State-based remote control system

Information

  • Patent Grant
  • 8026789
  • Patent Number
    8,026,789
  • Date Filed
    Wednesday, June 16, 2004
    20 years ago
  • Date Issued
    Tuesday, September 27, 2011
    13 years ago
Abstract
A state-based remote control system for providing efficient and simple operation of a plurality of electronic devices as a coordinated system based upon an overall task. The state-based remote control system includes a housing, a keypad in communication with an electronic system contained within the housing, and a communication device in communication with the electronic system for communicating with external electronic devices. The electronic system monitors the buttons selected by a user to determine the state of all external electronic devices that are to be controlled. When the user selects a task (e.g. watch television), the electronic system automatically determines the actions required to achieve the desired task based upon the current state of the external electronic devices. After the task has been fulfilled, the electronic system updates the data to reflect the modified state of the external electronic devices.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to remote control devices and more specifically it relates to a state-based remote control system for providing efficient and simple operation of a plurality of electronic devices as a coordinated system based upon an overall task.


2. Description of the Prior Art


Remote control devices have been in use for years. Remote control devices are utilized to operate various external electronic devices including but not limited to televisions, stereos, receivers, VCRs, DVD players, CD players, amplifiers, equalizers, tape players, cable units, lighting, window shades and other electronic devices. A conventional remote control is typically comprised of a housing structure, a keypad within the housing structure for entering commands by the user, electronic circuitry within the housing structure connected to the keypad, and a transmitter electrically connected to the electronic circuitry for transmitting a control signal to an electronic device to be operated.


The user depresses one or more buttons upon the keypad when a desired operation of a specific electronic device is desired. For example, if the user desires to turn the power off to a VCR, the user will depress the power button upon the remote control which transmits a “power off” control signal that is detected by the VCR resulting in the VCR turning off.


Because of the multiple electronic devices currently available within many homes and businesses today, a relatively new type of remote control is utilized to allow for the control of a plurality of electronic devices commonly referred to as a “universal remote control.” Most universal remote controls have “selector buttons” that are associated with the specific electronic device to be controlled by the remote control (i.e. television, VCR, DVD player, etc.).


A few universal remote controls allow for “macros” to be programmed into the remote control so that when a preprogrammed button is depressed a string of commands is executed as programmed. For example, if the user desires to operate their television along with the stereo receiving input from the television, the user would program a macro for turning on the television, turning on the stereo and then switching the input to the stereo for receiving audio input from the television. The main problem with conventional universal remote controls is that they are unable to detect or monitor the state of a particular electronic device. Another problem with conventional universal remote controls is that when a preprogrammed macro is executed, an undesirable effect can occur wherein electronic devices that are desired to be turned on are actually turned off. For example, if the television is already on but the stereo is tuned to a local radio station and the user selects the above macro the power to the television would actually be turned off instead of maintained on.


Recently, universal remote controls have been developed that communicate via radio frequency (RF) with external sensing devices that are connected to the electronic devices for detecting the current state of the electronic device. Other remote controls are able to receive and display information from the electronic device they control such as displaying the name of a radio station on a display of the remote. These devices are relatively expensive and again difficult to utilize for the average consumer.


The main problem with conventional remote control devices is that they are typically unable to know the particular “state” of an electronic device they are to control, particularly universal remote controls. A further problem with conventional remote controls that do allow for advanced configuration thereof to compensate for the various states of the electronic device is that they are often times difficult for the average consumer to utilize. Another problem with conventional remote control devices is that they force consumers to their electronic devices “individually” (i.e. turn television on, turn stereo on, switch audio input on stereo to television) rather than in broad “tasks” (e.g. watch television).


While these devices may be suitable for the particular purpose to which they address, they are not as suitable for providing efficient and simple operation of a plurality of electronic devices as a coordinated system based upon an overall task. Conventional remote controls are typically programmed to operate only one electronic device. Conventional universal remote controls are typically programmed to operate electronic devices “individually” or are difficult to configure to automated control of a plurality of electronic devices.


In these respects, the state-based remote control system according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of providing efficient and simple operation of a plurality of electronic devices as a coordinated system based upon an overall task.


SUMMARY OF THE INVENTION

In view of the foregoing disadvantages inherent in the known types of remote controls now present in the prior art, the present invention provides a new state-based remote control system construction wherein the same can be utilized for providing efficient and simple operation of a plurality of electronic devices as a coordinated system based upon an overall task.


The general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new state-based remote control system that has many of the advantages of the remote controls mentioned heretofore and many novel features that result in a new state-based remote control system which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art remote controls, either alone or in any combination thereof.


To attain this, the present invention generally comprises a housing, a keypad in communication with an electronic system contained within the housing, and a communication device in communication with the electronic system for communicating with external electronic devices. The electronic system constantly monitors the buttons selected by a user to determine the state of all external electronic devices that are to be controlled. When the user selects a task (e.g. watch television), the electronic system automatically determines the actions required to achieve the desired task based upon the current state of the external electronic devices. After the task has been fulfilled, the electronic system updates the data to reflect the modified state of the external electronic devices.


There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and that will form the subject matter of the claims appended hereto.


In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.


A primary object of the present invention is to provide a state-based remote control system that will overcome the shortcomings of the prior art devices.


A second object is to provide a state-based remote control system for providing efficient and simple operation of a plurality of electronic devices as a coordinated system based upon an overall task.


Another object is to provide a state-based remote control system that provides for intuitive operation of a plurality of electronic devices.


An additional object is to provide a state-based remote control system that allows for the simple operation of a plurality of electronic devices based upon an overall “task” instead of specific controls for specific electronic devices.


A further object is to provide a state-based remote control system that is simple and easy to utilize for the average consumer.


Another object is to provide a state-based remote control system that does not require significant programming prior to usage.


An additional object is to provide a state-based remote control system that is affordable.


Other objects and advantages of the present invention will become obvious to the reader and it is intended that these objects and advantages are within the scope of the present invention.


To the accomplishment of the above and related objects, this invention may be embodied in the form illustrated in the accompanying drawings, attention being called to the fact, however, that the drawings are illustrative only, and that changes may be made in the specific construction illustrated and described within the scope of the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Various other objects, features and attendant advantages of the present invention will become fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:



FIG. 1 is an upper perspective view of the present invention.



FIG. 2 is a side view of the present invention.



FIG. 3 is a side view of the present invention illustrating electronic circuitry within.



FIG. 4 is a block diagram illustrating the communications between the present invention and a plurality of external electronic devices.



FIG. 5 is a block diagram illustrating the electronic system of the present invention electrically connected to the power source and in communication with the external electronic devices.



FIG. 6 is a block diagram illustrating the electronic system along with a plurality of accessory devices connected to thereof.



FIG. 7 is a flowchart illustrating the initial programming of the present invention prior to usage.



FIG. 8 is a flowchart illustrating the modification of the state of external electronic devices not in the desired state as desired within a task to be performed.



FIG. 9 is a flowchart illustrating an action performed upon one or more external devices and modifying the memory within the electronic system accordingly.



FIG. 10 is a flowchart illustrating the modification of the memory within the electronic system to reflect the changed state of the external electronic devices after a task or an action has been completed.



FIGS. 11
a-b is a flowchart providing an example task for watching television being executed.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Turning now descriptively to the drawings, in which similar reference characters denote similar elements throughout the several views, FIGS. 1 through 11 illustrate a state-based remote control system 10, which comprises a housing 20, a keypad 114 in communication with an electronic system 100 contained within the housing 20, and a communication device 108 in communication with the electronic system 100 for communicating with external electronic devices 12. The electronic system 100 constantly monitors the buttons of the keypad 114 and other switches selected by a user to determine the state of all external electronic devices 12 that are to be controlled. When the user selects a task (e.g. watch television), the electronic system 100 automatically determines the actions required to achieve the desired task based upon the current state of the external electronic devices 12. After the task has been fulfilled, the electronic system 100 updates the data to reflect the modified state of the external electronic devices 12.


A. Housing Structure


The present invention generally is comprised of a housing 20 having a structure and shape similar to conventional remote control devices. The housing 20 may be constructed of various types of materials and shapes as can be appreciated by one skilled in the art. The housing is preferably structured to be ergonomic for a majority of users.


B. Electronic System


The present invention is utilized to control and operate various external electronic devices including but not limited to televisions, stereos, receivers, VCRs, DVD players, CD players, amplifiers, equalizers, tape players, cable units, satellite dish receivers, lighting, window shades and other electronic devices. Almost any number of external electronic devices may be controlled by the present invention as will be discussed in further detail.



FIG. 6 is a block diagram of an exemplary electronic system 100 for practicing the various aspects of the present invention. The electronic system 100 is preferably enclosed within the housing. A portable power source 140 is electrically connected to the electronic system 100 for providing electrical power to the electronic system 100. The power source 140 may be comprised of any power source such as a battery structure (disposable or rechargeable), solar cells, or direct power.


The electronic system 100 preferably includes a display screen 104, a network interface 112, a keypad 114, a microprocessor 116, a memory bus 118, random access memory (RAM) 120, a speaker 102, read only memory (ROM) 122, a peripheral bus 124, a keypad controller 126, and a communications device 108. As can be appreciated, the electronic system 100 of the present invention may be comprised of any combination of well-known computer devices, personal digital assistants (PDAs), laptop computers, remote control devices and other similar electronic structures.


The microprocessor 116 is a general-purpose digital processor that controls the operation of the electronic system 100. The microprocessor 116 can be a single-chip processor or implemented with multiple components. Using instructions retrieved from memory, the microprocessor 116 controls the reception and manipulations of input data and the output and display of data on output devices.


The memory bus 118 is utilized by the microprocessor 116 to access RAM 120 and ROM 122. RAM 120 is used by microprocessor 116 as a general storage area and as scratch-pad memory, and can also be used to store input data and processed data. ROM 122 can be used to store instructions or program code followed by microprocessor 116 as well as other data.


Peripheral bus 124 is used to access the input, output and storage devices used by the electronic system 100. In the described embodiment(s), these devices include a display screen 104, an accessory device 106, a speaker 102, a communications device 108, and a network interface 112. A keypad controller 126 is used to receive input from the keypad 114 and send decoded symbols for each pressed key to microprocessor 116 over bus 128.


The display screen 104 is an output device that displays images of data provided by the microprocessor 116 via the peripheral bus 124 or provided by other components in the electronic system 100. Other output devices such as a printer, plotter, typesetter, etc. can be utilized as an accessory device 106.


The microprocessor 116 together with an operating system operate to execute computer code and produce and use data. The computer code and data may reside on RAM 120, ROM 122, or other storage mediums. The computer code and data could also reside on a removable program medium and loaded or installed onto the electronic system 100 when needed. Removable program mediums include, for example, PC-CARD, flash memory, and floppy disk.


The network interface 112 is utilized to send and receive data over a network connected to other electronic systems. The network interface may be comprised of a Universal Serial Bus (USB), an external bus standard that supports data transfer rates of 12 Mbps (12 million bits per second). A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and keyboards. An interface card or similar device and appropriate software implemented by microprocessor 116 can be utilized to connect the electronic system 100 to an existing network and transfer data according to standard protocols including data over a global computer network such as the Internet.


The keypad 114 is used by a user to input commands and other instructions to the electronic system 100. Other types of user input devices can also be used in conjunction with the present invention. For example, pointing devices such as a computer mouse, a jog switch 22, a track ball, a stylus, or a tablet to manipulate a pointer on a screen of the electronic system 100.


The present invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can be thereafter be read by a electronic system. Examples of the computer readable medium include read-only memory, random-access memory, magnetic data storage devices such as diskettes, and optical data storage devices such as CD-ROMs. The computer readable medium can also be distributed over a network coupled electronic systems so that the computer readable code is stored and executed in a distributed fashion.


The communications device 108 may be comprised of any well-known communication system that allows communications with external electronic devices. The communications device 108 may provide for various types of communication such as but not limited to via infrared (IR), wireless (e.g. BLUETOOTH), unidirectional, bi-directional, radio frequency (RF), visible light, ultrasonic and various other means for communicating with external electronic devices.


The environmental unit 110 senses environmental information such as lighting, motion, orientation, temperature, audio and other environmental information. The environmental unit 110 communicates the detected environmental information to the microprocessor 116 for consideration in controlling the external electronic devices. The environmental unit 110 includes the appropriate sensors such as light sensors, temperature sensors, sound sensors and other desirable sensors to determine the environment conditions external of the housing.


Input into the electronic system is accomplished mainly through the usage of the keypad 114. The keypad 114 includes a plurality of buttons that allow the user to execute one or more commands. The keypad 114 allows for the control of basic functions such as volume, channel manipulation, mute, and last channel. However, the keypad 114 may also include several buttons that represent a specific task such as watch television, listen to radio and various other tasks. Various other input devices may be utilized to input data into the electronic system such as a jog switch 22 (i.e. dial), motion and orientation detectors, touch sensitive screens and voice recognition. The display 104 provides information to the user such as possible tasks to complete or the current state of the external electronic devices.


C. Initializing/Synchronizing of Electronic System with External Devices


Prior to utilizing the present invention, the user must program the electronic system 100 to not only recognize all of the external electronic devices 12 to be controlled but also as to each external electronic device 12 respective current “states” (i.e. on, off, current input, current output, etc.) as is shown in FIG. 7 of the drawings.


The initial programming of the electronic system 100 may be accomplished through various well-known means such as entering a code for each specific external electronic device. “Sampling” of a signal from a remote control utilized to control a specific electronic device may also be utilized to assist in the programming of the electronic system 100. Various other methods may be utilized to program the electronic system 100 to recognize and control the external electronic devices 12 which are well known in the art.


After all of the external electronic devices 12 have been properly programmed into the electronic system 100, the user then must program the “current state” of each external electronic device into the electronic system 100. This is accomplished typically by the user answering a series of questions shown on the display regarding each display. For example, the display may ask “Is the television turned on?” which the user would respond to. It can be appreciated that there can also be a default state for all of the external devices as being “off.” All of the programmed “Current State Data” is stored within memory of the electronic system 100.


D. Current State Data


“Current State Data” is data information relating to the current state of each of the external electronic devices 12 stored within the electronic system 100. The “state” of an external electronic device 12 is comprised of various variables such as but not limited to power on, power off, volume level, mute on, mute off, audio input, audio output, video input, video output, lights on, lights off, shades open, shades closed, and various other states common to external electronic devices 12. The Current State Data is updated as actions and/or tasks are performed to provide an accurate reflection of the actual current state of the external electronic devices 12. The Current State Data is utilized by the electronic system 100 to determine what external electronic devices 12 require modification when a “task” is selected by the user to prevent undesirable events from occurring.


E. Actions


An “action” is a specific event that occurs that typically only affects one of the external devices. An example of an action is when the user selects the power button on the keypad 114 to turn off the television which causes the television to switch from on to off or vice-versa.


The Current State Data is immediately modified to reflect the changed state of the television or other external electronic device after an action occurs as shown in FIGS. 9 and 10 of the drawings. The Current State Data is constantly updated to maintain an accurate reflection of the actual current state of the external electronic devices 12.


F. Tasks


A “task” may be comprised of one or more “actions” depending upon (1) the desired state of all external devices as prescribed by the task, and (2) the current state of all external devices. Examples of tasks are “watch television,” “listen to radio,” “watch video,” “listen to CD's,” “watch DVD”, and so forth. There are many more tasks that may accomplished with the present invention that are not discussed but are deemed readily apparent to one skilled in the art.


Each task has a “desired state” for each of the external electronic devices 12. When a task is selected, either through the keypad or the display, the electronic system 100 immediately determines the Current State Data and compares this data to the “Desired State Data” for all of the external electronic devices 12. After determining which external electronic devices 12 are in the desired state and which are not in the desired state, the electronic system 100 transmits a communication signal to the external electronic devices 12 that are not in the desired state to switch to the desired state based upon the task to be performed.


Another function of the present invention is to allow for the electronic system 100 to determine what menu options (i.e. “tasks”) that are available upon the display 104 based upon the current state of the external electronic devices 12. For example, if the television is currently on, the menu within the display may display the “Turn Television Off” task instead of the “Turn Television On” task which is not required.


G. Watch Television Task Example


Assuming for the sake of example that a user using the present invention has (1) interior lighting, (2) electronically controlled shades, (3) a stereo, (4) a television, (5) a CD player, and (6) a VCR which are programmed and synchronized within the electronic system as stated above. FIG. 11 illustrates the “WATCH TELEVISION” task. Below is a sample listing of the “Current State Data” prior to the selection of the WATCH TELEVISION task as shown in FIG. 11 of the drawings.












Current State Data








External Device
Initial State Prior to Execution of Task





1. Room Lighting
Lights turned on and shades open during evening



hours.


2. Stereo
Turned on with input audio from CD player.


3. Television
Turned off with volume very high.


4. CD Player
On and playing CD.


5. VCR
Off.









After selecting the desired WATCH TELEVISION task, the electronic system 100 immediately reads the Current State Data and compares the same to the “Desired State Data.” Below is a listing of the Desired State Data for the WATCH TELEVISION task.












Desired State Data








External Device
Desired State After Execution of Task





1. Room Lighting
Light threshold at a minimum.


2. Stereo
Turned on with input audio from television.


3. Television
Turned on with volume at a low-medium setting.


4. CD Player
Off.


5. VCR
Off.









After comparing the Current State Data to the Desired State Data, the electronic system 100 determines that the room lighting needs to be reduced by turning off lights and closing shades along with switching the audio input to the television. The electronic system 100 further determines that the television needs to be turned on and the CD player turned off. Below is a listing of the individual actions that the electronic system 100 takes to perform the WATCH TELEVISION task.












Actions Performed to Reach Desired State








External Device
Action Performed





1. Room Lighting
Turn lighting off and close shades


2. Stereo
Switch input audio to television.


3. Television
Turn on and reduce volume to low-medium setting.


4. CD Player
Turn off.


5. VCR
No action taken.









After the specific actions are executed to accomplish the overall task, the memory within the electronic system 100 is automatically updated to reflect the various changes to the state of each individual external electronic device 12 for reference later. Below is a listing of the Current State Data after the WATCH TELEVISION task has been performed.












Current State Data


(After Execution of Task)








External Device
Current State After Execution of Task





1. Room Lighting
Light threshold at a minimum.


2. Stereo
Turned on with input audio from television.


3. Television
Turned on with volume at a low-medium setting.


4. CD Player
Off.


5. VCR
Off.









The above process is repeated for the life of the state-based remote control system 10. If additional external electronic devices are added to the overall entertainment system of the user, the user simply programs the added device 12 into the electronic system 100 and synchronizes the electronic system 100 accordingly.


As to a further discussion of the manner of usage and operation of the present invention, the same should be apparent from the above description. Accordingly, no further discussion relating to the manner of usage and operation will be provided.


With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed to be within the expertise of those skilled in the art, and all equivalent structural variations and relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.


Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.

Claims
  • 1. A remote control comprises: control means for storing, calculating, and updating a simulated current state data for a set of home entertainment appliances that includes at least two functionally different home entertainment appliances, wherein the control means is configured for: receiving a request for transmitting a set of command codes for controlling the set of home entertainment appliances, and the set of command codes is for end state data of the home entertainment appliances subsequent to transmission of the set of command codes to the set of home entertainment appliances, andcomparing the current state data to the end state data to determine if transmission of the set of command codes will put the set of home entertainment appliances in an end state corresponding to the end state data, the end state representing at least the two functionally different home entertainment appliances each being in a corresponding particular state; anda transmitter configured to transmit command codes to the set of home entertainment appliances, wherein: if transmission of the set of command codes will not put the set of home entertainment appliances in the end state, the control means is configured for changing at least one command code in the set of command codes to generate a modified set of command codes, and the transmitter is configured to transmit the modified set of command codes to the set of home entertainment appliances to put the set of home entertainment appliances in the end state; andif transmission of the set of command codes will put the set of home entertainment appliances in the end state, the transmitter is configured to transmit the set of command codes to the set of home entertainment appliances to put the set of home entertainment appliances in the end state.
  • 2. The remote control of claim 1, wherein the control means is configured for removing a command from the set of command codes to generate the modified set of command codes as a part of the operation for changing at least one of the command codes.
  • 3. The remote control of claim 1, wherein the control means is configured for substituting a command from the set of command codes to generate the modified set of command codes as a part of the operation for changing at least one of the command codes.
  • 4. The remote control of claim 1, wherein the control means is configured for calculating a new simulated current state data based on transmission of the set of command codes or the modified set of command codes to the set of home entertainment appliances.
  • 5. The remote control of claim 4, wherein the control means is configured for updating the new simulated current state data based on the calculating operation of the control means.
  • 6. The remote control of claim 4, wherein the control means is configured for calculating the new simulated current state data based on transmission of the set of command codes or the modified set of command codes to the set of home entertainment appliances prior to transmission of a next set of command codes.
  • 7. The remote control of claim 1, wherein the set of command codes is for a task or an action.
  • 8. The remote control of claim 1, wherein the modified set of command codes is for a task or an action.
  • 9. The remote control of claim 6, wherein the control means is configured for storing the simulated current state data in a state machine.
  • 10. A remote control comprises: an electronic circuit configured to: store, calculate, and update a simulated current state data relating to a set of home entertainment appliances that includes at least two functionally different home entertainment appliances, andreceive a request for transmitting a set of command codes to control the set of home entertainment appliances, and the set of command codes is for end state data of the home entertainment appliances subsequent to transmission of the set of command codes to the set of home entertainment appliances, andcompare the current state data to the end state data to determine if transmission of the set of command codes will put the set of home entertainment appliances in an end state corresponding to the end state data, the end state representing at least the two functionally different home entertainment appliances each being in a corresponding particular state; anda transmitter configured to transmit command codes to the set of home entertainment appliances, wherein: if transmission of the set of command codes will not put the set of home entertainment appliances in the end state, the electronic circuit is configured to change at least one command code in the set of command codes to generate a modified set of command codes, and the transmitter is configured to transmit the modified set of command codes to the set of home entertainment appliances to put the set of home entertainment appliances in the end state, andif transmission of the set of command codes will put the set of home entertainment appliances in the end state, the transmitter is configured to transmit the set of command codes to the set of home entertainment appliances to put the set of home entertainment appliances in the end state.
  • 11. The remote control of claim 10, wherein the electronic circuit is configured to remove a command from the set of command codes to generate the modified set of command codes as a part of the operation to change at least one of the command codes.
  • 12. The remote control of claim 10, wherein the electronic circuit is configured to substitute a command from the set of command codes to generate the modified set of command codes as a part of the operation to change at least one of the command codes.
  • 13. The remote control of claim 10, wherein the electronic circuit is configured to calculate a new simulated current state data based on transmission of the set of command codes or the modified set of command codes to the set of home entertainment appliances.
  • 14. The remote control of claim 13, wherein the electronic circuit is configured to update the new simulated current state data based on the calculating operation of the electronic circuit.
  • 15. The remote control of claim 13, wherein the electronic circuit is configured to calculate the new simulated current state data based on transmission of the set of command codes or the modified set of command codes to the set of home entertainment appliances prior to transmission of a next set of command codes.
  • 16. The remote control of claim 10, wherein the set of command codes is for a task or an action.
  • 17. The remote control of claim 10, wherein the modified set of command codes is for a task or an action.
  • 18. The remote control of claim 15, wherein the electronic circuit is configured to store the simulated current state data in a state machine.
  • 19. A method of remote control operation for controlling a set of home entertainment appliances comprises: receiving a request for transmitting a set of command codes for controlling a set of home entertainment appliances that includes at least two functionally different home entertainment appliances, wherein the set of command codes is for end state data of the home entertainment appliances subsequent to transmission of the set of command codes to the set of home entertainment appliances;comparing a simulated current state data to the end state data to determine if transmission of the set of command codes will put the set of home entertainment appliances in an end state corresponding to the end state data, the end state representing at least the two functionally different home entertainment appliances each being in a corresponding particular state;if transmission of the set of command codes will not put the set of home entertainment appliances in the end state, changing at least one command code in the set of command codes to generate a modified set of command codes, andtransmitting the modified set of command codes to the set of home entertainment appliances to put the set of home entertainment appliances in the end state; andif transmission of the set of command codes will put the set of home entertainment appliances in the end state, transmitting the set of command codes to the set of home entertainment appliances to put the set of home entertainment appliances in the end state.
  • 20. The method of claim 19, wherein the set of command codes is for a task or an action.
  • 21. The method of claim 19, wherein the set of modified command codes is for a task or an action.
  • 22. The method of claim 19, wherein the changing step includes removing a command from the set of command codes to generate the modified set of command codes as a part of the operation to change at least one of the command codes.
  • 23. The method of claim 19, wherein the changing step includes substituting a command from the set of command codes to generate the modified set of command codes as a part of the operation to change at least one of the command codes.
  • 24. The method of claim 19, further comprising storing, calculating, and updating the simulated current state data for the set of home entertainment appliances based on the step of transmitting the set of command codes or the set of modified set of command codes to the set of home entertainment appliances.
  • 25. The method of claim 24, wherein the calculating step is based on transmission of the set of command codes or the modified set of command codes to the set of home entertainment appliances.
  • 26. The method of claim 24, wherein the updating step is based on a result of the calculating step.
  • 27. The method of claim 19, further comprising calculating the simulated current state data based on transmission of the set of command codes or the modified set of command codes to the set of home entertainment appliances prior to transmission of a next set of command codes.
  • 28. The method of claim 19, wherein the set of command codes is for a task or an action, and the modified set of command codes is for a task or an action.
  • 29. The method of claim 19, further comprising storing the simulated current state data in a state machine.
CROSS-REFERENCE TO RELATED U.S. PROVISIONAL PATENT APPLICATIONS

This application claims priority to U.S. patent application Ser. No. 09/804,718 (now U.S. Pat. No. 6,784,805) filed Mar. 21, 2001, which claims the benefit of U.S. Provisional Patent Application No. 60/189,487, filed Mar. 15, 2000, and U.S. Provisional Patent Application No. 60/253,727, filed Nov. 29, 2000, the disclosures of which are hereby incorporated by reference in their entireties for all purposes.

US Referenced Citations (288)
Number Name Date Kind
3990012 Karnes Nov 1976 A
4174517 Mandel Nov 1979 A
4394691 Amano et al. Jul 1983 A
4488179 Kruger et al. Dec 1984 A
4566034 Harger et al. Jan 1986 A
4626848 Ehlers Dec 1986 A
4774511 Rumbolt et al. Sep 1988 A
4825209 Sasaki et al. Apr 1989 A
4837627 Mengel Jun 1989 A
4918439 Wozniak et al. Apr 1990 A
4959810 Darbee et al. Sep 1990 A
4989081 Miyagawa et al. Jan 1991 A
4999622 Amano et al. Mar 1991 A
5097249 Yamamoto Mar 1992 A
5109222 Welty Apr 1992 A
5140326 Bacrania et al. Aug 1992 A
5161023 Keenan Nov 1992 A
5177461 Budzyna et al. Jan 1993 A
5228077 Darbee Jul 1993 A
5255313 Darbee Oct 1993 A
5272418 Howe et al. Dec 1993 A
5341166 Garr et al. Aug 1994 A
5374999 Chuang et al. Dec 1994 A
5410326 Goldstein Apr 1995 A
5414426 O'Donnell et al. May 1995 A
5414761 Darbee May 1995 A
5422783 Darbee Jun 1995 A
5481251 Buys et al. Jan 1996 A
5481256 Darbee et al. Jan 1996 A
5500794 Fujita et al. Mar 1996 A
5515052 Darbee May 1996 A
5537463 Escobosa et al. Jul 1996 A
5552917 Darbee et al. Sep 1996 A
5568367 Park Oct 1996 A
5579221 Mun Nov 1996 A
5614906 Hayes et al. Mar 1997 A
5619196 Escobosa Apr 1997 A
5619251 Kuroiwa et al. Apr 1997 A
5629868 Tessier et al. May 1997 A
5638050 Sacca et al. Jun 1997 A
5650831 Farwell Jul 1997 A
5671267 August et al. Sep 1997 A
5677711 Kuo Oct 1997 A
5686891 Sacca et al. Nov 1997 A
5689353 Darbee et al. Nov 1997 A
5778256 Darbee Jul 1998 A
5819294 Chambers Oct 1998 A
5828318 Cesar Oct 1998 A
5907322 Kelly et al. May 1999 A
5909183 Borgstahl et al. Jun 1999 A
5943228 Kim Aug 1999 A
5949351 Hahm Sep 1999 A
5953144 Darbee et al. Sep 1999 A
5959751 Darbee et al. Sep 1999 A
5963145 Escobosa Oct 1999 A
6002450 Darbee et al. Dec 1999 A
6008802 Iki et al. Dec 1999 A
6014092 Darbee et al. Jan 2000 A
6040829 Croy et al. Mar 2000 A
6097309 Hayes et al. Aug 2000 A
6097441 Allport Aug 2000 A
6097520 Kadnier Aug 2000 A
6104334 Allport Aug 2000 A
6127941 Van Ryzin Oct 2000 A
6130625 Harvey Oct 2000 A
6130726 Darbee et al. Oct 2000 A
6133847 Yang Oct 2000 A
6147677 Escobosa et al. Nov 2000 A
6154204 Thompson et al. Nov 2000 A
6157319 Johns et al. Dec 2000 A
6169451 Kim Jan 2001 B1
6173330 Guo et al. Jan 2001 B1
6177931 Alexander et al. Jan 2001 B1
6195033 Darbee et al. Feb 2001 B1
6211870 Foster Apr 2001 B1
6223348 Hayes et al. Apr 2001 B1
6225938 Hayes et al. May 2001 B1
6243035 Walter et al. Jun 2001 B1
6255961 Van Ryzin et al. Jul 2001 B1
6271831 Escobosa et al. Aug 2001 B1
6275268 Ellis et al. Aug 2001 B1
6278499 Darbee Aug 2001 B1
6288799 Sekiguchi Sep 2001 B1
6330091 Escobosa et al. Dec 2001 B1
6374404 Brotz et al. Apr 2002 B1
6445306 Trovato et al. Sep 2002 B1
6483906 Iggulden et al. Nov 2002 B1
6496135 Darbee Dec 2002 B1
6522262 Hayes et al. Feb 2003 B1
6532592 Shintani et al. Mar 2003 B1
6538556 Kawajiri Mar 2003 B1
6563430 Kemink et al. May 2003 B1
6567011 Young et al. May 2003 B1
6567984 Allport May 2003 B1
6587067 Darbee et al. Jul 2003 B2
6628340 Graczyk et al. Sep 2003 B1
6629077 Arling et al. Sep 2003 B1
6640144 Huang et al. Oct 2003 B1
6642852 Dresti et al. Nov 2003 B2
6650247 Hayes Nov 2003 B1
6657679 Hayes et al. Dec 2003 B2
6690290 Young et al. Feb 2004 B2
6701091 Escobosa et al. Mar 2004 B2
6720904 Darbee Apr 2004 B1
6722984 Sweeney, Jr. et al. Apr 2004 B1
6724339 Conway et al. Apr 2004 B2
6747591 Lilleness et al. Jun 2004 B1
6748248 Pan et al. Jun 2004 B1
6759967 Staller Jul 2004 B1
6781518 Hayes et al. Aug 2004 B1
6781638 Hayes Aug 2004 B1
6784804 Hayes et al. Aug 2004 B1
6784805 Harris et al. Aug 2004 B2
6785579 Huang et al. Aug 2004 B2
6788241 Arling et al. Sep 2004 B2
6826370 Escobosa et al. Nov 2004 B2
6829512 Huang et al. Dec 2004 B2
6847101 Ejelstad et al. Jan 2005 B2
6859197 Klein et al. Feb 2005 B2
6862741 Grooters Mar 2005 B1
6870463 Dresti et al. Mar 2005 B2
6874037 Abram et al. Mar 2005 B1
6882729 Arling et al. Apr 2005 B2
6885952 Hayes et al. Apr 2005 B1
6917302 Lilleness et al. Jul 2005 B2
6933833 Darbee Aug 2005 B1
6938101 Hayes et al. Aug 2005 B2
6946988 Edwards et al. Sep 2005 B2
6947101 Arling Sep 2005 B2
6968570 Hayes et al. Nov 2005 B2
6980150 Conway et al. Dec 2005 B2
7005979 Haughawout et al. Feb 2006 B2
7010805 Hayes et al. Mar 2006 B2
7013434 Masters et al. Mar 2006 B2
RE39059 Foster Apr 2006 E
7046161 Hayes May 2006 B2
7079113 Hayes et al. Jul 2006 B1
7091898 Arling et al. Aug 2006 B2
7093003 Yuh et al. Aug 2006 B2
7102688 Hayes et al. Sep 2006 B2
7119710 Hayes et al. Oct 2006 B2
7126468 Arling et al. Oct 2006 B2
7129995 Arling Oct 2006 B2
7136709 Arling et al. Nov 2006 B2
7142127 Hayes et al. Nov 2006 B2
7142934 Janik Nov 2006 B2
7142935 Janik Nov 2006 B2
7143214 Hayes et al. Nov 2006 B2
7154428 Clercq et al. Dec 2006 B2
7155305 Hayes et al. Dec 2006 B2
7161524 Nguyen Jan 2007 B2
7167765 Janik Jan 2007 B2
7167913 Chanmbers Jan 2007 B2
7193661 Dresti et al. Mar 2007 B2
7200357 Janik et al. Apr 2007 B2
7209116 Gates et al. Apr 2007 B2
7218243 Hayes et al. May 2007 B2
7221306 Young May 2007 B2
RE39716 Huang et al. Jul 2007 E
7253765 Edwards et al. Aug 2007 B2
7254777 Hayes et al. Aug 2007 B2
7266701 Hayes et al. Sep 2007 B2
7266777 Scott et al. Sep 2007 B2
7268694 Hayes et al. Sep 2007 B2
7274303 Dresti et al. Sep 2007 B2
7281262 Hayes et al. Oct 2007 B2
7283059 Harris et al. Oct 2007 B2
7319409 Hayes et al. Jan 2008 B2
7319426 Garfio Jan 2008 B2
7436319 Harris et al. Oct 2008 B1
7574693 Kemink et al. Aug 2009 B1
7612685 Harris et al. Nov 2009 B2
20010033243 Harris et al. Oct 2001 A1
20010045819 Harris et al. Nov 2001 A1
20020008789 Harris et al. Jan 2002 A1
20020046083 Ondeck Apr 2002 A1
20020056084 Harris et al. May 2002 A1
20020151327 Levitt Oct 2002 A1
20020190956 Hayes et al. Dec 2002 A1
20020194410 Hayes et al. Dec 2002 A1
20030046579 Hayes et al. Mar 2003 A1
20030048295 Lilleness et al. Mar 2003 A1
20030095156 Klein et al. May 2003 A1
20030103088 Dresti et al. Jun 2003 A1
20030117427 Haughawout et al. Jun 2003 A1
20030151538 Escobosa et al. Aug 2003 A1
20030164773 Young et al. Sep 2003 A1
20030164787 Mauro et al. Sep 2003 A1
20030189509 Hayes et al. Oct 2003 A1
20030193519 Hayes et al. Oct 2003 A1
20030233664 Huang et al. Dec 2003 A1
20040046677 Mauro et al. Mar 2004 A1
20040056789 Arling et al. Mar 2004 A1
20040056984 Hayes et al. Mar 2004 A1
20040070491 Huang et al. Apr 2004 A1
20040093096 Huang et al. May 2004 A1
20040117632 Arling et al. Jun 2004 A1
20040136726 Escobosa et al. Jul 2004 A1
20040169590 Haughawout et al. Sep 2004 A1
20040169598 Arling et al. Sep 2004 A1
20040189508 Nguyen Sep 2004 A1
20040189509 Lilleness et al. Sep 2004 A1
20040210933 Mauro et al. Oct 2004 A1
20040246165 Conway et al. Dec 2004 A1
20040263349 Haughawout et al. Dec 2004 A1
20040266419 Arling et al. Dec 2004 A1
20040268391 Clercq et al. Dec 2004 A1
20050024226 Hayes et al. Feb 2005 A1
20050052423 Harris et al. Mar 2005 A1
20050055716 Louie et al. Mar 2005 A1
20050062614 Young Mar 2005 A1
20050062636 Conway et al. Mar 2005 A1
20050066370 Cesar et al. Mar 2005 A1
20050078087 Gates et al. Apr 2005 A1
20050080496 Hayes et al. Apr 2005 A1
20050088315 Klein et al. Apr 2005 A1
20050094610 De Clerq et al. May 2005 A1
20050096753 Arling et al. May 2005 A1
20050097618 Arling et al. May 2005 A1
20050107966 Chung May 2005 A1
20050116930 Gates Jun 2005 A1
20050134578 Chambers et al. Jun 2005 A1
20050159823 Hayes et al. Jul 2005 A1
20050162282 Mauro et al. Jul 2005 A1
20050179559 Edwards et al. Aug 2005 A1
20050183104 Edwards et al. Aug 2005 A1
20050195979 Arling et al. Sep 2005 A1
20050200598 Hayes et al. Sep 2005 A1
20050210101 Janik Sep 2005 A1
20050216606 Hayes et al. Sep 2005 A1
20050216843 Masters et al. Sep 2005 A1
20050231649 Arling Oct 2005 A1
20050258806 Janik et al. Nov 2005 A1
20050280743 Dresti et al. Dec 2005 A1
20050283814 Scott et al. Dec 2005 A1
20050285750 Hayes et al. Dec 2005 A1
20060007306 Masters et al. Jan 2006 A1
20060012488 Hilbrink et al. Jan 2006 A1
20060031400 Yuh et al. Feb 2006 A1
20060031437 Chambers Feb 2006 A1
20060031549 Janik et al. Feb 2006 A1
20060031550 Janik et al. Feb 2006 A1
20060050142 Scott et al. Mar 2006 A1
20060055554 Hayes et al. Mar 2006 A1
20060101498 Arling et al. May 2006 A1
20060125800 Janik Jun 2006 A1
20060132458 Garfio et al. Jun 2006 A1
20060143572 Scott et al. Jun 2006 A1
20060150120 Dresti et al. Jul 2006 A1
20060161865 Scott et al. Jul 2006 A1
20060192855 Harris et al. Aug 2006 A1
20060194549 Janik et al. Aug 2006 A1
20060200538 Yuh et al. Sep 2006 A1
20060259183 Hayes et al. Nov 2006 A1
20060259184 Hayes et al. Nov 2006 A1
20060259864 Klein et al. Nov 2006 A1
20060262002 Nguyen Nov 2006 A1
20060283697 Garfio Dec 2006 A1
20060288300 Chambers et al. Dec 2006 A1
20060294217 Chambers Dec 2006 A1
20070037522 Liu et al. Feb 2007 A1
20070052547 Haughawout et al. Mar 2007 A1
20070061027 Janik Mar 2007 A1
20070061028 Janik Mar 2007 A1
20070061029 Janik Mar 2007 A1
20070063860 Escobosa et al. Mar 2007 A1
20070073958 Kalayjian Mar 2007 A1
20070077784 Kalayjian et al. Apr 2007 A1
20070097275 Dresti et al. May 2007 A1
20070136693 Lilleness et al. Jun 2007 A1
20070156739 Black et al. Jul 2007 A1
20070178830 Janik et al. Aug 2007 A1
20070206949 Mortensen Sep 2007 A1
20070225828 Huang et al. Sep 2007 A1
20070233740 Nichols et al. Oct 2007 A1
20070258595 Choy Nov 2007 A1
20070271267 Lim et al. Nov 2007 A1
20070279244 Haughawout et al. Dec 2007 A1
20070296552 Huang et al. Dec 2007 A1
20080005764 Arling et al. Jan 2008 A1
20080016467 Chambers et al. Jan 2008 A1
20080016468 Chambers et al. Jan 2008 A1
20080042982 Gates et al. Feb 2008 A1
20080062033 Harris et al. Mar 2008 A1
20080062034 Harris et al. Mar 2008 A1
20080068247 Harris et al. Mar 2008 A1
20080198059 Harris et al. Aug 2008 A1
20090224955 Bates et al. Sep 2009 A1
Foreign Referenced Citations (30)
Number Date Country
6626790 Apr 1992 AU
2001169851 Jan 2002 AU
2092003 Nov 2008 CA
1399444 Feb 2003 CN
1434422 Aug 2003 CN
103 438 Mar 1984 EP
0103438 Mar 1984 EP
398 550 Nov 1990 EP
398550 Nov 1990 EP
0398550 Nov 1990 EP
1014577 Jun 2000 EP
1014577 Jun 2000 EP
1198069 Apr 2002 EP
1777830 Apr 2007 EP
2081948 Feb 1982 GB
2081948 Feb 1982 GB
2175724 Dec 1986 GB
2175724 Dec 1986 GB
07112301 Nov 1995 JP
2002058079 Feb 2002 JP
2002271871 Sep 2002 JP
2003087881 Mar 2003 JP
PA2003000322 Nov 2003 MX
WO 0169567 Sep 1991 WO
WO 9934564 Jul 1999 WO
WO 0034851 Jun 2000 WO
WO 03044684 May 2003 WO
WO 03045107 May 2003 WO
WO 03060804 Jul 2003 WO
WO 03100553 Dec 2003 WO
Related Publications (1)
Number Date Country
20050030196 A1 Feb 2005 US
Provisional Applications (2)
Number Date Country
60253727 Nov 2000 US
60189487 Mar 2000 US
Continuations (1)
Number Date Country
Parent 09804718 Mar 2001 US
Child 10870339 US