1. Technical Field
The invention relates generally to startup burners and specifically to startup burners used in chemical recovery boilers in the pulp and paper industry.
2. Related Art
Chemical recovery boilers isolate useful compounds from manufacturing byproducts. In the pulp and paper industry, pulp mills typically use a manufacturing process in which wood chips or other lignocellulosic biomass are treated with chemical liquor comprising cooking chemicals. The wood chips or other lignocellulosic materials are then cooked in a digester at predetermined temperature and pressure to form a slurry comprising spent liquor and a rough pulp with inconsistent particle size. After cooking, equipment washes the spent chemical liquor from the rough pulp. The spent liquor is commonly known as “black liquor” and comprises organic and inorganic chemicals left over from the cooking process. The pulp is generally sent to other equipment for further refinement. The black liquor is eventually pumped to a chemical recovery boiler and processed to recover the cooking chemicals. Without recovering and reusing the cooking chemicals from the black liquor, the cost of industrial paper-making processes would be prohibitive.
Chemical recovery boilers generally evaporate excess moisture from black liquor solids, burn organic liquor components, supply heat for steam generation, and recover inorganic compounds—notably sodium sulfide and sodium carbonate. Some of these compounds can be re-causticized and used elsewhere in the manufacturing process.
In the recovery process, the black liquor is typically concentrated into a solution containing a solids concentration of above sixty percent by mass. Nozzles in the furnace wall then spray black liquor into a furnace. The nozzles are generally located in the bottom quarter of the furnace and may be several meters above the bottom of the furnace. The furnace is a reactor that generally dries and partially pyrolyzes the liquor droplets as they fall toward the bottom of the furnace. The furnace also evaporates, gasifies, oxidizes, and reduces, components within the black liquor to recover the cooking chemicals.
The partially dried and reacted black liquor accumulates in a mound at the bottom of the furnace known as a “char bed”. Nozzles typically permit airflow into the furnace at a low, middle, and upper elevation. The air, together with the lignin, wood extracts, and other organic compounds maintain combustion in the furnace. Inorganic compounds are often reduced in the char bed into a molten smelt. The smelt may accumulate and flow out of the furnace through a smelt spout and into a collection tank. These reactions consume heat. As such, operators generally regulate and redistribute airflow and black liquor input, to promote and maintain combustion for efficient chemical recovery.
In traditional recovery boilers, the furnace is internally lined with a series of densely-arranged, high-pressure coolant-filled tubes. The coolant is commonly water and a collective series of tubes is generally known as a “water wall.” To regulate temperature efficiently, the water wall tends to cover a large internal surface area. In some existing chemical recovery boilers, three inch coolant tubes are generally separated by one inch filler bars so as to form a gas-tight barrier enclosing the furnace.
To operate safely and efficiently, the furnace generally operates under negative pressure. A constant inflow of air near the base of the furnace is generally required to maintain combustion and to replace air and other gases that exit the recovery boiler near the top of the furnace. Air generally enters the otherwise gas-tight furnace through openings in the furnace water walls. Such openings include air ports and throats, which are designed to inject pressurized air. Ambient air generally flows through other openings, such as those for smelt spouts, due to the negative pressure in the furnace. For most such openings, the coolant tubes generally bend around the opening in the furnace wall.
Air manifolds or windboxes generally flank the throat and air port openings on the outer wall of the furnace. Large fans ducted to the windboxes can cause air to flow into the furnace through the various throats and air ports in the furnace walls.
Airflow is the primary variable of operation aside from the rate of black liquor input. Large quantities of air are generally forced through the narrow throat and air port openings to maintain combustion. The flow of air through a throat and, diffuser, or swirler is desirable to maintain auxiliary combustion from active startup burners. Unfortunately, conditions within the furnace contribute to the gradual obstruction of air flow as smelt slowly accumulates over the various openings. Over time, accumulations of frozen smelt on and around the coolant tubes can grow to obstruct the openings, thereby reducing an operator's ability to regulate combustion. Recovery boilers may need to be deactivated when smelt accumulations significantly interfere operation. This extensive maintenance period results in loss of production.
Temperature is another variable of operation. Startup burners help regulate internal furnace temperature. Startup burners are auxiliary burners that commonly fire natural gas, propane, and/or fuel oil, and are generally used to initiate combustion within the furnace after a period of dormancy. Once the startup burners increase furnace temperature to an established minimum, liquor firing can commence. Liquor firing is then increased until the liquor itself sustains combustion. The startup burners are then generally deactivated. Startup burns have also been used to provide supplementary heat to the furnace when liquor flow is interrupted or insufficient to meet boiler demand.
When inactive, the startup burner generally rests in the windbox within a burner housing adjacent to the throat opening. Radiant heat from the furnace can damage inactive startup burners. Moreover, splashes of black liquor through the throat openings can cause smelt fouling directly on the startup burner, particularly on the firing end of the startup burner, comprising, for example, the fuel nozzles, swirler, igniter assembly, and flame detection equipment. Smelt fouling can render the startup burner ineffective, unsafe, and unreliable.
There is a need to increase the intervals between recovery boiler maintenance and to reduce the amount of maintenance time while preserving or improving the operability of the recovery boiler after said maintenance.
The problems of loss of production caused by deactivating a chemical recovery boiler for the purpose of manually dislodging accumulations of smelt, airflow interference in the chemical recovery boiler, exposing operators to hot air from the furnace and windbox, and startup burner damage due to smelt spattering and radiant heat from the furnace is mitigated by using a system of isolation chambers engaged to the outer wall of a windbox to extract startup burners from windboxes engaged to the outer wall of the furnace of the chemical recovery boiler, such that the isolation chambers are configured to partially isolate the startup burner from the windbox and furnace environment before extraction. In alternative embodiments, the isolation chambers may isolate the extractable startup burner substantially completely from the windbox and furnace environment.
Some conventional startup burners may have a retraction feature whereby the burner can be manually or automatically retracted from an active position. That is, while the firing ends of the startup burners can be retracted from the furnace, the body and firing ends remain in the windbox proximate to the furnace and directly behind the wall openings in the furnace. Retracted firing ends are typically eight to sixteen inches from the furnace. By retracting an inactive conventional startup burner from the furnace, conventional burners have sought to reduce exposure to furnace temperature and smelt fouling. While conventional burners have been somewhat effective in prolonging the useful life of startup burners, conventional burners have significant drawbacks.
Conventional burners preclude startup burner maintenance while the recovery boiler is operational. The potential for smelt splatter renders human intervention unsafe. Hot air in the pressurized windbox and radiant heat from the furnace complicate human intervention. Conventional startup burners generally require constant exposure to moving air to prevent overheating. This tramp air flowing from the windbox through the throats and into the furnace can also provide oxygen to maintain combustion. Operators generally consider the amount of air entering the furnace as a variable when attempting to maintain a desirable combustion rate. To this end, some conventional startup burners are placed within housings having variable position dampers. The housings are likewise placed within the windbox. The variable position dampers can allow operators to affect the amount of air flowing over the startup burner to the boiler. However, the desire to preserve the startup burner from overheating prevents operators from closing variable position dampers completely.
Airflow within the windbox may become dynamic and irregular based partially on the oxygen demands of the furnace. Additionally, the startup burner obstructs the air flow in the housing, thereby facilitating an irregular and unpredictable insertion of air into the recovery boiler.
With regard to retracted startup burners, smelt fouling still occurs due to residual splashing of black liquor droplets through the throats and onto the firing end. The firing end generally includes a diffuser, or swirler, which can be used to direct or shape the flame emanating from the startup burner. The swirler's large surface area relative to the throat can increase the incidence of smelt accumulation on the swirler. Additionally, radiant heat from the furnace can damage the startup burner. The presence of retracted startup burners directly behind the occluded throats can interfere with operator's ability to clear the occlusions and perform necessary maintenance of the burners while the boiler remains operational.
Embodiments of the current disclosure comprise an isolation chamber located behind an extractable startup burner in a windbox. The assembly separates an operator from the pressurized hot air in the windbox and furnace thereby permitting operators to remove inactive startup burners safely while the recovery boiler is operational. Once the startup burner is removed, operators may use a rod, a cleaning brush mounted on a pole, or other suitable cleaning means to clean the throats manually. If the width of the isolation chamber is sufficiently wide, operators may clean multiple openings in the furnace wall through a single isolation chamber. Additionally, the exemplary assembly allows operators to replace or repair startup burners, as needed for optimal boiler operation, between scheduled outages.
Further, use of an extractable startup burner with an isolation chamber may eliminate or reduce the need for burner-cooling air. In conventional burners, variable position dampers in burner housings remain partially opened when the startup burner is inactive. The variable position dampers allow air from the windbox to cool the inactive startup burner and to counter effects of radiant heat. Throats in the furnace wall are generally uncovered when a startup burner is not in use, so tramp air in the burner housing used to cool the inactive startup burner may also flow into the furnace uncontrollably. This undesirable influx of air into the furnace can complicate an operator's ability to control and maintain optimal combustion conditions. Additionally, the presence of a conventional retracted startup burner in the windbox can interfere with desirable airflow.
Use of an extractable startup burner and isolation chamber as set forth in the present disclosure may allow operators to close fully variable position dampers in the burner housing and reduce or prevent tramp air from entering the furnace, thus improving air distribution control. Accordingly, it is an object of the present disclosure to improve air distribution control in a chemical recovery boiler—particularly in the windbox and through openings in the furnace wall.
A recovery boiler startup burner assembly has been conceived comprising: a furnace having areas defining openings in a furnace wall, a windbox exteriorly engaging the furnace wall, wherein the windbox is configured to contain pressurized combustion air, an isolation chamber exteriorly engaging a windbox wall, wherein the isolation chamber is aligned with an area defining an opening in the windbox wall and an area defining an opening in the furnace wall, a startup burner disposed within the windbox, the startup burner having a firing end and a supply end, wherein the firing end is aligned with the area defining an opening in the furnace wall and the supply end is aligned with the area defining an opening in the windbox wall, wherein the startup burner is configured to be extracted through the isolation chamber, and wherein the isolation chamber is configured to isolate an extracted portion of the startup burner from the windbox.
The isolation chamber may comprise a multi-door isolation chamber. In another exemplary embodiment, the isolation chamber may comprise a burner guide sleeve having a hinged door at one end and a seal plug at the other end. In still other exemplary embodiments, the isolation chamber may be configured to isolate the startup burner partially from the windbox. In yet other exemplary embodiments, the isolation chamber may be configured to isolate the startup burner from the windbox substantially completely.
In still other exemplary embodiments, the assembly for a recovery boiler may further comprise a cooling carriage comprising a structural brace having a first end and a second end, the second end being mounted to an outer wall of the recovery boiler and the first end being engaged to a first end of a main support beam, a second end of the main support beam being engaged to the outer wall of the recovery boiler, the cooling carriage may further comprise a carrier assembly linkage having at least one first end and at least one second end having at least one roller rotatably mounted to the at least one second end of the carrier assembly linkage.
The cooling carriage may further comprise a local temperature display. The local temperature display may be a contact-type temperature display, such as a resistance temperature detector (“RTD”) or a thermocouple detector. In other exemplary embodiments, the local temperature display may be a non-contact type display such as an infrared thermometer or a laser thermometer.
A method has been conceived for extracting a startup burner comprising: deactivating a startup burner, disconnecting wires and hoses from the startup burner and an igniter assembly, withdrawing the startup burner from a throat in a furnace wall, removing the igniter assembly from the startup burner, lowering a support brace to the startup burner, withdrawing the startup burner into an inner space defined by the multi-door isolation chamber, closing at least one inner door of the multi-door isolation chamber to support the startup burner, withdrawing the startup burner through the inner space defined by the multi-door isolation chamber, opening at least one outer door of the multi-door isolation chamber, closing the inner door of the multi-door isolation chamber, and removing the startup burner from the inner space of the multi-door isolation chamber.
A multi-door isolation chamber for use with a recovery boiler windbox has been conceived comprising: a multi-door isolation chamber disposed proximate to a windbox opening defined by an outer wall of a windbox, at least one inner door configured to occlude partially the windbox opening and support a startup burner, and at least one outer door configured to occlude a multi-door isolation chamber opening defined by an outer face of the multi-door isolation chamber.
Another method has been conceived for extracting a startup burner from a recovery boiler comprising: shutting down a startup burner; disconnecting wires and hoses from the startup burner and an igniter assembly; withdrawing the startup burner from a throat in a furnace wall; removing the igniter assembly from the startup burner; lowering a support brace to the startup burner; closing the first inner door of the multi-door isolation chamber to support the support brace and startup burner; withdrawing the support brace with the startup burner through a first inner door of a multi-door isolation chamber into an inner space defined by the multi-door isolation chamber; closing a second inner door of the multi-door isolation chamber to substantially isolate the support brace with the startup burner in the inner space of the multi-door isolation chamber; opening at least one outer door of the multi-door isolation chamber; and removing the startup burner from the inner space of the multi-door isolation chamber.
A method for cleaning smelt accumulations in a recovery boiler during operation has been conceived comprising: shutting down a startup burner, disconnecting wires and hoses from the startup burner and an igniter assembly, withdrawing the startup burner from a throat in a furnace wall, removing the igniter assembly from the startup burner, withdrawing the startup burner into an inner space defined by the multi-door isolation chamber, closing at least one inner door of the multi-door isolation chamber, withdrawing the startup burner through the at least one inner door of a multi-door isolation chamber to substantially isolate the startup burner in an inner space defined by the multi-door isolation chamber, opening at least one outer door of the isolation chamber, removing the startup burner from the isolation chamber, and extending a rod through the multi-door isolation chamber to dislodge smelt accumulations from the throat in the furnace wall.
The method for cleaning smelt accumulations may further comprise extending a carrier assembly linkage of a cooling carrier into a path of the startup burner, placing the startup burner on rollers extending from the carrier assembly linkage, and allowing a hot end of the startup burner to cool on the rollers.
A method has been conceived for replacing an extractable startup burner in a recovery boiler during operation comprising: aligning a support brace with an outer door of an isolation chamber; mounting a startup burner on a support brace, opening at least one outer door of the isolation chamber, inserting a startup burner into an inner space of the isolation chamber, closing the at least one outer door of the isolation chamber to support the startup burner, closing a second outer door of the isolation chamber to substantially isolate the startup burner in the inner space of the isolation chamber; extending the startup burner from the at least one inner door toward a throat in a furnace wall; and connecting wires and hoses to a startup burner and an igniter assembly.
The foregoing will be apparent from the following more particular description of exemplary embodiments of the disclosure, as illustrated in the accompanying drawings. The drawings are not necessarily to scale, with emphasis instead being placed upon illustrating the disclosed embodiments.
The following detailed description of the preferred embodiments is presented only for illustrative and descriptive purposes and is not intended to be exhaustive or to limit the scope and spirit of the invention. The embodiments were selected and described to best explain the principles of the invention and its practical application. One of ordinary skill in the art will recognize that many variations can be made to the invention disclosed in this specification without departing from the scope and spirit of the invention.
Although the drawings represent embodiments of various features and components according to the present disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate embodiments of the present disclosure, and such exemplifications are not to be construed as limiting the scope of the present disclosure.
The present disclosure describes an isolation chamber that may be used with a startup burner configured to be removed or replaced while the boiler is operating. Natural gas, oil, propane, or other fuel known to those having ordinary skill in the art may fuel the startup burner. Although the startup burner may be used in boilers or process furnaces generally, subsequent exemplary uses will refer to recovery boilers used in the pulp and paper industry.
The startup burner 200 may comprise an inlet 207 through which natural gas, air, or other fuel enters the startup burner 200. The inlet 207 is generally located at the supply end of the startup burner. The fuel generally flows along the length of the startup burner 200 and into the furnace 299. Air enters the furnace through throat 240, and may flow across swirler 250. The swirler rotates thereby aiding fuel and air mixing. Operators may monitor the fuel input and amount of air entering the furnace 299 from the windbox 290 to increase furnace temperature and melt or burn away smelt accumulations. During operation, a startup burner 200 may extend through the multi-door isolation chamber 206 and traverse the windbox 290. Water wall tubes 270 may bend to create an open area, which defines a throat 240. In other embodiments, the throats 240 may be further defined by a reinforcing element (not depicted) disposed within the opening defined by the water wall tubes 270. The reinforcing element may generally conform to the hole defined by the bend water wall tubes 270 and may be made from carbon steel or other material configured to withstand furnace heat.
An exemplary startup burner assembly 241 may have an observation port 260 through which operators may view the inside of the windbox 290, throat 240, and furnace 299. An operator may look through the observation port 260 to determine the amount of smelt accumulation around the throat 240. If smelt has accumulated, an operator may insert a rod (not depicted) through port 251 to dislodge the smelt accumulations while the recovery boiler is operational. In an exemplary method, an operator may insert the rod through the multi-door isolation chamber 206.
In the exemplary startup burner assembly 241 of
In still other exemplary embodiments, the bottom inner door 220, when closed, may be configured to occupy half of the opening 221. In yet other exemplary embodiments, the bottom inner door 220, when closed, may be configured to occupy a portion of the opening 221. In this manner, a portion of the startup burner 200 may be partially isolated in the internal space 225 defined by the multi-door isolation chamber 206.
Thus protected from the furnace environment and so isolated from the windbox 290, an operator may open the outer door 210 of the multi-door isolation chamber 206 and remove the startup burner 200 from the multi-door isolation chamber 206 with reduced risk of burns due to hot air or molten smelt. In addition to being protected, the operator, by extracting the startup burner 200, may extend the useful life of the startup burner 200 by removing the startup burner 200 from the recovery boiler completely. By having the startup burner 200 completely removed from the recovery boiler, the operator may maintain, repair, or replace the startup burner 200 while the recovery boiler is operational, while substantially eliminating the risk of injury from the recovery boiler.
The outer doors 210, 216 and inner doors 220, 226 desirably open inwardly toward the windbox 290 and furnace 299. The pressure created by the furnace 299 and moving air within the windbox 290 exerts a force against the closed inner doors 220, 226 and outer doors 210, 216. By opening inwardly, the closed inner doors 220, 226 and outer doors 210, 216 remain locked in position, thereby reducing the risk that door failure will expose operators to immediate harm. An insulating liner 273 may be disposed within the multi-door isolation chamber 206.
The startup burner 400 may further be removed from the windbox 490 and housing 491 by using the handle 430a to open the bottom inner door 220 of the multi-door isolation chamber 406 and by pulling the startup burner 400 through the internal space 425 of the multi-door isolation chamber 406. After closing the inner doors 220, 226 the startup burner 400 may be partially or substantially completely isolated. Once isolated, the startup burner 400 may be removed through the outer doors 210, 216 of the multi-door isolation chamber 406.
An igniter assembly 480 of the startup burner 400 is depicted in this exemplary embodiment. The igniter assembly 480 may comprise an ionizing flame rod and spark rod 481 and intake ports 482. Air and natural gas may flow through these intake ports 482. A mounting tube 483 can position the igniter assembly 480. This igniter assembly 480 may further comprise safety equipment used to ensure continuous ignition at the fuel nozzle tip 498 of the startup burner 400. The swirler 450 stabilizes and shapes the main flame within the furnace 499. In an exemplary embodiment, the mounting tube 483 of the igniter assembly 480 can engage the outer wall 422 of the windbox 490 outside insolation chamber 406. In another exemplary embodiment, the igniter assembly 480 may be co-extensive with the startup burner 400 and access the windbox 490 through the isolation chamber 406. In an exemplary embodiment, a flapper valve 484 may be engaged to at least one end of the mounting tube 483. This flapper valve 484 may be used to prevent pressure loss from the windbox 490 when the igniter assembly 480 is not in place.
In an exemplary method, operators may deactivate the startup burner 600 and extract the startup burner 600 and swirler 650 through the housing 691. Operators may then close an inner door 620 and rest the bottom of the startup burner 603 on a cut-out portion 623 of an inner door 620. Once the inner door 620 is closed, operators may pull the startup burner 600 through the internal space 425 of the multi-door isolation chamber 606 and through the outer door of the multi-door isolation chamber 610. Operators may then place the startup burner 600 on the rollers 657 of the carriage assembly linkage 655 and allow the startup burner 600 to cool. Once cool, the operators may remove the startup burner 600 from the cooling carriage 642 and store the cooling carriage 642 away until further needed.
In another exemplary method, the inner door 620 need not be closed before the operator removes the startup burner 600 from the multi-door isolation chamber 606.
The flapper valve 784 may rest on the startup burner 700 when the startup burner 700 interfaces with the throat 740 and furnace 799. When the startup burner 700 is removed past the flapper valve 784, the flapper valve 784 generally closes and rests on the front lip 794 of the guide sleeve 775 at an angle θ. The burner guide sleeve 775 may extend partially through the housing 791 within the windbox 790.
It will be understood that the modifications of
While this invention has been particularly shown and described with references to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a Non-Provisional Application claiming the benefits of U.S. Provisional Patent Application Ser. No. 61/939,775 filed Feb. 14, 2014, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4781576 | Dewitz | Nov 1988 | A |
5044327 | Hunt | Sep 1991 | A |
5044934 | Gutel | Sep 1991 | A |
5307745 | Higgins et al. | May 1994 | A |
5564632 | Prohazka | Oct 1996 | A |
6162049 | Pellizzari | Dec 2000 | A |
6497230 | Higgins et al. | Dec 2002 | B1 |
8997665 | Hamasaki | Apr 2015 | B2 |
20070272132 | Marx | Nov 2007 | A1 |
20140199647 | Cadima | Jul 2014 | A1 |
20150132704 | Buzinski | May 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150233579 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61939775 | Feb 2014 | US |