Startup sequence for centrifugal pump with levitated impeller

Information

  • Patent Grant
  • 9556873
  • Patent Number
    9,556,873
  • Date Filed
    Wednesday, February 27, 2013
    11 years ago
  • Date Issued
    Tuesday, January 31, 2017
    7 years ago
Abstract
A centrifugal pump system having an impeller rotating with first and second magnetic structures on opposite surfaces. A levitation magnetic structure is disposed at a first end of a pump housing having a levitating magnetic field for axially attracting the first magnetic structure. A multiphase magnetic stator at a second end of the pump housing generates a rotating magnetic field for axially and rotationally attracting the second magnetic structure. A commutator circuit provides a plurality of phase voltages to the stator. A sensing circuit determines respective phase currents. A controller calculates successive commanded values for the phase voltages during a running state in response to a desired impeller speed and an actual impeller phase. The controller has a startup interval during which the commanded values of the phase voltages are determined in response to a pseudo impeller phase and in response to a ramping gain factor.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

Not Applicable.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

Not Applicable.


BACKGROUND OF THE INVENTION

The present invention relates in general to centrifugal pumping devices for circulatory assist and other uses, and, more specifically, to an improved startup of a magnetically-levitated impeller that avoids excessive wear of the impeller against the housing before levitation is obtained.


Many types of circulatory assist devices are available for either short term or long term support for patients having cardiovascular disease. For example, a heart pump system known as a left ventricular assist device (LVAD) can provide long term patient support with an implantable pump associated with an externally-worn pump control unit and batteries. The LVAD improves circulation throughout the body by assisting the left side of the heart in pumping blood. One such system is the DuraHeart® LVAS system made by Terumo Heart, Inc., of Ann Arbor, Mich. The DuraHeart® system employs a centrifugal pump with a magnetically levitated impeller to pump blood from the left ventricle to the aorta. The impeller acts as a rotor of an electric motor in which a rotating magnetic field from a multiphase stator couples with the impeller and is rotated at a speed appropriate to obtain the desired blood flow through the pump.


A control system for varying pump speed to achieve a target blood flow based on physiologic conditions is shown in U.S. Pat. No. 7,160,243, issued Jan. 9, 2007, which is incorporated herein by reference in its entirety. The stator of the pump motor can be driven by a pulse-width modulated signal determined using a field-oriented control (FOC) as disclosed in U.S. application Ser. No. 13/748,780, filed Jan. 24, 2013, entitled “Impeller Position Compensation Using Field Oriented Control,” which is incorporated herein by reference in its entirety.


The centrifugal pump employs a sealed pumping chamber. By levitating the impeller within the chamber when it rotates, turbulence in the blood is minimized. The spacing between the impeller and chamber walls minimizes pump-induced hemolysis and thrombus formation. The levitation is obtained by the combination of a magnetic bearing and a hydrodynamic bearing. For the magnetic bearing, the impeller typically employs upper and lower plates having permanent magnetic materials for interacting with a magnetic field applied via the chamber walls. For example, a stationary magnetic field may be applied from the upper side of the pump housing to attract the upper plate while a rotating magnetic field from the lower side of the pump housing (to drive the impeller rotation) attracts the lower plate. The hydrodynamic bearing results from the action of the fluid between the impeller and the chamber walls while pumping occurs. Grooves may be placed in the chamber walls to enhance the hydrodynamic bearing (as shown in U.S. Pat. No. 7,470,246, issued Dec. 30, 2008, titled “Centrifugal Blood Pump Apparatus,” which is incorporated herein by reference). The magnetic and hydrodynamic forces cooperate so that the impeller rotates at a levitated position within the pumping chamber. Since the hydrodynamic forces change according to the rotation speed of the impeller, the magnetic field may be actively controlled in order to ensure that the impeller maintains a centered position with the pumping chamber.


Prior to starting rotation of the impeller, the axial forces acting on it are not balanced. Magnetic attraction causes the impeller to rest against one of the upper or lower chamber walls. In many pump designs, it is possible for the impeller to be arbitrarily resting against either one of the walls. When rotation begins, the rubbing of the impeller against the chamber wall can cause undesirable mechanical wear of the impeller and/or wall. The amount of wear is proportional to the rotation angle traversed until the impeller lifts off of the pump housing and to the normal force between the impeller and housing.


In a typical startup sequence of the prior art, the stator coils are energized to produce a strong, stationary magnetic field that rotates the impeller into alignment with a known phase angle. When the impeller moves during alignment, it typically overshoots the desired position due to the strong field and then it oscillates around the desired position until the motion dampens out. Much mechanical wear can occur during this step. Once in the aligned position, the field-oriented control can begin closed-loop control to accelerate the impeller until the bearing forces separate it from the chamber wall. However, the normal force can be high before separation occurs, further increasing the wear.


SUMMARY OF THE INVENTION

In one aspect of the invention, a centrifugal pump system comprises a disc-shaped impeller rotating about an axis and having a first magnetic structure disposed at a first surface and a second magnetic structure disposed at a second surface. A pump housing defines a pumping chamber which receives the impeller. A levitation magnetic structure is disposed at a first end of the pump housing having a levitating magnetic field for axially attracting the first magnetic structure. A multiphase magnetic stator is disposed at a second end of the pump housing for generating a rotating magnetic field for axially and rotationally attracting the second magnetic structure. A commutator circuit provides a plurality of phase voltages to the stator. A sensing circuit determines respective phase currents flowing in response to the phase voltages. A controller calculates successive commanded values for the phase voltages during a running state in response to a desired impeller speed and an actual impeller phase that is detected in response to the determined phase currents. The controller has a startup interval during which the commanded values of the phase voltages are determined in response to a pseudo impeller phase and in response to a ramping gain factor.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of a circulatory assist system as one example of an implantable pump employing the present invention.



FIG. 2 is an exploded, perspective view of a centrifugal pump.



FIG. 3 is a cross section showing an impeller levitated to a centered position within a pumping chamber.



FIG. 4 is a block diagram showing multiphase stator windings and a control system according to the present invention.



FIG. 5 represents a gain function for ramping up the phase voltage commands during startup.



FIG. 6 shows one embodiment of a ramping gain during a successful startup of the pump.



FIG. 7 illustrates a ramping gain for repeated startup attempts.



FIG. 8 shows an impeller in the pump housing having a random position prior to startup.



FIG. 9 shows the magnetic positioning of the impeller onto a predetermined side of the pump housing.



FIG. 10 shows a magnetic reversal for pushing the impeller from the predetermined side of the pump housing toward the other side in order to achieve liftoff at the time that rotation is started.



FIG. 11 shows an initial random phase position of the impeller prior to startup.



FIG. 12 is a flowchart showing a method for measuring the initial phase of the impeller.



FIG. 13 is a flowchart showing one preferred method for axially transporting the impeller off the pump housing and then initiating impeller rotation.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to FIG. 1, a patient 10 is shown in fragmentary front elevational view. Surgically implanted either into the patient's abdominal cavity or pericardium 11 is the pumping unit 12 of a ventricular assist device. An inflow conduit (on the hidden side of unit 12) pierces the heart to convey blood from the patient's left ventricle into pumping unit 12. An outflow conduit 13 conveys blood from pumping unit 12 to the patient's aorta. A percutaneous power cable 14 extends from pumping unit 12 outwardly of the patient's body via an incision to a compact control unit 15 worn by patient 10. Control unit 15 is powered by a main battery pack 16 and/or an external AC power supply and an internal backup battery. Control unit 15 includes a commutator circuit for driving a motor stator within pumping unit 12.



FIG. 2 shows a centrifugal pump unit 20 having an impeller 21 and a pump housing having upper and lower halves 22a and 22b. Impeller 21 is disposed within a pumping chamber 23 over a hub 24. Impeller 21 includes a first plate or disc 25 and a second plate or disc 27 sandwiched over a plurality of vanes 26. Second disc 27 includes a plurality of embedded magnet segments 44 for interacting with a levitating magnetic field created by levitation magnet structure 34 disposed against housing 22a. For achieving a small size, magnet structure 34 preferably is comprised of one or more permanent magnet segments providing a symmetrical, static levitation magnetic field around a 360° circumference. First disc 25 also contains embedded magnet segments 45 for magnetically coupling with a magnetic field from a stator assembly 35 disposed against housing 22b. Housing 22a includes an inlet 28 for receiving blood from a patient's ventricle and distributing it to vanes 26. Impeller 21 is preferably circular and has an outer circumferential edge 30. By rotatably driving impeller 21 in a pumping direction 31, the blood received at an inner edge of impeller 21 is carried to outer circumferential 30 and enters a volute region 32 within pumping chamber 23 at an increased pressure. The pressurized blood flows out from an outlet 33 formed by housing features 33a and 33b. A flow-dividing guide wall 36 may be provided within volute region 32 to help stabilize the overall flow and the forces acting on impeller 21.


The cross section of FIG. 3 shows impeller 21 located at a centered position wherein disc 27 is spaced from housing 22A by a gap 42 and impeller disc 25 is spaced from housing 22B by a gap 43. During pump operation, the center position is maintained by the interaction of attractive magnetic forces between permanent magnets 40 and 41 in levitation magnet structure 34 with imbedded magnetic material 44 within impeller disc 27, and between stator assembly 35 and imbedded magnet material 45 in impeller disc 25, and by hydrodynamic bearing forces exerted by the circulating fluid which may be increased by forming hydrodynamic pressure grooves in housing 22 (not shown). By using permanent magnets in structure 34, a compact shape is realized and potential failures associated with the complexities of implementing active levitation magnet control are avoided. The present invention is equally applicable to other magnetic levitation structures with or without active control.


A typical method for controlling voltages applied to a stator in order to provide the desired rotation for a permanent magnet rotor (i.e., the impeller) is a field-oriented control (FOC) algorithm, which is also known as vector control. FIG. 4 shows an FOC-based controller 50 which supplies a multiphase voltage signal to a three-phase stator assembly 51. Individual phases A, B, and C are driven by an H-bridge inverter 52 functioning as a commutation circuit driven by a pulse width modulator (PWM) circuit 53 in controller 50. A current sensing circuit 54 associated with inverter 52 measures instantaneous phase current in at least two phases providing current signals designated ia and ib. A current calculating block 55 receives the two measured currents and calculates a current ic corresponding to the third phase as known in the art. The measured currents are input to an FOC block 56 and to a current observer block 57. Block 57 estimates the position and speed of the impeller as known in the art. The impeller position and speed are input to FOC block 56. A target speed or rpm for operating the pump is provided by a conventional physiological monitor 58 to FOC block 56. The target rpm may be set by a medical caregiver or determined according to an algorithm based on various patient parameters such as heart beat.


FOC block 56 generates commanded voltage output values va, vb, and vc which are coupled to PWM block 53 via a startup filter 61 which is controlled by a startup logic block 60. In a normal running state, voltage commands va, vb, and vc are unmodified by filter 61. During a startup interval, startup logic 60 alters the operation of FOC block 56 by generating a pseudo impeller position (i.e., phase) for use by the FOC algorithm and by directly modifying the generated values for va, vb, and vc according to a gradually increasing gain factor.


When the impeller is not rotating under field oriented control, current observer block 57 is unable to estimate the actual position (i.e., the phase angle) of the impeller. For that reason, it is common in the prior art to generate a large, stationary magnetic field pulse from the stator in order to force the impeller into a known position. Based on the known position and an initial impeller speed of zero, the prior art controller was able to accelerate the impeller in a controlled (i.e., closed-loop) fashion. The large, stationary magnetic field pulse is not a problem for a radial type of motor structure or for a motor with a mechanical shaft and bearings. However, in the mechanical-bearingless (i.e., levitating) axial motor drive system for a blood pump, the alignment step is not desirable because the large, stationary magnetic field pulse may create oscillation movement of the impeller as a spring/mass system, and it may increase the normal force between the impeller and pump housing as a result of the large magnetic field. The oscillating movement and increased normal force may induce mechanical damage to the pump housing surface. The roughened blood pump surface may promote blood clot which is one of the severe failure modes of this type of device. In order to avoid the alignment step, the present invention adopts a gradual ramping up of voltage commands as the stator magnetic field is rotated using an arbitrary (i.e., pseudo) phase. The gradually increasing magnetic field will eventually catch the impeller to achieve a rotation that eventually becomes sufficiently locked in to enable observer 57 to detect the actual phase and speed of the impeller. Once the impeller is caught by the magnetic field and starts to rotate, the impeller will be suspended by hydrodynamic forces, and no mechanical wear will happen. Due to the gradually increasing magnetic field, the impeller is not very likely to be pulled in a backwards direction (in part because no movement can be generated until the rotating magnetic field overcomes the static friction between the impeller and pump housing). In addition, the speed of rotation of the magnetic field can be performed with a gradual acceleration to improve the likelihood of “catching” the impeller and rotating it in the desired direction. In the event that the ramping sequence fails to catch the impeller, observer 57 will detect that a valid position has not yet been determined. If no valid impeller position has been detected by observer 57 within a predetermined time, the ongoing startup attempt can be terminated and a second attempt can be made to start the impeller.


More specifically, startup logic block 60 may provide a pseudo impeller phase to FOC block 56, wherein the pseudo phase of the impeller has a chosen initial value and then follows a gradually accelerating rotation rate (not to exceed a target rotation speed).


As shown in FIG. 5, filter 61 may provide a variable gain g multiplied separately by each voltage command v in order to gradually ramp up the magnitude of the rotating magnetic field over a certain period of time. As impeller rotation begins, this generates a gradually increasing torque applied to the impeller and a gradual increase in the normal force between the impeller and pump housing. A set of multipliers 62-64 each receives the gain factor g at its first input and each receives a respective voltage command va-vc at its second input. In a normal running state of the pump, gain factor g is equal to one. During a startup interval, gain factor g provides a gradually increasing profile such as shown in FIG. 6 or 7.


In FIG. 6, gain g starts at zero and then increases along a segment 65 with a predetermined slope. Once gain g reaches a predetermined magnitude at 66 which is less than 1, the ramping ceases. The magnetic field continues to rotate for a predetermined time which is chosen to be long enough to allow the current observer to converge on a valid estimate of the impeller phase and speed if the impeller has been properly “caught” by the rotating magnetic field. If a valid estimate is detected, then gain factor g preferably increases to its full value (e.g., 1) at 67 and then the normal running state commences.



FIG. 7 illustrates a sequence wherein a first open-loop attempt to start the impeller rotation (i.e., using a pseudo impeller phase and an accelerating rotation rate while ramping the phase voltage commands) fails to establish the desired rotation that is necessary for the current observer to converge on a valid estimate of the actual impeller phase. Thus, gain factor g is ramped from zero up to a predetermined gain along slope 70 and maintains the constant value at 71. When the current observer does not indicate that a valid estimate for the actual impeller phase has been obtained, then the starting attempt is halted and the stator magnetic field may be turned off at 72. After a time delay to ensure that the impeller is stationary, gain factor g is again ramped upward from zero along segment 73 and is then kept at a maximum value (e.g., 1) at 74 for a predetermined time. In the second attempt at starting the impeller, the success of the startup represent a higher priority than the mechanical wear. Consequently, both the slope at 73 and the maximum gain at 74 may be greater than they were during the first attempt at 70 and 71. In the unlikely event that the second attempt likewise fails to achieve a startup (as identified by the current observer converging to a valid estimate for the actual impeller phase), a third attempt may be made to start the impeller at segment 75. Once one of the attempts has successfully started the impeller rotation, then gain factor g remains at a value of 1 for as long as the normal running state continues.


In combination with, or used separately from, the ramping up magnetic field and accelerating rotation rate, the present invention may employ an axial transport maneuver before beginning rotation of the magnetic field in order to lift off the impeller from the pump housing in order to avoid all normal forces during the initial rotation. As shown in FIG. 8, the pumping chamber in a pump housing 76 has a first end 77 and a second end 78 for retaining an impeller. The impeller may initially be retained in a position 81 against end 77 or a position 80 against end 78. Due to the permanent magnets in the impeller, when in a rest state the impeller will always be attracted to one end or the other of the pump housing. The axial transport maneuver involves generating the stator magnetic field to shift the impeller position from one end toward the other so that the rotation can be initiated while the impeller is moving between the ends, but first the impeller must be set to a known position. Thus, an external magnetic field 82 is generated as shown in FIG. 9 to place the impeller against a predetermined one of the ends such as end 77. By magnetically attracting the impeller to a known position 80, then it becomes possible to reverse the magnetic field as shown at 83 in FIG. 10 to propel the impeller between the ends of the pump housing, making it pass through a central levitated position. By controlling the magnitude and slope of the reversed polarity magnetic field, the resulting axial movement of the impeller is slow enough that the desired impeller rotation can be initiated before the impeller reaches the other end of the housing.


In order to ensure that the impeller is attracted and then repulsed as desired, it is preferable to discover the actual impeller phase angle so that an appropriate energization of the stator can be determined that will provide the desired attraction and repulsion of the impeller. As shown in FIG. 11, the plurality of stator windings 84 are laid out at respective phases around the circumference of the pump housing, while an actual impeller phase 85 initially has some arbitrary orientation. The presence of impeller influences the inductance of each stator coil by an amount that depends on the actual phase of the impeller. Thus, by characterizing the relative inductance between different stator coils, the phase of the impeller can be inferred without requiring any movement of the impeller. As shown in FIG. 12, a small excitation current is applied to each phase of the stator in step 90. The inductance of each stator phase is measured in step 91. In step 92, the impeller position is inferred from the measured phase inductances. For example, a table can be generated in advance based on repeatedly 5 measuring all the phase inductances with the impeller placed at different phase angles and then storing the measurement results in a table for later comparison with the actual measured inductances to determine the initial impeller phase for conducting the startup interval. Besides being used to initiate the axial transport maneuver, the estimated impeller phase can be used as an initial value for the pseudo impeller phase used 10 during rotation of the magnetic field during the startup interval as described above, which will further increase the likelihood of obtaining a valid startup of the pump on the first attempt.



FIG. 13 shows a preferred method for the axial transport maneuver wherein the impeller phase angle is estimated in step 93 as described above. Based on the estimated phase angle, the stator coils are energized in step 94 to attract the impeller to a predetermined end of the pump housing, e.g., the stator side of the housing. In step 95, the magnetic poles are reversed in order to push the impeller away from the predetermined end of the pump housing. While the impeller is moving between the ends, the magnetic field rotation is started in step 96 to begin to spin the impeller. When rotation of the magnetic field starts, the field oriented control is operated in an open-loop mode using a pseudo impeller phase which rotates with an increasing angular speed as described above. Preferably, the initial pseudo impeller phase uses a value determined from step 93. Preferably, the magnetic field rotation may include the use of the ramping gain factor, but that may not be required if the impeller phase angle is accurately estimated.


Although the present invention is especially useful in a centrifugal pump with a levitated impeller for pumping blood in cardiac assist applications, it is also applicable to other types of centrifugal pumps and for other applications.

Claims
  • 1. A centrifugal pump system comprising: a disc-shaped impeller rotating about an axis and having a first magnetic structure disposed at a first surface and a second magnetic structure disposed at a second surface;a pump housing defining a pumping chamber which receives the impeller;a levitation magnetic structure disposed at a first end of the pump housing having a levitating magnetic field for axially attracting the first magnetic structure;a multiphase magnetic stator disposed at a second end of the pump housing for generating a rotating magnetic field for axially and rotationally attracting the second magnetic structure;a commutator circuit for providing a plurality of phase voltages to the stator;a sensing circuit determining respective phase currents flowing in response to the phase voltages; anda controller calculating successive commanded values for the phase voltages during a running state in response to a desired impeller speed and an angular position of the impeller that is detected in response to the determined phase currents, wherein the controller has a startup interval during which the commanded values of the phase voltages are determined in response to the angular position of the impeller and a ramping gain factor.
  • 2. The system of claim 1 wherein the angular position of the impeller has a predetermined acceleration coinciding with the ramping gain factor.
  • 3. The system of claim 1 further comprising: a current observer receiving the respective phase currents to estimate the angular position of the impeller, wherein the current observer generates a validation message when the determined phase currents have been sufficient to enable the current observer to generate a valid estimate;wherein the validation message is received by the controller which switches from the startup interval to the running state.
  • 4. The system of claim 3 wherein if the controller does not receive the validation message within a predetermined period, then the ramping of the gain factor is repeated with a faster slope.
  • 5. The system of claim 1 wherein the angular position of the impeller has an initial value estimated in response to relative inductances of respective phase windings of the stator.
  • 6. The system of claim 1 wherein the angular position of the impeller has an initial value estimated in response to relative inductances of respective phase windings of the stator, and wherein the startup interval includes an axial transport maneuver before generating the successive commanded values; wherein the axial transport maneuver is comprised of magnetically attracting the impeller to a predetermined one of the first and second ends of the pump housing, and then magnetically propelling the impeller from the predetermined one of the ends to the other of the first and second ends; andwherein the successive commanded values begin so that the impeller begins to rotate while the impeller is being propelled between the ends of the pump housing.
  • 7. A centrifugal pump system comprising: a disc-shaped impeller rotating about an axis and having a first magnetic structure disposed at a first surface and a second magnetic structure disposed at a second surface;a pump housing defining a pumping chamber which receives the impeller;a levitation magnetic structure disposed at a first end of the pump housing having a levitating magnetic field for axially attracting the first magnetic structure;a multiphase magnetic stator disposed at a second end of the pump housing for generating a rotating magnetic field for axially and rotationally attracting the second magnetic structure;a commutator circuit for providing a plurality of phase voltages to the stator;a sensing circuit determining respective phase currents flowing in response to the phase voltages; anda controller calculating successive commanded values for the phase voltages during a running state in response to a desired speed and an angular position of the impeller that is detected in response to the determined phase currents, wherein the controller has a startup interval including an axial transport maneuver before generating the successive commanded values;wherein the axial transport maneuver is comprised of magnetically attracting the impeller to a predetermined one of the first and second ends of the pump housing, and then magnetically propelling the impeller from the predetermined one of the ends of the pump housing to the other of the ends; andwherein the successive commanded values begin so that the impeller begins to rotate while the impeller is being propelled between the ends of the pump housing.
  • 8. A cardiac assist device for implanting in a patient, comprising: a disc-shaped impeller rotating about an axis and having a first magnetic structure disposed at a first surface and a second magnetic structure disposed at a second surface;a pump housing defining a pumping chamber which receives the impeller, wherein the pump housing includes an inlet for receiving blood from a heart of the patient and an outlet for delivering blood to a circulatory vessel of the patient;a levitation magnetic structure disposed at a first end of the pump housing having a levitating magnetic field for axially attracting the first magnetic structure;a multiphase magnetic stator disposed at a second end of the pump housing for generating a rotating magnetic field for axially and rotationally attracting the second magnetic structure;a commutator circuit for providing a plurality of phase voltages to the stator;a sensing circuit determining respective phase currents flowing in response to the phase voltages; anda controller calculating successive commanded values for the phase voltages during a running state in response to a desired speed and an angular position of the impeller that is detected in response to the determined phase currents, wherein the controller has a startup interval during which the commanded values of the phase voltages are determined in response to the angular position of the impeller and a ramping gain factor.
  • 9. A method of operating a centrifugal pump having an impeller rotating suspended within a pumping chamber of a pump housing, comprising the steps of: providing a first magnetic structure disposed at a first surface of the impeller and a second magnetic structure disposed at a second surface of the impeller;providing a levitating magnetic field from a first end of the pump housing for axially attracting the first magnetic structure;providing a multiphase magnetic stator disposed at a second end of the pump housing for generating a rotating magnetic field for axially and rotationally attracting the second magnetic structure;supplying a plurality of phase voltages to the stator from an electrical commutator;determining respective phase currents flowing in response to the phase voltages;calculating successive commanded values for the phase voltages during a startup interval according to an angular position of the impeller and in response to a ramping gain factor; andcalculating successive commanded values for the phase voltages during a running state of the pump in response to a desired impeller speed and the angular position of the impeller that is detected in response to the determined phase currents.
  • 10. The method of claim 9 wherein the angular position of the impeller has a predetermined acceleration coinciding with the ramping gain factor.
  • 11. The method of claim 9 further comprising the steps of: a current observer estimating the angular position of the impeller in response to the respective phase currents, wherein the current observer generates a validation message when the determined phase currents have been sufficient to enable the current observer to generate a valid estimate; andthe controller switching from the startup interval to the running state at a time after the validation message in generated.
  • 12. The method of claim 11 further comprising the step of: repeating the ramping of the gain factor with a faster slope if the validation message is not generated within a predetermined period.
  • 13. The method of claim 9 further comprising the step of estimating an initial value of the angular position of the impeller in response to relative inductances of respective phase windings of the stator.
  • 14. The method of claim 9 further comprising the steps of: estimating an initial value of the angular position of the impeller in response to relative inductances of respective phase windings of the stator;performing an axial transport maneuver before generating the successive commanded values comprised of magnetically attracting the impeller to a predetermined one of the first and second ends of the pump housing, and then magnetically propelling the impeller from the predetermined one of the ends to the other of the first and second ends;wherein the successive commanded values begin so that the angular position of the impeller begins to rotate while the impeller is being propelled between the ends of the pump housing.
  • 15. A centrifugal pump system comprising: a disc-shaped impeller for rotating about an axis and having a first magnetic structure disposed at a first surface and a second magnetic structure disposed at a second surface;a pump housing defining a pumping chamber which receives the impeller;a levitation magnetic structure disposed at a first end of the pump housing having a levitating magnetic field for axially attracting the first magnetic structure;a multiphase magnetic stator disposed at a second end of the pump housing for generating a rotating magnetic field for axially and rotationally attracting the second magnetic structure; anda controller configured to: cause a plurality of phase voltages to be provided to the stator;receive an indication of phase currents flowing in the stator in response to the plurality of phase voltages;determine an angular position of the impeller based at least in part on the plurality of phase currents; andadjust the plurality of phase voltages provided to the stator based on the angular position of the impeller.
US Referenced Citations (387)
Number Name Date Kind
1093868 Leighty Apr 1914 A
2684035 Kemp Jul 1954 A
3023334 Burr et al. Feb 1962 A
3510229 Smith May 1970 A
3620638 Kaye et al. Nov 1971 A
3870382 Reinhoudt Mar 1975 A
3932069 Giardini et al. Jan 1976 A
3960468 Boorse et al. Jun 1976 A
4149535 Voider Apr 1979 A
4382199 Isaacson May 1983 A
4392836 Sugawara Jul 1983 A
4434389 Langley et al. Feb 1984 A
4507048 Belenger et al. Mar 1985 A
4528485 Boyd, Jr. Jul 1985 A
4540402 Aigner Sep 1985 A
4549860 Yakich Oct 1985 A
4645961 Maisky Feb 1987 A
4686982 Nash Aug 1987 A
4688998 Olsen et al. Aug 1987 A
4753221 Kensey et al. Jun 1988 A
4769006 Papatonakos Sep 1988 A
4779614 Moise Oct 1988 A
4790843 Carpentier et al. Dec 1988 A
4806080 Mizobuchi et al. Feb 1989 A
4817586 Wampler Apr 1989 A
4846152 Wampler et al. Jul 1989 A
4857781 Shih Aug 1989 A
4888011 Kung et al. Dec 1989 A
4895557 Moise et al. Jan 1990 A
4900227 Troup lin Feb 1990 A
4902272 Milder et al. Feb 1990 A
4906229 Wampler Mar 1990 A
4908012 Moise et al. Mar 1990 A
4919647 Nash Apr 1990 A
4930997 Bennett Jun 1990 A
4944722 Carriker et al. Jul 1990 A
4957504 Chardack Sep 1990 A
4964864 Summers et al. Oct 1990 A
4969865 Hwang et al. Nov 1990 A
4985014 Orejola Jan 1991 A
4995857 Arnold Feb 1991 A
5021048 Buckholtz Jun 1991 A
5078741 Bramm et al. Jan 1992 A
5092844 Schwartz et al. Mar 1992 A
5092879 Jarvik Mar 1992 A
5106263 Irie Apr 1992 A
5106273 Lemarquand et al. Apr 1992 A
5106372 Ranford Apr 1992 A
5112349 Summers et al. May 1992 A
5113304 Ozaki et al. May 1992 A
5129883 Black Jul 1992 A
5145333 Smith Sep 1992 A
5147186 Buckholtz Sep 1992 A
5190528 Fonger et al. Mar 1993 A
5201679 Velte et al. Apr 1993 A
5211546 Isaacson et al. May 1993 A
5229693 Futami et al. Jul 1993 A
5275580 Yamazaki Jan 1994 A
5290227 Pasque Mar 1994 A
5290236 Mathewson Mar 1994 A
5300112 Barr Apr 1994 A
5306295 Kolff et al. Apr 1994 A
5312341 Turi May 1994 A
5313128 Robinson et al. May 1994 A
5332374 Kricker et al. Jul 1994 A
5346458 Afield Sep 1994 A
5350283 Nakazeki et al. Sep 1994 A
5354331 Schachar Oct 1994 A
5360445 Goldowsky Nov 1994 A
5370509 Golding et al. Dec 1994 A
5376114 Jarvik Dec 1994 A
5385581 Bramm et al. Jan 1995 A
5405383 Barr Apr 1995 A
5449342 Hirose et al. Sep 1995 A
5478222 Heidelberg et al. Dec 1995 A
5504978 Meyer, III Apr 1996 A
5507629 Jarvik Apr 1996 A
5519270 Yamada et al. May 1996 A
5533957 Aldea Jul 1996 A
5569111 Cho et al. Oct 1996 A
5575630 Nakazawa et al. Nov 1996 A
5588812 Taylor et al. Dec 1996 A
5595762 Derrieu et al. Jan 1997 A
5611679 Ghosh et al. Mar 1997 A
5613935 Jarvik Mar 1997 A
5630836 Prem et al. May 1997 A
5643226 Cosgrove et al. Jul 1997 A
5678306 Bozeman, Jr. et al. Oct 1997 A
5692882 Bozeman, Jr. et al. Dec 1997 A
5695471 Wampler Dec 1997 A
5708346 Schob Jan 1998 A
5725357 Nakazeki et al. Mar 1998 A
5738649 Macoviak Apr 1998 A
5746575 Westphal et al. May 1998 A
5746709 Rom et al. May 1998 A
5749855 Reitan May 1998 A
5755784 Jarvik May 1998 A
5776111 Tesio Jul 1998 A
5795074 Rahman et al. Aug 1998 A
5800559 Higham et al. Sep 1998 A
5807311 Palestrant Sep 1998 A
5814011 Corace Sep 1998 A
5824069 Lemole Oct 1998 A
5843129 Larson et al. Dec 1998 A
5851174 Jarvik et al. Dec 1998 A
5853394 Tolkoff et al. Dec 1998 A
5868702 Stevens et al. Feb 1999 A
5868703 Bertolero et al. Feb 1999 A
5890883 Golding et al. Apr 1999 A
5911685 Siess et al. Jun 1999 A
5917295 Mongeau Jun 1999 A
5917297 Gerster et al. Jun 1999 A
5921913 Siess Jul 1999 A
5924848 Izraelev Jul 1999 A
5924975 Goldowsky Jul 1999 A
5928131 Prem Jul 1999 A
5938412 Israelev Aug 1999 A
5941813 Sievers et al. Aug 1999 A
5947703 Nojiri et al. Sep 1999 A
5951263 Taylor et al. Sep 1999 A
5964694 Siess et al. Oct 1999 A
6004269 Crowley et al. Dec 1999 A
6007479 Rottenberg et al. Dec 1999 A
6030188 Nojiri et al. Feb 2000 A
6042347 Scholl et al. Mar 2000 A
6053705 Schob et al. Apr 2000 A
6058593 Siess May 2000 A
6066086 Antaki et al. May 2000 A
6071093 Hart Jun 2000 A
6074180 Khanwilkar et al. Jun 2000 A
6080133 Wampler Jun 2000 A
6082900 Takeuchi et al. Jul 2000 A
6083260 Aboul-Hosn et al. Jul 2000 A
6086527 Talpade Jul 2000 A
6100618 Schoeb et al. Aug 2000 A
6123659 leBlanc et al. Sep 2000 A
6123726 Mori et al. Sep 2000 A
6139487 Siess Oct 2000 A
6142752 Akamatsu et al. Nov 2000 A
6143025 Stobie et al. Nov 2000 A
6146325 Lewis et al. Nov 2000 A
6149683 Lancisi et al. Nov 2000 A
6158984 Cao et al. Dec 2000 A
6171078 Schob Jan 2001 B1
6176822 Nix et al. Jan 2001 B1
6176848 Rau et al. Jan 2001 B1
6179773 Prem et al. Jan 2001 B1
6190304 Downey et al. Feb 2001 B1
6200260 Bolling Mar 2001 B1
6206659 Izraelev Mar 2001 B1
6222290 Schob et al. Apr 2001 B1
6227797 Watterson et al. May 2001 B1
6227820 Jarvik May 2001 B1
6234772 Wampler et al. May 2001 B1
6234998 Wampler May 2001 B1
6245007 Bedingham et al. Jun 2001 B1
6247892 Kazatchkov et al. Jun 2001 B1
6249067 Schob et al. Jun 2001 B1
6254359 Aber Jul 2001 B1
6264635 Wampler et al. Jul 2001 B1
6268675 Amrhein Jul 2001 B1
6276831 Takahashi et al. Aug 2001 B1
6293901 Prem Sep 2001 B1
6295877 Aboul-Hosn et al. Oct 2001 B1
6319231 Andrulitis Nov 2001 B1
6320731 Eeaves et al. Nov 2001 B1
6351048 Schob et al. Feb 2002 B1
6355998 Schob et al. Mar 2002 B1
6365996 Schob Apr 2002 B2
6375607 Prem Apr 2002 B1
6387037 Bolling et al. May 2002 B1
6394769 Bearnson et al. May 2002 B1
6422990 Prem Jul 2002 B1
6425007 Messinger Jul 2002 B1
6428464 Bolling Aug 2002 B1
6439845 Veres Aug 2002 B1
6447266 Antaki et al. Sep 2002 B2
6447441 Yu et al. Sep 2002 B1
6458163 Slemker et al. Oct 2002 B1
6508777 Macoviak et al. Jan 2003 B1
6508787 Erbel et al. Jan 2003 B2
6517315 Belady Feb 2003 B2
6522093 Hsu et al. Feb 2003 B1
6532964 Aboul-Hosn et al. Mar 2003 B2
6533716 Schmitz-Rode et al. Mar 2003 B1
6544216 Sammler et al. Apr 2003 B1
6547519 deBlanc et al. Apr 2003 B2
6547530 Ozaki et al. Apr 2003 B2
6575717 Ozaki et al. Jun 2003 B2
6589030 Ozaki Jul 2003 B2
6595762 Khanwilkar et al. Jul 2003 B2
6605032 Benkowski et al. Aug 2003 B2
6609883 Woodard et al. Aug 2003 B2
6610004 Viole et al. Aug 2003 B2
6623420 Reich et al. Sep 2003 B2
6641378 Davis et al. Nov 2003 B2
6641558 Aboul-Hosn et al. Nov 2003 B1
6688861 Wampler Feb 2004 B2
6692318 McBride Feb 2004 B2
6698097 Miura et al. Mar 2004 B1
6709418 Aboul-Hosn et al. Mar 2004 B1
6716157 Goldowsky Apr 2004 B2
6716189 Jarvik et al. Apr 2004 B1
6732501 Yu et al. May 2004 B2
6749598 Keren et al. Jun 2004 B1
6776578 Belady Aug 2004 B2
6790171 Griindeman et al. Sep 2004 B1
6794789 Siess et al. Sep 2004 B2
6808371 Niwatsukino et al. Oct 2004 B2
6817836 Nose et al. Nov 2004 B2
6846168 Davis et al. Jan 2005 B2
6860713 Hoover Mar 2005 B2
6884210 Nose et al. Apr 2005 B2
6926662 Aboul-Hosn et al. Aug 2005 B1
6935344 Aboul-Hosn et al. Aug 2005 B1
6942672 Heilman et al. Sep 2005 B2
6949066 Beamson et al. Sep 2005 B2
6966748 Woodard et al. Nov 2005 B2
6974436 Aboul-Hosn et al. Dec 2005 B1
6991595 Burke et al. Jan 2006 B2
7010954 Siess et al. Mar 2006 B2
7011620 Siess Mar 2006 B1
7022100 Aboul-Hosn et al. Apr 2006 B1
7027875 Siess et al. Apr 2006 B2
7048681 Tsubouchi et al. May 2006 B2
7090401 Rahman et al. Aug 2006 B2
7112903 Schob Sep 2006 B1
7122019 Kesten et al. Oct 2006 B1
7128538 Tsubouchi et al. Oct 2006 B2
7156802 Woodard et al. Jan 2007 B2
7160243 Medvedev Jan 2007 B2
7172551 Leasure Feb 2007 B2
7175588 Morello Feb 2007 B2
7202582 Eckert et al. Apr 2007 B2
7241257 Ainsworth et al. Jul 2007 B1
7284956 Nose et al. Oct 2007 B2
7329236 Kesten et al. Feb 2008 B2
7331921 Viole et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7393181 McBride et al. Jul 2008 B2
7431688 Wampler et al. Oct 2008 B2
7462019 Allarie et al. Dec 2008 B1
7467930 Ozaki et al. Dec 2008 B2
7470246 Mori et al. Dec 2008 B2
7476077 Woodard et al. Jan 2009 B2
7491163 Viole et al. Feb 2009 B2
7575423 Wampler Aug 2009 B2
7645225 Medvedev et al. Jan 2010 B2
7660635 Verness et al. Feb 2010 B1
7699586 LaRose et al. Apr 2010 B2
7731675 Aboul-Hosn et al. Jun 2010 B2
7748964 Yaegashi et al. Jul 2010 B2
7802966 Wampler et al. Sep 2010 B2
7841976 McBride et al. Nov 2010 B2
7888242 Tanaka et al. Feb 2011 B2
7934909 Nuesser et al. May 2011 B2
7972122 LaRose et al. Jul 2011 B2
7976271 LaRose et al. Jul 2011 B2
7997854 LaRose et al. Aug 2011 B2
8007254 LaRose et al. Aug 2011 B2
8096935 Sutton et al. Jan 2012 B2
8123669 Siess et al. Feb 2012 B2
8152493 LaRose et al. Apr 2012 B2
8177703 Smith et al. May 2012 B2
8226373 Yaehashi Jul 2012 B2
8282359 Ayre et al. Oct 2012 B2
8283829 Yamamoto et al. Oct 2012 B2
8366381 Woodard et al. Feb 2013 B2
8403823 Yu et al. Mar 2013 B2
8512012 Akdis et al. Aug 2013 B2
8535211 Campbell et al. Sep 2013 B2
8585290 Bauer Nov 2013 B2
8652024 Yanai et al. Feb 2014 B1
8686674 Bi et al. Apr 2014 B2
8770945 Ozaki et al. Jul 2014 B2
8821365 Ozaki et al. Sep 2014 B2
8827661 Mori Sep 2014 B2
8864644 Yomtov Oct 2014 B2
8968174 Yanai et al. Mar 2015 B2
9067005 Ozaki et al. Jun 2015 B2
9068572 Ozaki et al. Jun 2015 B2
9109601 Mori Aug 2015 B2
9132215 Ozaki et al. Sep 2015 B2
9133854 Okawa et al. Sep 2015 B2
20010039369 Terentiev Nov 2001 A1
20020051711 Ozaki May 2002 A1
20020058994 Hill et al. May 2002 A1
20020094281 Khanwilkar et al. Jul 2002 A1
20020095210 Finnegan et al. Jul 2002 A1
20030023302 Moe et al. Jan 2003 A1
20030045772 Reich et al. Mar 2003 A1
20030072656 Niwatsukino et al. Apr 2003 A1
20030144574 Heilman et al. Jul 2003 A1
20030199727 Burke Oct 2003 A1
20040007515 Geyer Jan 2004 A1
20040015232 Shu et al. Jan 2004 A1
20040024285 Muckter Feb 2004 A1
20040030381 Shu Feb 2004 A1
20040143151 Mori et al. Jul 2004 A1
20040145337 Morishita Jul 2004 A1
20040171905 Yu et al. Sep 2004 A1
20040210305 Shu et al. Oct 2004 A1
20040263341 Enzinna Dec 2004 A1
20050008496 Tsubouchi et al. Jan 2005 A1
20050025630 Ayre et al. Feb 2005 A1
20050073273 Maslov et al. Apr 2005 A1
20050089422 Ozaki et al. Apr 2005 A1
20050131271 Benkowski et al. Jun 2005 A1
20050141887 Lelkes Jun 2005 A1
20050194851 Eckert et al. Sep 2005 A1
20050261543 Abe et al. Nov 2005 A1
20050287022 Yaehashi et al. Dec 2005 A1
20060024182 Akdis et al. Feb 2006 A1
20060055274 Kim Mar 2006 A1
20060127227 Mehlhorn et al. Jun 2006 A1
20070073393 Kung et al. Mar 2007 A1
20070078293 Shambaugh, Jr. Apr 2007 A1
20070114961 Schwarzkopf May 2007 A1
20070134993 Tamez et al. Jun 2007 A1
20070189648 Kita et al. Aug 2007 A1
20070213690 Phillips et al. Sep 2007 A1
20070231135 Wampler et al. Oct 2007 A1
20070282298 Mason Dec 2007 A1
20070297923 Tada Dec 2007 A1
20080007196 Tan et al. Jan 2008 A1
20080021394 La Rose et al. Jan 2008 A1
20080030895 Obara et al. Feb 2008 A1
20080095648 Wampler et al. Apr 2008 A1
20080124231 Yaegashi May 2008 A1
20080183287 Ayre Jul 2008 A1
20080211439 Yokota et al. Sep 2008 A1
20090041595 Garzaniti et al. Feb 2009 A1
20090060743 McBride et al. Mar 2009 A1
20090074336 Engesser et al. Mar 2009 A1
20090171136 Shambaugh, Jr. Jul 2009 A1
20090257693 Aiello Oct 2009 A1
20100185280 Ayre et al. Jul 2010 A1
20100222634 Poirier Sep 2010 A1
20100256440 Maher Oct 2010 A1
20100266423 Gohean et al. Oct 2010 A1
20100305692 Thomas et al. Dec 2010 A1
20110015732 Kanebako Jan 2011 A1
20110112354 Nishimura et al. May 2011 A1
20110118766 Reichenbach et al. May 2011 A1
20110118829 Hoarau et al. May 2011 A1
20110118833 Reichenbach et al. May 2011 A1
20110129373 Mori Jun 2011 A1
20110218383 Broen et al. Sep 2011 A1
20110218384 Bachman et al. Sep 2011 A1
20110218385 Bolyare et al. Sep 2011 A1
20110243759 Ozaki et al. Oct 2011 A1
20110318203 Ozaki et al. Dec 2011 A1
20120003108 Ozaki et al. Jan 2012 A1
20120016178 Woodard et al. Jan 2012 A1
20120022645 Burke Jan 2012 A1
20120035411 LaRose et al. Feb 2012 A1
20120078030 Bourque Mar 2012 A1
20120095281 Reichenbach et al. Apr 2012 A1
20120130152 Ozaki et al. May 2012 A1
20120226350 Ruder et al. Sep 2012 A1
20120243759 Fujisawa Sep 2012 A1
20120253103 Robert Oct 2012 A1
20120308363 Ozaki et al. Dec 2012 A1
20130121821 Ozaki et al. May 2013 A1
20130158521 Sobue Jun 2013 A1
20130170970 Ozaki et al. Jul 2013 A1
20130178694 Jeffery et al. Jul 2013 A1
20130243623 Okawa et al. Sep 2013 A1
20130289334 Badstibner et al. Oct 2013 A1
20140030122 Ozaki et al. Jan 2014 A1
20140066690 Siebenhaar et al. Mar 2014 A1
20140066691 Siebenhaar Mar 2014 A1
20140200389 Yanai et al. Jul 2014 A1
20140205467 Yanai et al. Jul 2014 A1
20140275721 Yanai et al. Sep 2014 A1
20140275727 Bonde et al. Sep 2014 A1
20140296615 Franano Oct 2014 A1
20140309481 Medvedev et al. Oct 2014 A1
20140314597 Allaire et al. Oct 2014 A1
20140323796 Medvedev et al. Oct 2014 A1
20150017030 Ozaki Jan 2015 A1
20150023803 Fritz et al. Jan 2015 A1
20150078936 Mori Mar 2015 A1
20150306290 Rosenberg et al. Oct 2015 A1
20150374892 Yanai et al. Dec 2015 A1
20160058929 Medvedev et al. Mar 2016 A1
20160058930 Medvedev et al. Mar 2016 A1
Foreign Referenced Citations (102)
Number Date Country
1347586 May 2002 CN
1462344 Dec 2003 CN
102239334 Nov 2011 CN
102341600 Feb 2012 CN
2945662 Sep 1999 EP
971212 Jan 2000 EP
1113117 Jul 2001 EP
1327455 Jul 2003 EP
1430919 Jun 2004 EP
1495773 Jan 2005 EP
1598087 Mar 2005 EP
1526286 Apr 2005 EP
1495773 Nov 2006 EP
1495773 Feb 2009 EP
2292282 Mar 2011 EP
2298375 Mar 2011 EP
2372160 Oct 2011 EP
2405140 Jan 2012 EP
2405141 Jan 2012 EP
2461465 Jun 2012 EP
2538086 Dec 2012 EP
2554191 Feb 2013 EP
2594799 May 2013 EP
2618001 Jul 2013 EP
2693609 Feb 2014 EP
2948202 Dec 2015 EP
3013385 May 2016 EP
589535 Jan 1983 JP
61293146 Dec 1986 JP
H02-033590 Mar 1990 JP
04091396 Mar 1992 JP
04148094 May 1992 JP
05021197 Mar 1993 JP
06014538 Feb 1994 JP
06053790 Jul 1994 JP
2006070476 Sep 1994 JP
2006245455 Sep 1994 JP
07014220 Mar 1995 JP
07042869 Aug 1995 JP
07509156 Oct 1995 JP
09122228 May 1997 JP
10331841 Dec 1998 JP
11244377 Sep 1999 JP
2001309628 Nov 2001 JP
2003135592 May 2003 JP
2004166401 Jun 2004 JP
2004209240 Jul 2004 JP
2004332566 Nov 2004 JP
2004346925 Dec 2004 JP
200594955 Apr 2005 JP
2005127222 May 2005 JP
2005245138 Sep 2005 JP
2005270345 Oct 2005 JP
2005270415 Oct 2005 JP
2005287599 Oct 2005 JP
2006167173 Jun 2006 JP
2007002885 Jan 2007 JP
2007043821 Feb 2007 JP
2007089972 Apr 2007 JP
2007089974 Apr 2007 JP
2007215292 Aug 2007 JP
2007247489 Sep 2007 JP
2008011611 Jan 2008 JP
2008104278 May 2008 JP
2008132131 Jun 2008 JP
200899453 Aug 2008 JP
2008193838 Aug 2008 JP
2008297997 Dec 2008 JP
2008301634 Dec 2008 JP
2006254619 Sep 2009 JP
2010133381 Jun 2010 JP
2010136863 Jun 2010 JP
2010203398 Sep 2010 JP
2010209691 Sep 2010 JP
2011169166 Sep 2011 JP
2012021413 Feb 2012 JP
2012062790 Mar 2012 JP
5171953 Mar 2013 JP
5572832 Aug 2014 JP
5656835 Jan 2015 JP
9307388 Apr 1993 WO
9414226 Jun 1994 WO
9631934 Oct 1996 WO
9742413 Nov 1997 WO
0064509 Nov 2000 WO
2004098677 Nov 2004 WO
2005011087 Feb 2005 WO
2005028000 Mar 2005 WO
2005034312 Apr 2005 WO
2009157408 Dec 2009 WO
2010067682 Jun 2010 WO
2010101082 Sep 2010 WO
2010101107 Sep 2010 WO
2011013483 Feb 2011 WO
2012040544 Mar 2012 WO
2012047550 Apr 2012 WO
2012132850 Oct 2012 WO
2014113533 Jul 2014 WO
2014116676 Jul 2014 WO
2014179271 Nov 2014 WO
2016033131 Mar 2016 WO
2016033133 Mar 2016 WO
Non-Patent Literature Citations (40)
Entry
International Search Report and Written Opinion of PCT/US2014/012448 mailed on Feb. 19, 2014, 8 pages.
International Search Report and Written Opinion issued in PCT/US2014/012511 mailed on May 14, 2014, 13 pp.
International Search Report and Written Opinion of PCT/US2014/017932 mailed on Jun. 16, 2014, 12 pages.
Asama, et al., “Suspension Performance of a Two-Axis Actively Regulated Consequent-Pole Bearingless Motor,” IEEE Transactions on Energy Conversion, vol. 28, No. 4, Dec. 2013, 8 pages.
European Search report Issued in European Patent Application No. 10/748,702.7, mailed Apr. 2, 2013.
Extended European Search Report issued in European Patent Application No. EP 10748677.1, mailed Nov. 19, 2012.
International Search Report (PCT/ISA/210) issued on Jul. 14, 2009, by Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2009/061318.
International Search Report and Written Opinion issued in PCT/JP2011/050925, mailed Apr. 12, 2011.
International Search Report and Written Opinion issued in PCT/JP2011/054134, mailed Apr. 12, 2011.
International Search Report and Written Opinion issued in PCT/JP2011/064768, mailed Sep. 13, 2011.
International Search Report and Written Opinion issued in PCT/JP2011/070450, mailed Dec. 13, 2011.
Kosaka, et al.,“Operating Point Control System for a Continuous Flow Artificial Heart: In Vitro Study,” ASAIO Journal 2003, 6 pages.
Supplementary European Search Report issued in European Application No. 09/831,788.6, dated Jan. 7, 2013, 7 pages.
Terumo Heart, Inc., “Handled With Care—Significantly Reduce the Risk of Cell Damage,” Terumo brochure, Apr. 2010, 2 pages.
Yamazaki, et al., “Development of a Miniature Intraventricular Axial Flow Blood Pump,” ASAIO Journal, 1993, 7 pages.
Asama, J., et al., “A Compact Highly Efficient and Low Hemolytic Centrifugal Blood Pump With a Magnetically Levitated Impeller”, Artificial Organs, vol. 30, No. 3, Mar. 1, 2006 (Mar. 1, 2006), pp. 160-167.
Asama, J., et al., “A New Design for a Compact Centrifugal Blood Pump with a Magnetically Levitated Rotor”, Asaio Journal, vol. 50, No. 6, Nov. 1, 2004 (Nov. 1, 2004), pp. 550-556.
Extended European Search Report issued on Mar. 26, 2015 in European Patent Application No. EP 09770118.9, filed Jun. 22, 2009, all pages.
European office action mailed on Jan. 27, 2016 for EP 10804230.0, all pages.
Extended European Search Report issued in European Patent Application No. EP 11806627.3, mailed Oct. 8, 2014, all pages.
Extended European Search Report issued in European Patent Application No. EP 11825062, mailed Jun. 18, 2015, all pages.
Extended European Search Report mailed on Feb. 4, 2016 in European Patent Application No. EP 12764433.4, filed Mar. 12, 2012, all pages.
International Search Report and Written Opinion of PCT/US2014/011786, mailed on May 5, 2014, all pages.
International Preliminary Report on Patentability mailed on Jul. 30, 2015 for International Patent Application No. PCT/US2014/011786, filed on Jan. 16, 2014, all pages.
International Search Report and Written Opinion of PCT/US2014/012511, mailed on May 147, 2014, all pages.
International Preliminary Report on Patentability mailed on Aug. 6, 2015 for International Patent Application No. PCT/US2014/012511, filed on Jan. 22, 2014, all pages.
International Search Report and Written Opinion of PCT/US2014/012502, dated May 9, 2014, all pages.
International Preliminary Report on Patentability mailed on Aug. 6, 2015 for International Patent Application No. PCT/US2014/012502, filed on Jan. 22, 2014, all pages.
International Search Report and Written Opinion of PCT/US2014/017932, mailed on Jun. 16, 2014, all pages.
International Preliminary Report on Patentability mailed on Sep. 11, 2015 for International Patent Application No. PCT/US2014/017932, filed on Feb. 24, 2014, all pages.
International Search Report and Written Opinion of PCT/US2014/035798, mailed on Feb. 11, 2016, all pages.
International Preliminary Report on Patentability issued Feb. 16, 2016 for International Patent Application No. PCT/US2014/035798, filed on Apr. 29, 2014, all pages.
International Search Report and Written Opinion of PCT/US2016/017611, mailed on May 16, 2016, all pages.
International Search Report and Written Opinion of PCT/US2016/017791, mailed on May 16, 2016, all pages.
Japanese office action mailed on Dec. 8, 2015 JP 2013-507344, all pages.
Decision to Grant for JP 2013-507344 issued Jun. 14, 2016, all pages.
Neethu, S., et al., “Novel design, optimization and realization of axial flux motor for implantable blood pump”, Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power Indian, 2010 Joint International Conference on, IEEE, Dec. 20, 2010 (Dec. 20, 2010), pp. 1-6.
Sandtner, J., et al., “Electrodynamic Passive Magnetic Bearing with Planar Halbach Arrays”, Aug. 6, 2004 (Aug. 6, 2004), retrieved from the internet: <http://www.silphenix.ch/lexington.pdf>, all pages.
International Search Report and Written Opinion of PCT/US2016/017812, mailed on Jun. 7, 2016, all pages.
International Search Report and Written Opinion of PCT/US2016/017864, mailed Jun. 8, 2016, all pages.
Related Publications (1)
Number Date Country
20140241904 A1 Aug 2014 US