The present invention relates to a station control system for a driverless vehicle and, more particularly, to a system for controlling functional operations to be performed at one or more stations along the path of a driverless vehicle.
There are many known systems for guiding a driverless vehicle, including inertial guidance systems, active or passive wire guidance systems, optical guidance systems, and magnetic guidance systems. Absolute position indicators are commonly disposed along the vehicle guide path to provide periodic absolute position updates to the vehicle guidance system thereby increasing guidance accuracy and ensuring proper positioning of the vehicle. A variety of position indicators are commonly used, including lasers, optics, and floor-disposed position indicators. The floor-disposed position indicators provide the vehicle guidance system with the position of the vehicle in an absolute coordinate system. Such position indicators and the corresponding readers are expensive, require labor-intensive installation, and detailed surveying of their positions once installed. Moreover, absolute position indicators such as those described above are intended to assist in the guidance of the vehicle through absolute positioning updates which is in contrast to the functionality and purpose of the present invention.
In the past, driverless vehicle guidance systems have also used position indicators, such as an array of magnets, to identify when a vehicle is at a predetermined marked location or station along the guide path. In complex guidance systems, a plurality of magnets have been used in unique combinations to identify many different stations. However, the use of magnets as a means for marking predetermined stations along the guide path has several shortcomings. For example, the number of polarity combinations available from such magnets do not provide the statistical variation in unique and arbitrary identifiers that is desirable in complex driverless vehicle applications. Accordingly, there is a desire to provide a simple, flexible, and inexpensive station control system which overcome the shortcomings of the prior art.
The present invention, referred to as a station control system, includes a reader mounted to the vehicle, tags disposed in readable proximity to the vehicle guide path, and a correlation table that associates each unique tag with a functional operation. When the station control system identifies that the vehicle has arrived at an unique tag or station, a functional operation instruction is provided from the correlation table, preferably stored in the on-board vehicle controller. In this manner, the system controls the operation(s) which the driverless vehicle performs at each station along the vehicle guide path.
The present invention provides many advantages and benefits. The station control system is relatively inexpensive and, thus, is an appropriate addition to lower cost driverless vehicles or carts. The station control system is flexible allowing, in a simple and low cost manner, for the creation of a correlation table associating the tags with corresponding functions as well as the addition, deletion, and/or replacement of a new station tag(s) and/or the functional operation(s) to be performed at a specific station(s).
Further scope of applicability of the present invention will become apparent from the following detailed description, claims, and drawings. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
The present invention will become more fully understood from the detailed description given here below, the appended claims, and the accompanying drawings in which:
The station control system 10 of the present invention includes a reader 16 mounted to the driverless vehicle 12 and station tags 18 positioned in readable proximity to the guide path 14. The tags 18 are positioned at locations along the guide path 14 wherein the vehicle 12 is to perform a predetermined function. For example, the tags 18 may be located at positions where the vehicle 12 is to stop, operate an on-board conveyor, reset a release command, switch or change guidance modes, or perform any of a number of other functions commonly performed by driverless vehicles. The vehicle may perform the functions while stationary or moving. The reader 16 is selectively positioned on the driverless vehicle 12 so as to “read” station tags 18 disposed near or in proximity to the vehicle guide path 14. The station tags 18 are preferably attached to the floor 20 but may be disposed in other readable areas such as along a wall, conveyor 22, or other structure proximate the guide path. The station tags 18 may be attached with chemical mounting means (e.g., adhesives, epoxies, and the like) or mechanical mounting means (e.g. screws, bolts, and the like). The attachment mechanism preferably permits the tags 18, once worn, to be removed and replaced with new tags such as in the manner described below. The low cost of the tags 18 as well as the ease of replacement and updating of the correlation table provides numerous advantages over current systems.
The station control system 10 of the present invention is, in general, operationally separate from the guidance system of the vehicle 12, particularly in the sense that the control system 10 does not provide absolute positioning updates that are used by the guidance system to control vehicle movement relative to the guide path 14. Rather, the control system 10 determines from the unique or arbitrary tag identifier that the vehicle 12 is at a predetermined station or location and informs the vehicle 12 of the appropriate function to perform at the designated station. As a result of the limited information needed from the tags 18 and the use of the correlation table, the invention permits the use of a variety of low cost readers and identification tags for indicating when a vehicle 12 has reached a predetermined location or station.
In the illustrated embodiment of the present invention, the reader 16 and station tags 18 form a passive low-frequency ‘magnetically coupled’ RFID (Radio Frequency IDentification) subsystem using radio frequency communication to automatically identify operation stations near the path 14 along which the driverless vehicle 12 is guided. The station tags 18 may include a transponder and a tuned antenna-capacitor circuit for transmitting and receiving radio frequency signals respectively. The station tags 18 preferably do not require a power source such as a battery. Rather, the station tags 18 may be powered by a RF field generated by the reader 16. Upon being ‘powered-up’, a station tag will continuously transmit, by damping the incoming RF power field, a unique packet of encoded information. As noted, this “unique packet of information” is preferably simply a unique and arbitrary tag identifier that is associated to one or more functions in the correlation table. The encoded information is demodulated and decoded by an microcontroller inside the reader 16.
The above-described RFID reader 16 has three main functions: energizing, demodulating, and decoding. The reader 16 includes a tuned antenna-capacitor circuit which emits a low-frequency radio wave field. This low-frequency radio wave field is used to ‘power-up’ the station tags. The reader 16 does not require a line of sight to “read” a station tag 18. Thus, tags 18 which are dirt-covered, hidden, submerged and/or embedded can still be ‘read’ by the reader 16. Since the reader 16 does not require contact or line of sight, the system 10 provides flexibility in positioning the tags with respect to the path of the driverless vehicle. Notwithstanding the above description of the structure and function of the RFID reader 16, those skilled in the art will appreciate that a variety of different reader 16 capabilities may be used without departing from the scope of the invention defined by the appended claims.
While a variety of readers and tags are available in the art and may be used, readers and station tags distributed by INTERSOFT, having a place of business in Tullahoma, Tenn. are suitable for use with the present invention. The reader may be a long range RFID reader/decoder for passive RFID tags, such as INTERSOFT part number WM-RO-MR 8 square tag reader/decoder. Other readers may be used with the present invention. When selecting an appropriate reader, those skilled in the art will appreciate that the reader preferably has a sufficient reading window to permit the identification of tags within the guidance accuracy of the vehicle. Further, the antenna size of the reader should be large enough to provide the reader with sufficient time to read the tag as the vehicle passes over or in proximity to each tag. Thus, the size of the reader antenna should be selected based upon the speed and guidance accuracy of the vehicle as well as the read time for each tag, approximately sixteen milliseconds in the described embodiment. Preferably, the station tags are Passive Read-only RFID Tags, such as INTERSOFT part number EPD20RO. Notwithstanding the above-described transponder devices for use as station tags, those skilled in the art will appreciate that a variety of other tags may be used without departing from the scope of the present invention. For example, devices as simple as tags with bar codes and an appropriate bar code reader attached to the vehicle may be used to identify when the vehicle has reached a predetermined location or station.
Within the present invention, the station tags 18 are associated with functional operations through the use of a correlation table 24. A graphic representation of the correlation table 24 is illustrated in
The correlation table 24 is preferably created and maintained off-board each vehicle on a host system 26 but may also be created or manufactured through a configuration tool post 30 on a vehicle (
After the correlation table 24 has been created and/or updated, such as in the manner described in greater detail below, the host system 26 preferably downloads the correlation table 24 to each vehicle 12. The table is then stored in a memory device of the vehicle controller 28 so that the controller may look-up the function associated with any specific tag 18 as needed. Alternatively, the correlation table 24 may be maintained in the host system 26 whereupon the vehicle 12 transmits the tag identifier information received by the reader 16 to the host system 26. The host system 26 then identifies the function corresponding to or associated with a specific tag 18 and communicates the function to the vehicle 12 for performance. Downloading of the correlation table 24 to each vehicle is preferred in order to reduce the frequency of communication between the host system and the vehicles.
In operation, the vehicle 12 moves along the guide path 14 under the guidance of a conventional vehicle guidance system. When the vehicle is in readable proximity to a station tag 18, the reader 16 receives tag identifier information from the tag. The vehicle controller 28 then causes a search of the correlation table, either by directly searching the table if on board the vehicle or communicating the tag identifier to the host system if the table is off board, and retrieves any function commands associated with the tag identifier.
It is noted that the specific form of the correlation table may vary. For example, while the function fields illustrated in the correlation table of
By way of further illustration, a representative set of functions associated with a tag identifier 04032183 is shown in the following correlation table entry.
This correlation table entry contains one arrival list, three destination lists, and two release lists. In this example, if a vehicle having a Destination Value of 10 reads the 04032183 tag, the vehicle will:
With the above in mind, it should be appreciated that the tags 18 of the present invention provide path markers of entirely arbitrary message content that are unique relative to one another. Each tag is different in the type of message content, that is, the tag identifier read by the reader. While each tag has a unique and arbitrary message content, the tags share common characteristics to permit reading by the same device. The message or identifier of each tag is arbitrary in the sense that it does not depend upon the overall system, the position of the tag once installed, any tag specific coding, or other variables. The identification information provided by the tag may be a decodable bar code label or preprogrammed binary number having a wide statistical variation so as to ensure that no two tags have the same identifier. This unique and arbitrary identifier or message content for each tag is then associated with a predetermined function in the correlation table to provide the benefits discussed herein. The preprogrammed unique tags, each with an entirely arbitrary message content, are inexpensive relative to other position indicators used in the art yet permit easy system configuration by a customer or installer as well as facilitating manual or automatic update of the correlation table upon replacement of a tag.
When installing the control system of the present invention, the vehicle is preferably moved along its guidance path after identification tags 18 have been placed in proximity to the guide path at desired locations. At this time, the correlation table or database has yet to be created. During this first operating mode (initial configuration), the reader identifies tags in proximity to the moving vehicle and responds with the arbitrary tag identifier message. The system then determines that no function has been associated with the tag identifier in the correlation table. The host system, or each vehicle as described below, includes a configuration tool to permit association of a function with the tag identifier. This input may be performed in a variety of manners, preferably through a Window's based pull down menu by the configurator. Various functions, as noted above, may be input including one or more task functions, identification of a zone for traffic control, and conditional functions. It should be appreciated that the creation of the correlation table is preferably done visually by a human operator during the initial configuration mode. Once the correlation table has been configured for the first identified tag, the vehicle is traversed to index with the next tag and the aforementioned process is repeated until the vehicle has been moved through the system to create the fully functional correlation table. As a result, each tag identifier may be associated with its zone or functional operation.
The present invention, including the simplicity of the tags, reader, and use of the correlation table, also permits updating of the correlation table during a normal operating, running, or maintenance mode. For example, in the event a tag is worn or otherwise unreadable, the tag may be removed and replaced with a new preprogrammed unique tag having a different and entirely arbitrary message content, e.g., identification information. When a vehicle traversing the guide path reads the identifier, the identifier will not be included in the correlation table. The vehicle then stops, reports the absence of the identifier from the table, and awaits instructions. The new instructions may be provided either manually or automatically. For example, in the automatic tag update feature of the present invention, the host system 26 can automatically update the tag identifier and location information in the correlation table 24 when a station tag 18 is replaced. Upon receipt of new tag information, the host system 26 can determine the last tag for which the vehicle successfully read the identification information and received an associated function from the correlation table, determine that the new tag is a replacement tag, and substitute the arbitrary message content of the new tag for the old tag and associate this identifier with the existing function command. The updated correlation table may then be downloaded to each vehicle or the new functional command reported to each vehicle.
It should be appreciated that the automatic update feature may be performed automatically, either through the host system or by individual vehicles, or may prompt the customer to verify that the determined update is appropriate. Thus, this feature automatically updates the correlation table 24 when (1) a station tag 18 is added or (2) a worn or damaged station tag 18 is replaced.
The configuration tool permitting the customer to create and maintain the correlation table is described above as being associated with the host system. This association is particularly appropriate if traffic control of the vehicles within the system is desired. If central control is not a concern, the host system may be eliminated. In such instance, the vehicle will preferably have a plug-in port to accommodate the configuration tool for initial system set-up and changes. Upon creating the correlation table in the manner described above, the initial correlation table is downloaded to each vehicle directly from the configuration tool.
With the above in mind, it should be appreciated that the present invention uses preprogrammed unique tags having entirely arbitrary message content to provide a station control system for a driverless vehicle. The preprogrammed tags offer customer simplicity in creation of the correlation table, such as through the described configuration tool. Thus, the customer can easily and efficiently install and configure the system without detailed knowledge of tag programming. The configuration tool permits the creation and updating of the correlation table and modification of the traffic control or task functional performance through Window's based applications requiring only pointing and clicking during customization. Writing of information to tags to indicate functions to be performed is not required. Moreover, the system provides virtually an infinite number of unique and arbitrary tag identifiers that facilitates the use of the system in complex driverless vehicle applications. For example, a supply of preprogrammed tags may be shipped to the customer with the vehicle. The customer may then select and install tags at random as each tag has a unique and arbitrary identifier that can be later associated with its location and/or function(s) in the correlation table.
The foregoing discussion discloses and describes an exemplary embodiment of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4168760 | Paul, Jr. et al. | Sep 1979 | A |
4361300 | Rush | Nov 1982 | A |
4530056 | MacKinnon et al. | Jul 1985 | A |
4630216 | Tyler et al. | Dec 1986 | A |
4716530 | Ogawa et al. | Dec 1987 | A |
4780817 | Lofgren | Oct 1988 | A |
4802096 | Hainsworth et al. | Jan 1989 | A |
4847773 | van Helsdingen et al. | Jul 1989 | A |
4956777 | Cearley et al. | Sep 1990 | A |
5216605 | Yardley et al. | Jun 1993 | A |
5219036 | Schwager et al. | Jun 1993 | A |
5267173 | Tanizawa et al. | Nov 1993 | A |
5280431 | Summerville et al. | Jan 1994 | A |
5305217 | Nakamura et al. | Apr 1994 | A |
5329449 | Tanizawa et al. | Jul 1994 | A |
5367456 | Summerville et al. | Nov 1994 | A |
5928294 | Zelinkovsky | Jul 1999 | A |
6049745 | Douglas et al. | Apr 2000 | A |
6061614 | Carrender et al. | May 2000 | A |
6092010 | Alofs et al. | Jul 2000 | A |
6122573 | Higashi et al. | Sep 2000 | A |
6272406 | Alofs et al. | Aug 2001 | B2 |
6377888 | Olch | Apr 2002 | B1 |
6507777 | Pinlam et al. | Jan 2003 | B1 |
20010001843 | Alofs et al. | May 2001 | A1 |
Number | Date | Country |
---|---|---|
4-160413 | Jun 1992 | JP |
WO 9209941 | Jun 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20030234325 A1 | Dec 2003 | US |