow space of the groove


3




t


, the roller cam


3




c


of the clutch outer


3


X meshes with the clutch inner


3




y


, and the pinion


3


P turns and meshes with the ring gear


50


. Then, when the pinion


3


P is rotated together with the ring gear


50


, the clutch roller


3




r


moves to the wide space of the groove


3




t


, the clutch outer


3


X and the clutch inner


3




y


are disengaged and the over-running clutch


3


is separated from an engine.




The electromagnetic switch


2


comprises a switch case


2




b


for covering an exciting coil


2




a


and a core


2




c


, and is arranged at the rear side of the position of the one way clutch


3


B. The core


2




c


has a hollow shaped disc surface opposing the flange portion


3




b


of said thrust spline


3


A and is made in a ring shaped body arranged so as to penetrate the outer circumference of the tubular portion


3




a


of the thrust spline


3


A. Also, the core has a ring shaped projecting portion


2




t


extends to the rear side at the tubular portion


3




a


side of the thrust spline


3


A.




The plunger


4


is made of a tubular body that is arranged in a movable manner between the inner circumference of the switch case


2




b


and the tubular portion


3




a


of the thrust spline


3


A. The front end side


4




t


opposing the ring shaped projecting portion


2




t


of the core


2




c


is formed in a shape corresponding to the shape of the ring shaped projecting portion


2




t.






Further, on the inner circumference at the rear end side of the plunger


4


, a ring shape plate


5




a


is secured as a first pressure plate. In addition, on the rear end side of the tubular portion


3




a


of the thrust spline


3


A of the overrunning clutch


3


, a ring shape plate


5




b


is provided as a second pressure plate. Between these plates


5




a


,


5




b


, that is, in the space between the inner circumference of the plunger


4


and the outer circumference of the output shaft


1


, the coil spring


6


is arranged as an elastic means.




Accordingly, the plunger


4


is attracted by the core


2




c


and moves in the direction (forward) of the core


2




c


and the overrunning clutch


3


moves as pushed by the plate


5




b


with the movement of the plunger


4


. When the pinion


3


P once stops moving after the end surface


3


Pe of the pinion


3


P is brought into contact with the end surface


50




e


of the ring gear


50


, and the motor is driven and the gear threads mesh with the grooves of the pinion


3


P and the ring gear


50


, the pinion


3


P meshes with the ring gear


50


by the elastic force of the coil spring


6


that is compressed and accumulated up to this point.






8


is a contact shaft supported in a movable manner in the extended direction of the shaft by a supporting hole


17




h


provided on a part (the upper part of

FIG.1

) of a second tubular portion


17




c


of the inner gear member


17


. Further, the contact shaft


8


is mounted so as to extend over the operating portion Y and the contact camber Z via the supporting hole


17




h.






At one end side in the contact chamber Z of the contact shaft


8


a movable contact


8




e


is provided. Further, at the rear side from this movable contact


8




e


, a ring shape plate


9




a


is secured to the contact shaft


8


. Between this plate


9




a


and the movable contact


8




e


, there is provided a coil spring


9




b


for pressing the movable contact


8




a


to the stationary contact side (later described). Further, at the other end of the shaft positioned at the operating portion Y side of the contact shaft


8


, a ring shape plate


9




c


is secured to the contact shaft


8


. Between this plate


9




c


and a front bracket


20


, a return coil spring


9




d


is provided.




Further, a shift plate


7


is mounted on the rear end of the plunger


4


. This shift plate


7


is a slender plate extending in the upper and lower directions with a hole formed at the center for mounting it on the rear end of the plunger


4


and a penetrating hole


7


S at the upper portion corresponding to the contact shaft


8


. This shift plate


7


is secured to the plunger


4


with an engaging ring


7




t


. Further, a return coil spring


9




v


is provided between the lower part of the shift plate


7


and the front bracket


20


.




In addition, the shift plate


7


secured to the plunger


4


and the plate


9




c


, which is a plate contacting portion, form a contact shaft moving means.




The coil spring


6


, the ring shape plate


5




a


as a first pressing plate, and the ring shape plate


5




b


as a second pressing plate form a means to provide a pressing force to the over-running clutch


3


in the direction of the ring gear.






33


is an O-ring and


70




b


,


70




c


are packing.




Further, a rear end


16




e


of the shaft


16


is supported rotatably on a rear bracket


40


via a bearing


60




a


. A front end


1




t


of the output shaft


1


is supported at an end


20




t


side of the front bracket


20


via a bearing


60




e.






At the front side of the output shaft


1


, a stopper


52


is provided via an engaging ring


51


. Also, at the end of the pinion


3


P, a stopper


53


is provided. Between these stoppers


52


,


53


, a return spring


54


is provided.






41


is a bolt to secure the motor portion X and the operating portion Y by interposing them between the rear bracket


40


and the front bracket


20


.




The motor portion X, the contact chamber Z and the operating portion Y are divided by partition plates


34


,


35


.





FIG. 11

shows a perspective view of the output shaft


1


, FIG.


12


(


a


) and (


b


) show perspective views of the overrunning clutch


3


and

FIG. 13

shows a perspective view of the plunger


4


and the shift plate


7


.




Next, the structure of the contact chamber of the starter according to the present invention is described in detail.





FIG. 2

is an imaginary sectional view of the contact chamber showing its internal structure when viewed from the left (rear) side when it is cut at the section A shown in

FIG. 1

, and the connection with the brushes.




The contact chamber Z is arranged between a pair of positive pole brushes


15


,


15


. The contact chamber is divided into a contact bracket


31


and a contact chamber cover


32


. A first stationary contact


10




a


and a second stationary contact


10




b


are provided on the contact bracket


31


.




The first stationary contact


10




a


is connected to a battery via a terminal bolt


11


.




The second stationary contact


10




b


is connected to the positive pole brushes


15


,


15


via a pigtail


24


(a lead wire) and is also connected to the other end of the exciting coil


2




a


of the electromagnetic switch


2


.




Further, as the terminal bolt


11


is secured with a nut


11




a


, the first stationary contact


10




a


is secured to the contact bracket


31


by a bolt head


11




t.







FIG. 4

shows a perspective view of the inside of the contact chamber,

FIG. 5

is a perspective view of the contact chamber cover, and

FIG. 6

is an external perspective view of the contact chamber. As seen from these drawings, in order to lead a connecting portion


124


with the pigtail


24


at the second stationary contact


10




b


to the outside of the contact chamber Z under the airtight state of the contact chamber Z, a concave portion


32




a


is formed on the contact chamber cover


32


at the position corresponding to the second stationary contact


10




b


. As a result, as shown in

FIG. 6

, the contact chamber Z is maintained in an airtight state by interposing and holding the second stationary contact


10




b


between the contact chamber cover


32


and the contact bracket


31


. Further, as shown in

FIG. 4

, a hole


31


H is formed on the contact bracket


31


to allow the contact shaft to pass through it and the first and the second stationary contacts


10




a


,


10




b


are provided avoiding this hole


31


.




As shown in FIG.


1


and

FIG. 3

viewed from the direction A in

FIG. 1

, a U-shaped concave portion


13




c


is provided on the motor yoke


13


corresponding to the shape of the back surface


32




b


of the contact chamber cover


32


, a grommet


70




a


made of rubber is set in this concave portion as a buffer material, and by way of this grommet


70




a


, the contact chamber cover


32


is pressed down toward the contact bracket


31


by the yoke


13


. Further, a concave portion


32




c


is also formed on the back


32




b


of the contact chamber cover


32


to fit the grommet


70




a


therein.




Next, the operation will be described.




When the ignition switch is turned ON and current flows to the exciting coil


2




a


of the electromagnetic switch


2


, the plunger


4


is attracted toward the exciting core


2




c


, the plate


5




a


pushes the coil spring


6


, the plate


5




b


presses the thrust spline


3


A, and the overrunning clutch


3


is pushed out toward the ring gear


50


. As a result, the end surface


3


P


e


of the pinion


3


P provided at the over-running clutch


3


is brought into contact with the end surface


50




e


of the ring gear


50


and the over-running clutch


3


initially stops to move in the forward direction (the right direction in FIG.


1


). However, while the plate


5




a


provided at the inner circumference side of the plunger


4


presses the coil spring


6


, the plunger


4


is further attracted and moves continuously and the shift plate


7


also moves forward and contacts the plate


9




c.






As the plunger


4


is attracted continuously following this state, the plate


9




c


secured to the contact shaft


8


is pushed by the shift plate


7


and the contact shaft


8


also moves forward. Then, when the movable contact


8




e


of the contact shaft


8


is brought into contact with the first and the second stationary contacts


10




a


,


10




b


, electric power is supplied from a battery and the armature


12


begins to turn.




Further, the contact shaft


8


moves continuously until the plunger


4


is completely attracted and its end


4




t


side is brought into contact with the exciting core


2




c


. At this time, the coil spring


9




b


is compressed by the plate


9




a


and thus, the movable contact


8




e


is depressed and kept in contact with the first and the second stationary contacts


10




a


,


10




b.






When the armature


12


begins to turn, its rotational force is decelerated through the reduction mechanism


18


and is transmitted to the output shaft


1


, the overrunning clutch


3


that is spline-connected to the output shaft


1


, and further, to the pinion


3


P. Then, when the pinion


3


P turns slowly and the threads and grooves of the pinion


3


P agree with those of the ring gear, the pinion


3


P is pushed forward by the spring force (the elastic force) of the pressed coil spring


6


and completely meshes with the ring gear


50


. Thus, as the crankshaft connected to the ring gear turns, the engine is started.




When the engine is started, the output shaft


1


and the pinion


3


P are separated by the action of the overrunning clutch


3


and the pinion


3


P runs idle. Then, when the power supply to the exciting coil


2




a


is stopped, the pinion


3


P is disengaged from the ring gear


50


as the plunger


4


and the overrunning clutch


3


are returned to their original positions by the return coil springs


9




d


,


9




v.






Further, when the gear threads and grooves of the pinion


3


P agree with those of the ring gear


50


, they mesh because the end surface


3


P


e


of the pinion


3


P does not contact the end surface


50




e


of the ring gear


50


and there is no problem.




According to the first embodiment, the motor has such a structure that the pigtail


24


is connected to the second stationary contact


10




b


for the electrical connection to the positive pole brushes


15


, no repetitive stress is applied to the pigtail


24


and the contact chamber z is maintained in an airtight state by interposing and holding the second stationary contact


10




b


between the contact chamber cover


32


and the contact bracket


31


. In other words, the contact chamber cover


32


is provided to keep the contact chamber Z in an airtight state and therefore, it is possible to almost completely prevent powder from the brushes from entering the contact chamber Z. Accordingly, it is possible to obtain a highly reliable starter that is capable of preventing improper contact of the contacts


10




a


and


10




b


in the structure where no repetitive stress is applied to the pigtail


24


.




Further, the motor is made with such a structure that the contact chamber cover


32


is depressed by the yoke


13


via the grommet


70




a


in the direction of the contact bracket


31


. The contacting force between the contact chamber cover


32


and the contact bracket


31


can be made strong and a highly airtight contact chamber Z is obtained. It is therefore possible to obtain a highly waterproofed starter preventing water from entering the inside of the motor such as the contact chamber Z and the motor portion X as a result of the structure of the concave portions


32




c


,


13




c


formed on the contact chamber cover


32


and the yoke


13


and the grommet


70




a


interposed between these concave portions.




In addition, according to the first embodiment, the concave portion


32




a


corresponding to the second stationary contact


10




b


is provided on the contact chamber cover


32


but may be provided on the contact bracket


31


. In this case, the second stationary contact must be provided with a connecting portion


124


having the pigtail


24


formed in a shape to fit into the concave portion provided on the contact bracket


31


.




Further, when the second stationary contact


10




b


is secured to the contact bracket


31


by riveting, etc., the play of the second stationary contact


10




b


is eliminated and a more highly reliable starter is obtained.




Second Embodiment




As shown in FIG.


7


and

FIG. 8

, a pair of concavo-convex portions


80


are provided on the contacting surface between the portion of the contact bracket


31


on which the contact bolt


11


is mounted and the contact chamber cover


32


. The contact bracket


31


and the contact chamber cover


32


are press fitted by these concavo-convex portions. Specifically, a concave portion is provided along the circumferential surface


81


at the portion of the contact bracket


31


shown in

FIG.4

, on which the contact bolt


11


is mounted, and a convex portion


82


shown in

FIG. 8

is formed on the contact chamber cover so as to correspond to the concave portion.




Thus, a starter having a more higher water-proof performance is obtained.




Further, a sealing material or a packing may be provided between the concave and convex parts of the concavo-convex portion


80


.




In addition to the structure of the second embodiment, a pair of concavo-convex portions may be provided on the contacting surfaces


83


(see

FIG. 8

) of the contact bracket


31


on which the second stationary contact


10




b


is mounted, with the contact chamber cover


32


contacting to the contact bracket


31


to further improve the water-proof performance and the airtightness of the contact chamber Z.




The various springs used in the invention may be made of rubber. In short, elastic means capable of conserving elastic force are acceptable.




Further, in the starter in the above embodiments, the contact shaft


8


is supported by the supporting hole


17




h


provided on the inner gear member


17


. However, in such structure, a supporting portion with a supporting hole formed for supporting the contact shaft


8


may be provided on a center bracket


30


, which is an outer wall member, and the contact shaft


8


may be supported by the center bracket


30


.




As described above, according to the present invention, it is possible to obtain a highly reliable starter of such a structure that a contact bracket is provided to hold a first stationary contact, and a contact chamber cover is provided to interpose and hold a second stationary contact between the contact chamber cover and the contact bracket so that the contact chamber can be kept in an airtight state, preventing powder from brushes entering the contact chamber and also preventing improper contact.




Further, a pair of concavo-convex portions are formed on the contact chamber cover and the contact bracket to lead the second stationary contact to the outside of the contact chamber in an airtight state of the contact chamber. Therefore, this effect can be achieved more specifically.




Further, the contact chamber cover is pressed via the buffer material in the direction of the contact bracket by the yoke. Therefore, in addition to the above-mentioned effect, a more airtight contact chamber is obtained and a more water-proof starter capable of preventing entry of water into the inside of the contact chamber and the motor portion is provided.




Further, since a pair of concave-convex portions are provided on the contacting surface between the contact bracket and the contact chamber cover so that the contact bracket and contact chamber cover can be secured by engaging these concave-convex portions, it is possible to improve the airtight performance of the contact chamber.



Claims
  • 1. A starter comprising:an output shaft driven by an electric motor; a plunger; an exciting coil for attracting the plunger; an over-running clutch having a pinion adapted to mesh with a ring gear and spline-connected to the output shaft; said plunger, exciting coil and over-running clutch being arranged on the outer circumference of and on the same axis as the output shaft; a contact shaft provided at one end thereof with a movable contact for contacting stationary contacts to supply the motor with electric power and disposed substantially in parallel with the plunger; said stationary contacts comprising a first stationary contact electrically connected to a battery and a second stationary contact electrically connected to positive pole brushes; a contact chamber where the electricity is sent between the first stationary contact and the second stationary contact by the movable contact; and wherein a contact bracket is provided to hold the first stationary contact, and a contact chamber cover is provided to interpose and hold the second stationary contact between the contact chamber cover and the contact bracket, thereby keeping the contact chamber in an airtight state.
  • 2. A starter according to claim 1, wherein a pair of concavo-convex portions are formed on the contact chamber cover and the contact bracket in order to lead the second stationary contact to the outside of the contact chamber in an airtight state of the contact chamber.
  • 3. A starter according to claim 1, wherein the contact chamber cover is depressed via a buffer material in the direction of the contact bracket by a yoke of the motor.
  • 4. A starter according to claim 1, wherein a pair of concavo-convex portions are provided on the contacting surfaces between the contact bracket and the contact chamber cover, and the contact bracket and the contact chamber cover are secured by engaging the concavo-convex portions.
Priority Claims (1)
Number Date Country Kind
11-148162 May 1999 JP
US Referenced Citations (3)
Number Name Date Kind
5065039 Isozumi et al. Nov 1991
5877575 Nara et al. Mar 1999
6157105 Kuragaki et al. Dec 2000
Foreign Referenced Citations (3)
Number Date Country
7-87682 Sep 1996 JP
8-319926 Dec 1996 JP
10-266933 Oct 1998 JP