The invention relates to static memory devices and a method of operating the memory devices.
In more modern memories, the cell matrix 2 is divided into blocks 18, as illustrated in
The rows include cell rows 26 which include the memory cells and other rows which have a number of other functions, including multiplexer (MUX) rows 27 and strap rows 28. The local bit lines extend in the column direction from a strap row 28 to the next MUX row 27 which connects the local bit lines to the global bit lines. Both strap and MUX rows 27,28 are used also for properly terminating the bit lines and also for biasing the wells 22,24. The top row is a guard row 25 which terminates the matrix and the bottom row is a match row 29 which also terminates the matrix but which provides the interface to the periphery circuits.
A number of problems can occur in such structures. Weak cells can occur, in which the static noise margin is close to zero and in which therefore the cell state can flip in certain operating conditions. Cells can also have a poor write margin—a write margin close to zero means that the cell may fail to write. As the voltages used in memory circuits continue to decrease these failure types are more likely to occur.
A development of such conventional memory circuits is presented in US2005/0068824 which suggests the biasing of rows of cells separately. The substrates of individual transistors of the rows are biased differently for reading and writing. The way in which the n-wells and p-wells are arranged is not disclosed. It appears that the substrates of the individual transistors of each bit are separated to allow them to be separately biased and this will very significantly and undesirably increase the size of the memory device of US2005/0068824 compared with conventional devices.
According to the invention there is provided a memory device according to claim 1.
By using biasing based on groups of memory cell elements for one of the n-wells and p-wells overhead is significantly reduced compared with US2005/0068824. Biasing for the other of the n-wells and p-wells is done on a more local level, allowing the biasing to be fine tuned.
Further, the reduced capacitance that needs to be charged compared with the whole device allows biasing to occur much faster.
In another aspect, there is provided a method of operation of a memory device according to claim 14.
The method may further include driving the periphery with a periphery drive voltage (VDDP) separately from the memory drive voltage.
The method may include forward biasing the p-well and reverse biassing the n-well.
For a better understanding of the invention, embodiments will now be described, purely by way of example, with reference to the accompanying drawings, in which:
The drawings are schematic and not to scale. Like or similar components have been given the same reference numerals in different drawings.
The inventors have carried out investigations to determine suitable bias conditions for the transistors of memory cells used, and these will be discussed first. In particular, the inventors focussed on the static noise margin for reading and the write margin for writing. The results with back biasing were compared with a case with VDD=1.2V and no back biasing. The experiments were carried out in particular for a 65 nm process.
Firstly,
If the power voltage VDD is reduced to 0.9V, the static noise margin reduces.
At a power voltage VDD=0.9V, a similar static noise margin is obtained as in the unbiased VDD=1.2 V case, by using a p-well bias of −1.2V and an n-well bias of 0.6V. Thus, the same static noise margin can be obtained with a 0.9V power voltage and back biasing as with a 1.2V power supply.
Moreover, the leakage current is also reduced.
The static noise margin is relevant to reading. For writing, the write margin is more relevant.
If the power supply voltage is reduced to VDD=0.9V, without biasing, the write margin reduces to 225 mV and this may well be too low for reliable writing.
By biasing the n-well to 2.4V and the p-well to 0.6V, a better write margin is obtained even with a lower power supply voltage of VDD=0.9V. Even without the p-well bias, but with an n-well bias of 2.4V and the lower power supply voltage of VDD=0.9V, a write margin better than 0.36 V is achievable. A write margin of 308 mV is also achieved at the lower power supply voltage of VDD=0.9V with a p-well bias of 0.6V, even without the n-well bias, the n-well accordingly being at 0.9V.
Having identified suitable bias conditions, it is then necessary to apply bias to the memory cells in a standard array. Unfortunately, the n-wells and p-wells 22, 24 extending in conventional memory cell architectures do not permit this type biasing by row, since the n-wells 22 and p-wells 24 are connected together in the column direction (see
In contrast, the arrangement of US2005/0068824 requires providing three separately controllable bias voltages to different pairs of transistors in each memory cell, which is very difficult to provide for. Nor does US2005/0068824 provide any details of suitable bias voltages.
Referring to
Each row includes a number of words 46, each in turn made up of a number of bit cells 40. The bit cells can, where desired be grouped together, for example into so-called quadro cells having four bits.
A block select unit 42 is provided in each word 46. This unit selects the required bits. It connects, where required, local word lines used within each word 46 to global wordlines shared by all words in a row.
Split cells 44 are used at the end of the words. It will be noted that in the embodiment the n-wells do not extend through the split cells 44, though the p-wells do.
Although not shown, guard cells are provided at the ends of each row.
A positive power rail (VDD) 50 and a negative power rail 52 pass in the column direction over the block select unit.
In this embodiment, the biasing of the cells is done at the level of the word in the block select unit 42, which itself acts as biasing means. Higher positive voltage rail 54, lower positive voltage rail 56 and negative voltage rail 58 pass across the block select unit, in the column direction. These are used to supply 2.4V, 0.6V and −1.2 V respectively. As will be appreciated, similar rails pass across the other words in the same row.
The block select unit 42 connects the n-well 22 and p-well 24 to the rails 54, 56, 58 depending on a read-enable signal applied on read enable signal line 60 and a write enable signal applied on write enable line 62. This may be done using the circuits shown in
The advantage of the arrangement is that since the selection is done at word level, the capacitance of the well is small and the amount of charge and hence current that needs to be supplied or discharged through the rails 54, 56, 58 is small. This makes it relatively straightforward to deliver the back biasing.
In the embodiment, the block select unit in fact biases a pair of wells, on two adjacent rows, so that the group of cells for which the back biasing is selected is a pair of words, adjacent to one another in the column direction.
The tested embodiments use a VDD of 0.9V (or 1.2V) and a 65 nm process. However, the underlying concept works with different feature sizes and power voltages. Further, the specific bias voltages used of +0.6V, −1.2V and +2.4V can also be varied.
In more general terms, let the power voltage be VDD with reference to a ground voltage GND. Then, a suitable back bias voltage for the p-well is (GND−aVDD) where a is in the range 0<a≦2, instead of −1.2V in the specific example. A suitable forward bias voltage for the p-well is (GND+0.6V b) where 0<b≦1, instead of +0.6V in the specific example.
For the n-well, a suitable back bias voltage is (VDD+c VDD) where c is in the range 0<c≦2, instead of +2.4V in the specific example. A suitable forward bias voltage for the n-well is (VDD−0.6V.d) where 0<d≦1, instead of +0.6V in the specific example.
Note the constraint is that the forward bias voltage should normally not be more than 0.6V compared with ground for the p-well or VDD for the n-well to avoid dropping more than one diode drop. Leakage increases exponentially for forward bias voltages above this.
Further, note that although in principle there are four voltages it is possible to select d and b so that the forward bias voltage for the p-well is the same as the forward bias voltage to the n-well, for example the choice of 0.6V in the present case, and this reduces the number of separate voltage levels required.
The bias values chosen make it possible to operate the memory effectively at lower voltages.
Further,
Blocks 66, 68 that are not being used can then be operated at a lower power supply by reducing the voltage supplied by the respective matrix power supply 74.
Note from the results presented above with reference to
Further, by splitting the matrix and periphery power supplies the periphery can be operated at the circuit logic voltage and the matrix at the optimum voltage for operating the memory, which may be different.
In an alternative approach, variable back biasing is used for the periphery also—in this case, the periphery power supply 76 includes multiple lines.
In an alternative approach, a single matrix power supply 74 supplies power for all blocks in common.
By providing the specific layout set out above, such biasing voltages can be applied to individual groups of bits, i.e. a pair of words in this embodiment, thereby ensuring good biasing for reading and writing. There is no need to bias the whole block which would be both slower in view of the higher capacitance and unnecessary.
In a modification of this approach, a so-called triple well technology is used
In a modification of this approach, both the n-well and the p-well are broken at the split cells; this is achievable using triple well technology. This allows individual biasing of both the n-wells and p-wells of a word (or pair of words).
A still further arrangement using triple wells uses the outside well for the whole of each block of memory 66,68 (
An alternative embodiment of the invention is illustrated in
In this case, both the n-wells are p-wells are biased in groups corresponding to one or two rows of the matrix. No attempt is made to individually bias individual transistors.
Note that the invention can be used with either local n-well or local p-well biasing, and the n-wells and p-wells can be exchanged in the above embodiments with suitable layout changes in the individual cells.
In particular, the use of triple-well technology may allow p-wells to be biased locally and the n-wells be connected together. More conventional technology may use a p-type substrate and individual n-wells, hence with global biasing of the p-wells and local biasing of the n-wells.
A further development is illustrated in
The n-well bias line is simply connected to the n-well and hence to the whole device and the p-well bias line is connected individually to the individual p-wells 24. In this way, layout space is saved over an arrangement with individual n-wells and p-wells since it is not necessary to route separate supplies to both the n-wells and the p-wells for biasing. Instead, only the p-wells need separate supplies.
The n-well bias line 90 thus constitutes n-well bias means for the device as a whole and the p-well bias line 92 p-well bias means controls the bias at the level of the individual blocks 66,68. Other possible means of biasing include local power supplies, local, global or common power supply rails with integral switches, or any other means known to those skilled in the art.
Depending on whether n-well biasing or p-well biasing, or both is required, one or both of the circuits of
A word select signal on word select line 94 combines with a read enable signal on read enable signal line 60 or a write enable signal on write enable signal line 62. The values of a, b, c and d are as above.
The circuits of
Further, note that the circuits of
A further point is that the word-select signal used may be slightly in advance of (that is to say earlier) than the word select signal used for reading or writing to enable the wells to be charged before reading and writing takes place.
In use, the circuit may be used for error correction.
Conventionally, error correction for memory circuits has been implemented in the form of additional bits, especially parity bits, which are used for correcting incorrect data stored in an array.
The semiconductor memory device according to the embodiments can alternatively (or additionally) use back-bias techniques for error correction.
Above, back-biasing is described to improve noise margins under process variation. However, memories can still operate incorrectly at low voltages.
Experiments have been carried out on a multi-voltage domain body biased 512 kB SRAM in 65 nm CMOS. The circuit is as illustrated in
Experiments were performed sweeping the supply voltages and back biasing conditions. Results are presented in the range of bias voltage in the memory domains from 0.7V to 0.9V since above 0.9 V there were no bit failures. Separate biasing was applied to the n-wells and p-wells.
The experiments used two sequential reads when reading each bit to ensure that the bit did not flip during reading.
Increasing errors occur with lower supply voltage, as expected. Severe forward biasing of the n-well serves to correct errors. Reverse biasing the p-wells beyond −0.4V lowers the read current so far that the periphery sense amplifier no longer identifies the state of the bit.
Write operations were also tested as illustrated in
Further experiments showed first that in this design large differences between VDDM and VDDP are not helpful—a 0.3V difference gives poor results. Forward biasing of the p-well is generally unhelpful. With the approach with supply voltage in periphery and memory similar, reverse biasing the n-well assists. A small excess of VDDP over VDDM allows easier cell flipping.
Experiments were then carried out with an industrial 25N March test algorithm as illustrated in
Thus, adjusting the bias voltages has the potential for eliminating a large number of errors, especially at low voltages.
Similar experiments are illustrated in
Thus, by applying suitable bias voltages, the errors can be reduced.
Thus, the inventors have realised that by back-biasing it is possible to reduce or correct errors that would otherwise be present. Instead of simply using back-biasing to remove effects of process variation, the present invention uses back-biasing to allow memories to operate correctly even with successful fabrication at low voltage operation.
In this way, small cells can be used with no need to use larger cells than the minimum to enhance noise margins. This is particularly useful at low supply voltages.
The approach described also reduces the requirement for parity bits to correct errors; the number of parity bits can be reduced or even eliminated.
The extent of improvement achieved—reduction of errors from 16000 to 0—is surprising and demonstrates the utility of the technique.
The embodiments described are purely schematic, and those skilled in the art will realise that many changes may be made. In particular, different voltages may be used where the properties of the devices used require them.
Further, the n-type and p-type regions may be exchanged in any embodiment, so any n-type device becomes a p-type device and vice versa.
Note that although the back biasing is described above with reference to
Number | Date | Country | Kind |
---|---|---|---|
07111407 | Jun 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2008/052544 | 6/25/2008 | WO | 00 | 12/28/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/004535 | 1/8/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5280454 | Tanaka et al. | Jan 1994 | A |
5818761 | Onakado et al. | Oct 1998 | A |
7733700 | Wang | Jun 2010 | B2 |
20010038552 | Ishimaru | Nov 2001 | A1 |
20030076705 | Yamaoka et al. | Apr 2003 | A1 |
20050068824 | Houmura et al. | Mar 2005 | A1 |
20060023520 | Mori et al. | Feb 2006 | A1 |
20060133161 | Jacquet et al. | Jun 2006 | A1 |
20070076467 | Yamaoka et al. | Apr 2007 | A1 |
20070091682 | Kang et al. | Apr 2007 | A1 |
20110110160 | Wu et al. | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20100202192 A1 | Aug 2010 | US |