Static device for homogenizing a flowing fluid

Information

  • Patent Grant
  • 4909635
  • Patent Number
    4,909,635
  • Date Filed
    Tuesday, January 3, 1989
    35 years ago
  • Date Issued
    Tuesday, March 20, 1990
    34 years ago
Abstract
A liquid to be homogenized passes successively through two perforated walls (TA, TB) forming jets (F2, F6) on passing therethrough for performing stirring. These two walls extend longitudinally over a common length of the axis (A) of the device. The liquid passes from one to the other by following a circumferential path (F4) and its direction of longitudinal flow is reversed, locally (F5). The invention is particularly applicable to measuring the concentration of one of the components in a mixture.
Description
Claims
  • 1. A static device for homogenizing a fluid flow, the device comprising:
  • an inlet (2) having an axis and a diameter for receiving an inlet flow of said fluid along said axis at an upstream end of said device;
  • an outlet having the same axis and the same diameter for restoring an outlet flow of said fluid along said axis from a downstream end of said device, said axis being an axis of the device and having a longitudinal direction which is perpendicular to transverse directions which are, in particular, radial directions and circumferential directions, said diameter being the diameter of a reference surface which is cylindrical and coaxial with said device; and
  • mixing chambers connected between said inlet and said outlet and each comprising a feed compartment (TC, TA, TD, 6) and a stirring compartment which compartments are separated by a perforated wall (TA, PAC, 8, PAD), each of said mixing chambers being connected to receive streams (F1) of said flow in said feed compartment and to form a plurality of jets (F2) which are perpendicular to said wall and which penetrate into said stirring compartment in order to stir said fluid therein said wall extending longitudinally and along a first one of said transverse directions (DC) in order to provide a large area in a radially limited space, such that said jets have speed components along a second one of said transverse directions (DR) perpendicular to the first transverse direction, said feed and stirring compartments being further delimited by inlet and outlet guide walls (TC, 6, TD; PAC, 8, PAD) leaving open an inlet (2) of said chamber in said feed compartment and an outlet of said chamber in said stirring compartment, said guide walls extending facing said perforated wall in such a manner as to confer to said flow a direction (LD) which is substantially parallel to said perforated wall in each of said compartments, with said streams curving on either side of said perforated wall;
  • said perforated walls (TA, TB) being at least partially contained in said reference surface and being longitudinally coextensive in such a manner as to limit the longitudinal and radial size of the device; and
  • said mixing chamber being offset transversely relative to one another along a transverse offset direction (DC);
  • said device being characterized by the fact that it includes transfer means (TE, 14, 8, 16) for connecting the outlet from a first of said mixing chambers (6, TC, PAC, 8, PAD, TD) to the inlet of a second of said mixing chambers (6, TD, PBD, 8, PBC, TC) so as to connect said two chambers in series while causing the same stream of said flow (F1, F2, F3, F4, F5, F6, F7) to flow through both of them in succession.
  • 2. A device according to claim 1, characterized by the fact that said inlet and outlet guide walls (TC, 6, TD; PAC, 8, PAD) confer a substantially longitudinal direction to said flow in each of said feed and stirring compartments (TC, TA, TD, 6; TA, PC, 8, PAD) of each mixing chamber, said walls including a main guide wall (6, 8) facing said perforated wall (TA, TB) and inclined relative to said perforated wall in such a manner as to extend away therefrom towards said inlet and said outlet of said mixing chamber, respectively;
  • said transfer means comprising at least one transfer chamber (TE, 14, 8, 16) extending along said offset direction (DC); and
  • said device comprising a succession of an even number of reversing chambers on the path of each stream of said flow, each of said chambers reversing the longitudinal components of the average speed of the fraction of said flow which flows therealong, with at least one of said reversing chambers being constituted by said transfer chamber.
  • 3. A device according to claim 2, in which each of said transfer chambers (TE, 14, 8, 16) extends from a single one of said upstream and downstream ends of the set of said mixing chambers, connects two of said chambers directly, and constitutes a single one of said reversing chambers, thereby enabling the device to be embodied simply.
  • 4. A device according to claim 3, characterized by the fact that there are two of said mixing chambers, said chambers being a first chamber (6, TC, PAC, 8, PAD, TD), and a second chamber (6, TD, PBD, 8, PBC, TC) comprising respective first (TA) and second (TB) ones of said perforated walls separating first and second ones of said feed compartments from first and second ones of said stirring compartments, the inlet (2) of said first chamber and the outlet (4) of said second chamber respectively constituting the inlet and the outlet of said device, one of said two chambers being a reversing chamber the number of said transfer chambers (TE, 14, 8, 16) on the path of each stream (F1, F2, F3, F4, F5, F6, F7) of said flow being one.
  • 5. A device according to claim 4, characterized by the fact that said two perforated walls (TA, TB) are formed over two angular sectors of a tube (TA, TB, TC, TD, TE) constituting said reference surface;
  • a generally sloping separating wall (6) closing said tube while separating said two perforated walls so as to form in said tube said feed compartment (2, TC, TA, TD, 6) of a first one of said mixing chambers and said stirring compartment (4, TC, TB, TD, 6) of a second one of said mixing chambers;
  • said stirring compartment (TA, PAC, PAD, 8) of said first mixing chamber, said feed compartment (TB, PBC, PBD, 8) of said second mixing chamber, and said transfer means (TE, 8, 14, 16) being formed radially outside said tube inside an envelope (8);
  • two lateral guide walls (PAC, PAD & PBC, PBD) extending longitudinally and radially being situated angularly on either side of each of said perforated plates in order to constitute, together with said envelope (8), said stirring chamber (TA, PAC, PAD, 8) of said first mixing chamber, and said feed chamber (TB, PBC, PBD, 8) of said second mixing chamber;
  • said tube being extended by an additional length (TE) situated at one of said upstream or downstream ends of the assembly of said two mixing chambers inside said envelope and extending angularly over two angular sectors of said two perforates plates (TA, TB) and over at least one angular transfer sector (TC, TD) interconnecting the two preceding sectors; and
  • an external transfer transverse wall (14) connecting said additional length to said envelope (8), and at least one internal transfer transverse wall (16) connecting said length (TE) to said envelope (8) in said transfer angular sector in such a manner that said additional length, said envelope facing said length, and said two transfer transverse walls constitute said transfer chamber (TE, 8, 14, 16).
  • 6. A device according to claim 4, characterized by the fact that it includes an axial core (100) and a cylindrical envelope (102) substantially constituting said reference surface, said mixing and transfer chambers following one another circumferentially and longitudinally within the angular gap between said core and said envelope;
  • each of said mixing chambers comprising a plane one of said perforated walls (104, 110), extending radially and longitudinally and separating pairs of said feed and stirring compartments which are also delimited by two respective helical guide walls (106, 108; 108, 112) with one of the helical guide walls (108) being common to the other one of said mixing chambers;
  • one of said mixing chambers constituting one of said reversing chambers, with the two said helical guide walls (106, 108) of said chamber sloping in opposite directions, while the two said helical guide walls (108, 112) of the other one of said mixing chambers slope in the same direction; and
  • one of said transfer chambers including a transfer wall (104) extending radially and circumferentially in order to interconnect said two mixing chambers.
  • 7. A device according to claim 3, characterized by the fact that it comprises:
  • cylindrical envelope (200) substantially constituting said reference surface;
  • three longitudinally coextensive separating walls (PPQ, PQR, PRP) each extending radially from said axis towards said envelope and forming three of said mixing chambers each of which occupies an angular sector (SP, SQ, SR) about said axis, with each of said sectors having two longitudinal ends constituting its said inlet (PE) and outlet (PS);
  • three of said perforated walls (PP, PQ, PR) occupying respective ones of said three chambers, each of said walls extending along a direction which slopes relative to said longitudinal direction (LD) and said radial direction (DR), and which extends along said circumferential direction (DC) in such a manner as to separate said feed and stirring compartments (PPQ, PRP, PP, PE; PPQ, PEP, PP, PS) such that said first and second transverse directions are respectively said circumferential direction (DC) and said radial direction (DR), with the speeds of said jets including not only said component along said second transverse direction, but also including a longitudinal component, with none of said mixing chambers constituting any of said reversing chambers, and with said offset direction being circumferential; and
  • two offset transfer chambers at two respective ends of the assembly of said three mixing chambers, inside said envelope (200), and with each of said two transfer chambers comprising:
  • a transfer wall (TPQ) occupying two of said angular sectors (SP, SQ) at a distance beyond the extreme edge of said separating wall (PPQ) which separates said two sectors; and
  • two link walls (MRP, MQR) extending the other two of said separating walls (PQR, PRP) up to said transfer wall, thereby interconnecting all three of said mixing chambers in series.
  • 8. A device according to claim 7, characterized by the fact that said perforated walls are fractions of circular cones about said axis (A), with the half angles at the apex of each of said cones being the slope angles of said walls, with the slope angle of that one of said walls (PQ) occupying said angular sector (SQ) which is common to both of said transfer walls (TPQ, TQR) being opposite to the slope angle of the other two said perforated walls (PP, PR) such that the radial component of the speed of said jets always passes in the same direction through said three perforated walls.
  • 9. A static device for homogenizing a fluid flow, the device comprising:
  • an inlet (2) having an axis and a diameter for receiving an inlet flow of said fluid along said axis at an upstream end of said device;
  • an outlet having the same axis and the same diameter for restoring an outlet flow of said fluid along said axis from a downstream end of said device, said axis being an axis of the device and having a longitudinal direction which is perpendicular to transverse directions which are, in particular, radial directions and circumferential directions; and
  • mixing chambers connected between said inlet and said outlet and each comprising a feed compartment (TC, TA, TD, 6) and a stirring compartment which compartments are separated by a perforated wall (TA, PAC, 8, PAD), each of said mixing chambers being connected to receive streams (F1) of said flow in said feed compartment and to form a plurality of jets (F2) which are perpendicular to said wall and which penetrate into said stirring compartment in order to stir said fluid therein, said wall extending longitudinally and along a first one of said transverse directions (DC) in order to provide a large area in a radially limited space, such that said jets have speed components along a second one of said transverse directions (DR) perpendicular to the first transverse direction, said feed and stirring compartments being further delimited by inlet and outlet guide walls (TC, 6, TD; PAC, 8, PAD) leaving open an inlet (2) of said chamber in said feed compartment and an outlet of said chamber in said stirring compartment, said guide walls extending facing said perforated wall in such a manner as to confer to said flow a direction (LD) which is substantially parallel to said perforated wall in each of said compartments, with said streams curving on either side of said perforated walls;
  • said mixing chambers being offset transversely relative to one another along a transverse offset direction (DC);
  • transfer means (TE, 14, 8, 16) for connecting the outlet from a first of said mixing chambers (6, TC, PAC, 8, PAD, TD) to the inlet of a second of said mixing chambers (6, TD, PBD, 8, PBC, TC) so as to connect said two chambers in series while causing the same stream of said flow (F1, F2, F3, F4, F5, F6, F7) to flow through both of them in succession;
  • said inlet and outlet guide walls (TC, 6, TD; PAC, 8, PAD) confer a substantially longitudinal direction to said flow in each of said feed and stirring compartments (TC, TA, TD, 6; TA, PC, 8, PAD) of each mixing chamber, said walls including a main guide wall (6, 8) facing said perforated wall (TA, TB) and inclined relative to said perforated wall in such a manner as to extend away therefrom towards said inlet and said outlet of said mixing chamber, respectively;
  • said transfer means comprising at least one transfer chamber (TE, 14, 8, 16) extending along said offset direction (DC); and
  • a succession of an even number of reversing chambers on the path of each stream of said flow, each of said chambers reversing the longitudinal components of the average speed of the fraction of said flow which flows therealong, with at least one of said reversing chambers being constituted by said transfer chamber.
Priority Claims (1)
Number Date Country Kind
88 00033 Jan 1988 FRX
Parent Case Info

The present invention relates to homogenizing a fluid, e.g. a liquid flowing along a pipeline. The invention is particularly applicable when the liquid includes two immiscible phases. A device in accordance with the invention is intended, for example, for homogenizing a mixture of oil and water flowing along a horizontal transport pipeline in order to make it possible to measure the water content of this mixture accurately. Such measurements are normally performed on samples taken periodically and automatically from the pipeline, and in order to ensure that the measurements performed on the samples taken are indeed representative of the overall composition of a given fluid, it is necessary to ensure that the sampled fluid is itself homogenous. Unfortunately, the components of such a mixture have a natural tendency to separate from each other, at least when the speed of flow is low, e.g. less than 1 meter per second (m/x). It is therefore necessary to use a homogenizing device a little way upstream from the point where samples are taken. Homogenization may also be useful in the following situations: when a pipeline is transporting a multiphase fluid whose phases tend to separate out (e.g. because of gravity), and such separation gives rise to operating difficulties, or abnormal corrosion or wear in the pipeline itself; upstream from the connection point of a secondary pipeline which supplies a user with the transported fluid, this being for the purpose of ensuring that the user receives a product in which both phases are in the proper proportions; and whenever it is desirable to mix two liquid components in line for the purpose of manufacturing a product. The present invention relates to those situations in which homogenization is useful and where the energy used by the homogenizing device is taken from the fluid to be homogenized itself. As a result the fluid suffers headloss as it flows through the device. Such a device is termed "static" and it does not include any moving parts, thereby simplifying construction thereof. A static homogenizing device is described in patent document EP-A-0064137 (Alsthom) and in corresponding U.S. patent US-A-4 408 892. The device described in said document includes various dispositions which are common, at least to some extent, between said prior device and the device of the present invention, and these dispositions are set forth initially, as follows: The device comprises: an inlet having an axis and a diameter for receiving an inlet flow of said fluid along said axis at an upstream end of said device; an outlet having the same axis and the same diameter for restoring an outlet flow of said fluid along said axis from a downstream end of said device, said axis being an axis of the device and having a longitudinal direction which is perpendicular to transverse directions which are, in particular, radial directions and circumferential directions, said diameter being the diameter of a reference surface which is cylindrical and coaxial with said devices; and mixing chambers connected between said inlet and said outlet and each comprising a feed compartment and a stirring compartment, which compartments are separated by a perforated wall, each of said mixing chambers being connected to receive streams of said flow in said feed compartment and to form a plurality of jets which are perpendicular to said wall and which penetrate into said stirring compartment in order to stir said fluid therein, said wall extending longitudinally and along a first one of said transverse directions in order to provide a large area in a radially limited space, such that said jets have speed components along a second one of said transverse directions perpendicular to the first transverse direction, said feed and stirring compartments being further delimited by inlet and outlet guide walls leaving open an inlet of said chamber in said feed compartment and an outlet of said chamber in said stirring compartment, said guide walls extending facing said perforated wall in such a manner as to confer to said flow a direction which is substantially parallel to said perforated wall in each of said compartments, with said streams curving on either side of said perforated wall; said perforated walls being at least partially contained in said reference surface and being longitudinally coextensive in such a manner as to limit the longitudinal and radial size of the device; and said mixing chambers being offset transversely relative to one another along a transverse offset direction. In this prior device, and assuming its axis is horizontal, two feed compartments and two quasi-horizontal plane perforated walls (see FIGS. 2 and 6) feed an interposed stirring compartment which is separated off by transverse internal partitions. Within said compartment, said jets interpenetrate quasi-vertically, and curve sideways through a right angle. The liquid stream return to the direct longitudinal direction via a second right angle curve in the vicinity of the cylindrical outer envelope. The two perforated plates are disposed symmetrically on either side of a horizontal axial plane and they are thus longitudinally coextensive. Said partitioned-off mixing compartment is imprisoned therebetween. It may be assumed that together with the outer envelope they form two mixing chambers which are symmetrically disposed relative to the horizontal axial plane and in which the stirring compartments are situated on either side of said plane without a separating wall. As a result it appears that these two symmetrical chambers have two halves of the liquid flow running through them in parallel. The main purpose of this prior device is to obtain emulsification, i.e. to reduce the diameter of the droplets of the dispersed phase with the final diameter thereof being a function of the head loss through the apparatus. The homogenizing function occurs both inside the device and immediately downstream therefrom. However, this function is not always performed as efficiently and/or with as low a head loss as could be desired. Particular aims of the present invention are to obtain good homogenizing within a device which is simple and compact, and which imposes a very moderate head loss to the flow of fluid to be homogenized. The present invention provides a device which includes the common dispositions specified above. Compared with the above-described prior art device, the device of the invention is characterized by the fact that it includes transfer means for connecting the outlet from a first of said mixing chambers to the inlet of a second of said mixing chambers so as to connect said two chambers in series while causing the same stream of said flow to flow through both of them in succession. According to the present invention, it is also possible to adopt the following sometimes-preferred dispositions: said inlet and outlet guide walls confer a substantially longitudinal direction to said flow in each of said feed and stirring compartments of each mixing chamber, said walls including a main guide wall facing said perforated wall and inclined relative to said perforated wall in such a manner as to extend away therefrom towards said inlet and said outlet of said mixing chamber, respectively; said transfer means comprising at least one transfer chamber extending along said offset direction; and said device comprising a succession of an even number of reversing chambers on the path of each stream of said flow each of said chambers reversing the longitudinal components of the average speed of the fraction of said flow which flows therealong, with at least one of said reversing chambers being constituted by said transfer chamber; and each of said transfer chambers extends from a single one of said upstream and downstream ends of the set of said mixing chambers, connects two of said chambers directly, and constitutes a single one of said reversing chambers, thereby enabling the device to be embodied simply. An implementation of the present invention within the scope of the explanation given above is now described in greater detail by way of non-limiting example and with reference to the accompanying diagrammatic figures. When the same item appears in several figures it is designated therein by the same reference symbol. Three devices constituting three implementations of the invention are given by way of example. They include the above-mentioned sometimes-preferred dispositions. It should be understood that the items mentioned may be replaced by other items which provide the same technical functions.

US Referenced Citations (8)
Number Name Date Kind
2740616 Walden Apr 1956
3617305 Backx et al. Jan 1965
4043539 Gilmer et al. Aug 1977
4189243 Black Feb 1980
4386855 Neal, Jr. et al. Jun 1983
4408892 Combes et al. Oct 1983
4560284 Chen Dec 1985
4632568 Emele et al. Dec 1986
Foreign Referenced Citations (2)
Number Date Country
0064137 Oct 1982 EPX
1208294 Feb 1963 DEX