The present invention relates to components for external orthopedic fixation and, more particularly, to struts for external orthopedic fixation.
External fixation, as an alternative to internal fixation, is a surgical approach to stabilize bone and soft tissues at a distance from the injury that uses fixation constructs assembled from various fixation components. External fixation may be done for various bones and/or areas of the body such as, but not limited to, the arm, spine, leg, ankle, and foot. It provides unobstructed access to the relevant skeletal and soft tissue structures for their assessment and intervention(s) needed to restore bony continuity and a functional soft tissue cover.
In this kind of surgical approach, holes are drilled into uninjured areas of bones around the desired orthopedic problem/area and special bolts or wires are screwed into the holes. Outside the body, one or more fixation rings surround the desired orthopedic area, the fixation rings connected to one another by one or more struts in order to make a rigid support. The struts adjust in order to configure the fixation construct into a desired anatomical position. Depending on the purpose and/or other considerations of the fixation construct, various types of struts may used in the fixation construct. One type of fixation strut is known as a static fixation strut.
Without being limiting, it is thus an object of the present invention to provide a static fixation strut for external fixation constructs and the external fixation constructs using the static fixation strut. This and other non-limiting objects are satisfied by the present invention.
A static fixation strut for external orthopedic fixation constructs is characterized by a ball joint component, a piston component axially adjustably coupled to the ball joint component, and a swivel component axially coupled to the piston component opposite the ball joint component, the ball joint component for attachment to a first fixation construct constituent (e.g. ring), the swivel component for attachment to a second fixation construct constituent (e.g. ring). The ball joint component provides a poly-axial (universal) adjustable connection to the first fixation construct constituent, the piston component provides adjustable axial movement (i.e. length) between the ball joint component and the swivel component, and the swivel component provides a rotationally adjustable connection to the second fixation construct constituent.
The ball joint is characterized by a first bolt having a spherical head forming a portion of the ball (universal) joint and a threaded shaft extending from the spherical head for threaded connection to a fixation construct constituent, a spherical housing for receipt of the spherical head of the first bolt, a second bolt having a head with a semi-spherical cavity forming another portion of the ball joint and a threaded shaft for threaded connection to another fixation construct constituent.
The piston component is characterized by a grommet with an internally threaded bore for threaded connection to the threaded shaft of the second bolt for axial (length) adjustment between the ball joint and the grommet (piston component), a first cylinder (piston component constituent) connected to the grommet and forming a portion of an axially (length) adjustable piston, a second cylinder (piston component constituent) axially movably disposed over the first cylinder and forming another portion of the axially adjustable piston, and a C-clip that allows the first and second cylinders to adjustably translate relative to each other to increase or decrease axial length of the piston component and thus the overall strut. Once this C-Clip is tightened the static fixation strut is then axially locked. The second cylinder also includes tangs on one end for connection to the swivel component forming a portion of a swivel joint between the second cylinder and the swivel component.
The swivel component is characterized by third bolt having a head adapted for reception by the tangs of the second cylinder of the piston component forming another portion of the swivel joint, a swivel pin pivotally connecting the head to the tangs of the second cylinder, a shaft extending from the head and having a non-threaded section proximate the head and a threaded section distal the head, a shoe configured for receipt by the threaded section of the shaft of the third bolt, and cutouts on the non-threaded section for coupling the shoe to the third bolt with a coupling pin.
Further aspects of the present invention will become apparent from consideration of the drawings and the following description of a form of the invention. A person skilled in the art will realize that other forms of the invention are possible and that the details of the invention can be modified in a number of respects without departing from the inventive concept. The following drawings and description are to be regarded as illustrative in nature and not restrictive.
The features of the invention will be better understood by reference to the accompanying drawings which illustrate a form of the present invention, wherein:
Referring to
The external fixation strut 20 has a ball joint component 21, a piston component 22, and a swivel component 88. The piston component 22 provides axial length adjustment of the fixation strut. The ball joint component 21 is connected to one axial end of the piston component 22 to be axially (length) adjustable with respect to the piston component 22 and is configured to provide multi or poly axial (universal) movement/motion between the ball joint component 21 and a fixation construct constituent (e.g. ring 11a). The swivel component 88 is connected at the axial end of the piston component 22 opposite the ball joint component 21 and is configured to provide pivotal movement/motion between the swivel component 88 and the piston component 22 to provide pivotal movement/motion between another fixation construct constituent (e.g. ring 11b) and the strut 20.
As best seen in
The head 30 is defined by generally spherical hood 31 having a neck 32 at one side and a notch 33 at another side. A bore 34 extends through the spherical hood 31 from the notch 33 to the neck 32. The neck 32 has internal threads 35. The inside 41 of the hood 31 defines at least a partial seat for the ball head 37 of the first bolt.
The ball joint component 21 further includes the first bolt 36 having a threaded shaft 39 with a neck 38 terminating in the ball head 37. A nut 40 is provided between the threaded shaft 39 and the neck 38. The first bolt 36 provides the threaded shaft 39 for threaded connection to a fixation component/constituent, and the ball head 37 as part of the ball joint. The ball joint moreover includes the second bolt 42 having a threaded shaft 43, a head 44 on the threaded shaft 43 and external threads 45 on the head 44. The external threads 45 mate with the internal threads 35 of the hood 31. The head 44 also includes the semi-spherical cavity 46 providing at least a part of the ball joint and adapted to extend about the head 37 of the first bolt 36.
The piston component 22 has a collet 68 with a base 69 and a configured end 70. The collet 68 includes a threaded bore 71 that is configured to threadedly join with the threaded shaft 43 of the ball joint component 21 to provide axial, adjustable connection to the ball joint component 21. The piston component 22 has a first piston cylinder 50 and a second piston cylinder 76. The first cylinder 50 is characterized by a cylindrical body 51 having a longitudinal bore 56 extending from one axial end of the cylinder body 51 into its interior. The bore 56 has a larger diameter entry 57 and a small diameter channel 58 that is sized to receive the threaded shaft 43 of the ball joint component 21. The larger diameter entry 57 allows receipt of the configured end 70 of the collet 68 to join the collet 68 to the inner cylinder 50. The inner cylinder 50 includes openings 59 to receive a pin 61. The collet 68 is attached to the cylinder 50 by the pin 61 in the openings 59 and extending about the configured end 70 (see e.g.
An opening 60 is provided in the sidewall of the cylinder body 51 that provides a window into the interior 58. The end 52 of the cylindrical body 51 opposite the bore opening 56 has a bore 53 that extends through the end 52 transverse to the longitudinal bore 56. The transverse bore 53 has a larger diameter opening 54 on one side of the cylinder sidewall and a smaller diameter opening 55 one an opposite cylinder sidewall. The transverse bore 53 is sized to receive a bolt 62 (see e.g.
The second cylinder 76 is characterized by a cylindrical body 77 having a longitudinal bore 78 extending from one axial end 80 of the cylinder body 77 into its interior. The longitudinal bore 78 is sized so the second or outer cylinder or sleeve 76 fits over and around the first or inner cylinder 50 such that the longitudinal axis of the outer cylinder 76 is co-axial with the longitudinal axis of the inner cylinder 50. The first and second cylinders 50, 76 are axially movable with respect to one another, providing axial length adjustment for the piston component 22. A bore 79 extends transverse to the longitudinal bore 78 and has a very large opening such that the bore 79 may be considered a window to allow viewing of the first cylinder 50 relative to the second cylinder 76 and of the threaded shaft 43 of the second bolt 44 of the ball joint component 21. This provides a gauge of the length of the strut 20.
The end 81 has a swivel joint portion defined by a first tang 82 extending axially outwardly from the end 81 and a second tang 84 extending axially outwardly from the end 81 and a pocket 86 formed between the first and second tangs 82, 84 (see e.g.
The swivel joint component 88 includes a body 89 and shoe 90. The body 89 is fashioned as a bolt having a threaded shaft 93 connected to a swivel joint portion 91 formed as a head via a nut portion 94. As seen in
It should be appreciated that the ball joint component 21 is axially adjustable with respect to the piston component 22, that the piston component 22 is axially adjustable with respect to itself, and that the swivel component 88 is pivotally adjustable with respect to the piston component 22 and to a fixation construct constituent. The ball joint component 21 adjusts universally with respect to the piston component 22 and to a fixation construct constituent.
It should furthermore be appreciated that dimensions of the components, structures, and/or features of the present static fixation strut may be altered as desired within the scope of the present disclosure.
This U.S. non-provisional patent application claims the benefit of and/or priority under 35 U.S.C. § 119(e) to U.S. provisional patent application Ser. No. 62/579,402 filed Oct. 31, 2017 titled “Static External Fixator Strut and Fixation Construct,” the entire contents of which is specifically incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4308863 | Fischer | Jan 1982 | A |
6030386 | Taylor | Feb 2000 | A |
20020143338 | Orbay | Oct 2002 | A1 |
20100312243 | Ross | Dec 2010 | A1 |
20100331840 | Ross | Dec 2010 | A1 |
20110208187 | Wong | Aug 2011 | A1 |
20120041439 | Singh | Feb 2012 | A1 |
20130123784 | Ross et al. | May 2013 | A1 |
20130204248 | Singh | Aug 2013 | A1 |
20150313641 | Ross et al. | Nov 2015 | A1 |
20170020576 | Siccardi | Jan 2017 | A1 |
20170303966 | Edelhauser | Oct 2017 | A1 |
20170354439 | Mannanal | Dec 2017 | A1 |
20180368887 | Lauf | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
2009102904 | Aug 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20190125407 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62579402 | Oct 2017 | US |