The present disclosure relates to automatic positioning systems and methods for marine vessels.
U.S. Pat. No. 6,273,771, which is hereby incorporated by reference herein, discloses a control system for a marine vessel that incorporates a marine propulsion system that can be attached to a marine vessel and connected in signal communication with a serial communication bus and a controller. A plurality of input devices and output devices are also connected in signal communication with the communication bus and a bus access manager, such as a CAN Kingdom network, is connected in signal communication with the controller to regulate the incorporation of additional devices to the plurality of devices in signal communication with the bus whereby the controller is connected in signal communication with each of the plurality of devices on the communication bus. The input and output devices can each transmit messages to the serial communication bus for receipt by other devices.
U.S. Pat. No. 7,305,928, which is hereby incorporated by reference herein, discloses a vessel positioning system that maneuvers a marine vessel in such a way that the vessel maintains its global position and heading in accordance with a desired position and heading selected by the operator of the marine vessel. When used in conjunction with a joystick, the operator of the marine vessel can place the system in a station keeping enabled mode and the system then maintains the desired position obtained upon the initial change in the joystick from an active mode to an inactive mode. In this way, the operator can selectively maneuver the marine vessel manually and, when the joystick is released, the vessel will maintain the position in which it was at the instant the operator stopped maneuvering it with the joystick.
U.S. Pat. No. 8,478,464, which is hereby incorporated by reference herein, discloses systems and methods for orienting a marine vessel to enhance available thrust in a station keeping mode. A control device having a memory and a programmable circuit is programmed to control operation of a plurality of marine propulsion devices to maintain orientation of a marine vessel in a selected global position. The control device is programmed to calculate a direction of a resultant thrust vector associated with the plurality of marine propulsion devices that is necessary to maintain the vessel in the selected global position. The control device is programmed to control operation of the plurality of marine propulsion devices to change the actual heading of the marine vessel to align the actual heading with the thrust vector.
Other patents describing various station keeping features and related system and method improvements include: U.S. Pat. Nos. 7,267,068; 8,050,630; 8,417,399; 8,694,248; 8,807,059; 8,924,054; 9,132,903; 9,377,780; 9,733,645; and 9,927,520. Each of these patents and applications is hereby incorporated by reference herein.
This Summary is provided to introduce a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
One example of the present disclosure is of a method for maintaining a marine vessel in a selected position, the marine vessel being propelled by a marine propulsion device. The method includes determining a current global position of the marine vessel and, with a control module, receiving a signal command to maintain the current global position of the marine vessel. The method also includes storing the current global position of the marine vessel as a target global position in response to receiving the signal command. The method next includes determining a subsequent global position of the marine vessel and calculating a position error difference between the subsequent global position and the target global position. The method includes determining marine vessel movements that are required to minimize the position error difference, and, with the control module, causing the marine propulsion device to produce a thrust having a magnitude, a direction, and an angle calculated to result in achievement of the required marine vessel movements. The method also includes, with the control module, controlling at least one of a timing and a frequency of discontinuity of thrust production by the marine propulsion device while attempting to minimize the position error difference.
Another example of the present disclosure is of a method for maintaining a marine vessel in a selected position, the marine vessel being propelled by a marine propulsion device. The method comprises determining a current global position of the marine vessel; determining a current heading of the marine vessel; with a control module, receiving a signal command to maintain the current global position and the current heading of the marine vessel; and storing the current global position and the current heading of the marine vessel as a target global position and a target heading in response to receiving the signal command. The method also includes determining a subsequent global position of the marine vessel; determining a subsequent heading of the marine vessel; calculating a position error difference between the subsequent global position and the target global position; and calculating a heading error difference between the subsequent heading and the target heading. The method next includes determining marine vessel movements that are required to minimize the position error difference and the heading error difference, and, with the control module, causing the marine propulsion device to produce a thrust having a magnitude, a direction, and an angle calculated to result in achievement of the required marine vessel movements. The method also includes controlling, with the control module, at least one of a timing and a frequency of discontinuity of thrust production by the marine propulsion device while attempting to minimize the position error difference and the heading error difference.
The present disclosure is described with reference to the following Figures. The same numbers are used throughout the Figures to reference like features and like components.
In the present description, certain terms have been used for brevity, clarity and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed.
Referring to
An example of the inputs to the control module's calculations while the vessel 10 in station keeping mode is shown in
The control module 16 determines when and how much corrective action to take according to a three-dimensional (left/right, fore/aft, and yaw) proportional, integral, and derivative (PID) control algorithm performed by a feedback controller 17 of the control module 16. The integral term allows the control system to reject constant and slowly varying disturbances (e.g., current) while maintaining near zero position error. The proportional and derivative terms handle the quickly varying disturbances. The integral term is also considered to have memory and can take time to increase or decrease, especially if the disturbance forces grow. The PID feedback controller 17 computes a desired force in the forward/back and left/right directions with reference to the marine vessel 10, along with a desired yaw moment relative to the marine vessel 10, in order to null the error elements. The computed force and moment elements are then transmitted to the vessel maneuvering system, which delivers the requested forces and moments by positioning the independently steerable propulsion devices 12, 14, controlling the power provided to the propellers, impellers, or propulsors of each device, and controlling the thrust vector directions of both devices. Such automatic correction of the position and heading of the marine vessel 10 can be achieved according to the principles described in U.S. Pat. No. 7,305,928, which was incorporated by reference herein above.
The present disclosure contemplates a number of ways in which the above-described station keeping functionality can be expanded upon. In one example, the station keeping algorithm is modified to prevent or at least reduce the likelihood of overshoot of the target global position TP and/or target heading TH when making a correction. A need for this type of modification arose with the advent of the application of station keeping methods to vessels equipped with stern drives or outboard motors. When station keeping is implemented on a vessel propelled by a pod drive, a trolling valve can be used to allow slip between the engine and the propeller of the pod drive. Such slip allows for very small increments of thrust, thereby enabling the vessel 10 to be moved by very small distances upon engagement of the transmission. However, stern drives are not generally equipped with trolling valves, and thus the thrust increment from neutral to in-gear is larger. With an outboard, the thrust increment is even more pronounced, especially if the outboard has dual propellers or a high pitch propeller. For instance, if a vessel propelled by outboard motors is put into gear for even one second, the vessel may travel fifteen feet before naturally coming to rest. Thus, if the vessel was fewer than fifteen feet from the target global position, putting the propulsion devices in gear would result in overshooting the target.
Note that the control module 16 can cause a discontinuity in thrust production by the marine propulsion devices 12, 14 by turning the prime mover(s) on or off, shifting the propulsion devices' transmissions to different positions, or otherwise engaging or disengaging the shafts holding the propellers, impellers, or propulsors from the prime mover(s). In order to address the above-mentioned overshoot, the present inventors have developed an algorithm that utilizes an input-output map such as a look up table, chart, or similar, that dictates when to create a discontinuity in thrust production, such as when to engage or disengage the propulsion device's propeller, impeller, or propulsor. In one example, the control module 16 creates a discontinuity in thrust production by disengaging the propulsion devices' propellers, after which the vessel 10 will be allowed to coast to the target orientation. The determination regarding when to discontinue thrust production can be made based on position error (target global position minus actual global position), position error velocity, and/or vessel velocity. This allows the length of time that the propeller, impeller, or propulsor is rotating to be scaled down based on how far the vessel 10 is from the setpoint and/or velocity.
For example,
Referring to
This method can be very useful when the vessel 10 is operating in calm, no wind conditions. In contrast, because wind and waves apply a stopping force, in high wind or strong wave conditions, the elemental forces may be enough to balance the in-gear thrust supplied by the propulsion devices 12, 14.
In another example, the life of the power transmission mechanisms 13, 15 of the propulsion device(s) 12, 14 can be increased and NVH can be optimized by implementing an adaptive gain in the PID control. Currently, station keeping systems have a user input device that allows a user to control the “response” of the station keeping controller, i.e., how aggressively it will maintain a given heading and global position. The adaptive gain strategy of the second embodiment of the present disclosure is instead based on limiting the number of discontinuities of thrust production, such as transmission shifts or thrust on/off cycles, per given unit of time. For instance, the response (control gain) of the system can be adjusted to keep the number of discontinuities per minute around a specified number. This would allow the system to maintain good position control under heavy sea conditions (where shifting is less likely) and would be able to provide low NVH under calm sea conditions. Additionally, the system would be prevented from overshooting the target and reversing repeatedly while attempting to achieve the target.
Returning to
In some examples, the control module 16 may include a computing system that includes a processing system, storage system, software, and input/output (I/O) interface for communicating with peripheral devices. The systems may be implemented in hardware and/or software that carries out a programmed set of instructions. For example, the processing system loads and executes software from the storage system, such as software programmed with a station keeping method, which directs the processing system to operate as described herein below in further detail. The computing system may include one or more processors, which may be communicatively connected. The processing system can comprise a microprocessor, including a control unit and a processing unit, and other circuitry, such as semiconductor hardware logic, that retrieves and executes software from the storage system. The processing system can be implemented within a single processing device but can also be distributed across multiple processing devices or sub-systems that cooperate according to existing program instructions. The processing system can include one or many software modules comprising sets of computer executable instructions for carrying out various functions as described herein.
As used herein, the term “control module” may refer to, be part of, or include an application specific integrated circuit (ASIC); an electronic circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; other suitable components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip (SoC). A control module may include memory (shared, dedicated, or group) that stores code executed by the processing system. The term “code” may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, and/or objects. The term “shared” means that some or all code from multiple modules may be executed using a single (shared) processor. In addition, some or all code from multiple control modules may be stored by a single (shared) memory. The term “group” means that some or all code from a single control module may be executed using a group of processors. In addition, some or all code from a single control module may be stored using a group of memories.
The storage system can comprise any storage media readable by the processing system and capable of storing software. The storage system can include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, software modules, or other data. The storage system can be implemented as a single storage device or across multiple storage devices or sub-systems. The storage system can include additional elements, such as a memory controller capable of communicating with the processing system. Non-limiting examples of storage media include random access memory, read-only memory, magnetic discs, optical discs, flash memory, virtual and non-virtual memory, various types of magnetic storage devices, or any other medium which can be used to store the desired information and that may be accessed by an instruction execution system. The storage media can be a transitory storage media or a non-transitory storage media such as a non-transitory tangible computer readable medium.
The control module 16 communicates with one or more components on the vessel 10 via the I/O interface and a communication link, which can be a wired or wireless link. In one example, the communication link is a controller area network (CAN) bus, but other types of links could be used.
The provided description of the control module 16 is conceptual and should be interpreted generally, as those skilled in the art will recognize many ways to implement such a control module. These include implementation using a digital microprocessor that receives input signals and performs a calculation using the input signals to produce the corresponding output signals or actuator control signals. Also, analog computers may be used, which comprise circuit elements arranged to produce the desired outputs. Furthermore, look-up tables containing predetermined or calibrated data points may be stored in any fashion to provide the desired output corresponding to a given input signal.
Turning to
As shown at 410, the method includes determining marine vessel movements that are required to minimize the position error difference. These movements can be expressed both by a distance and a direction (i.e., a COG) the vessel 10 must travel to reach the target global position TP. In one example, the control module 16 determines the required marine vessel movements with the feedback controller 17. The method then includes, as shown at 412, with the control module 16, causing the marine propulsion device 12 and/or 14 to produce a thrust having a magnitude, a direction, and an angle calculated to result in achievement of the required marine vessel movements. This can be done using a maneuvering algorithm such as that described in U.S. Pat. No. 7,305,928, which was incorporated by reference herein above. In one example, the method may include causing the marine propulsion device 12, 14 to produce the calculated thrust only if the position error difference exceeds a predetermined position error threshold difference. This will ensure that correction is not made if the position error is so low that any quantum of thrust at all will cause the vessel 10 to overshoot the target global position TP. For example, the predetermined position error threshold could be equal to the distance the vessel 10 would coast if the transmissions of the marine propulsion devices 12, 14 were placed in gear with a minimum quantum of thrust and then immediately placed out of gear, or if the propeller, impeller, or propulsor were otherwise rotated by a minimum quantum of power and then stopped. Such a threshold may be helpful given that GPS devices have accuracy that can respond to even one-third of a meter of position error difference. Additionally, according to the present disclosure, as shown at 414, the method includes controlling, with the control module 16, at least one of a timing and a frequency of discontinuity of thrust production by the marine propulsion device 12 and/or 14 while attempting to minimize the position error difference.
As described herein above with respect to
Also as described herein above, the method may further comprise limiting the frequency of discontinuity of thrust production to a target number of discontinuities per unit time while the marine propulsion device 12, 14 is producing the calculated thrust. For example, the control module 16 may limit the number of discontinuities to somewhere in the range of twenty to thirty discontinuities per minute. In one example, in which the power transmission mechanisms 13, 15 include F-N-R transmissions, the method comprises limiting the frequency of shifting of the transmissions to a target number of shifts per unit time, and in response to the transmissions shifting by greater than the target number of shifts per unit time, the method further comprises prohibiting the transmissions from shifting for a remainder of the time unit (e.g. for the remainder of the minute). In another example, the method further comprises adapting a gain of the feedback controller 17 based on a difference between the target number of discontinuities (e.g., shifts) per unit time and a measured number of discontinuities (e.g., shifts) per unit time. In the example in which the number of discontinuities is a number of shifts of a transmission, the measured number of shifts can be detected by a gear position sensor in communication with the control module 16. Other measured discontinuities can be on/off cycles of the prime mover or changes between rotating and non-rotating states of the propellers, impellers, or propulsors.
With reference to
The method also includes, as shown at 516, determining marine vessel movements that are required to minimize the position error difference and the heading error difference. As shown at 518, the method includes, with the control module 16, causing the marine propulsion device 12 and/or 14 to produce a thrust having a magnitude, a direction, and an angle calculated to result in achievement of the required marine vessel movements. Not only may the method include causing the marine propulsion device 12, 14 to produce the calculated thrust only if the position error difference exceeds a predetermined position error threshold difference, the method may also include causing the marine propulsion device 12, 14 to produce the calculated thrust only if the heading error difference exceeds a predetermined heading error threshold difference.
As shown at 520, the method includes controlling, with the control module 16, at least one of a timing and a frequency of discontinuity of thrust production by one or both of the marine propulsion devices 12, 14 while attempting to minimize the position error difference and the heading error difference. For example, in response to the marine vessel 10 reaching a specified threshold angle from the target heading TH while the marine propulsion devices 12, 14 are producing the calculated thrust, the method further comprises discontinuing thrust production, such as by shifting one or both of the transmissions into neutral, such that momentum thereafter rotates the marine vessel 10 toward the target heading TH. The method may also include determining the specified threshold angle based on one or more of the following: the heading error difference, a rate of change of the heading error difference, and an angular velocity of the marine vessel 10. The method may also include, in response to the marine vessel 10 reaching a specified threshold distance from the target global position TP while the marine propulsion devices 12, 14 are producing the calculated thrust, discontinuing thrust production by one or both of the marine propulsion devices 12, 14 such that the marine vessel 10 thereafter coasts toward the target global position TP. If two marine propulsion devices are provided, the method may include using one of the marine propulsion devices 12 or 14 to continue to provide forward, reverse, or side-to-side movement even after the propulsion device that has been causing the vessel 10 to yaw is shifted into neutral. Similarly, the control module 16 may choose to continue to provide thrust to rotate the vessel 10 using one of the propulsion devices 12 or 14 even after the other propulsion device, which had been causing the vessel 10 to move fore/aft or left/right, is placed in neutral. In still other examples, the control module 16 may cause both propulsion devices 12, 14 to change their magnitude, direction, and/or angle of thrust so as to cease providing translation or rotation, while still providing the other of rotation or translation, depending on which threshold was met and which was not.
Note that in each of the above examples, one or both of the propulsion devices 12, 14 and their respective power transmission mechanisms 13, 15 can be controlled. The propulsion devices 12, 14 and their respective power transmission mechanisms 13, 15 can also be controlled independently of one another, such that their magnitudes, directions, and/or angles of thrust are different from one another. Note also that only one propulsion device 12 or 14 need be provided on the vessel 10. Although the present disclosure describes the benefits of using the present methods with outboard motors or stern drives, the methods could be used with other types of propulsion devices as well.
In the above description, certain terms have been used for brevity, clarity, and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different methods described herein may be used alone or in combination with other systems or methods. It is to be expected that various equivalents, alternatives and modifications are possible within the scope of the present claims.
The present application is a continuation of U.S. application Ser. No. 15/425,184, filed Feb. 6, 2017, which claims the benefit of U.S. Provisional Application Ser. No. 62/301,887, filed on Mar. 1, 2016, both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2360361 | Mountbatten | Oct 1944 | A |
3145683 | Kolb et al. | Aug 1964 | A |
3177348 | Daniloff | Apr 1965 | A |
3187704 | Shatto, Jr. et al. | Jun 1965 | A |
3688252 | Thompson | Aug 1972 | A |
3715571 | Braddon | Feb 1973 | A |
3730126 | Zunderdorp et al. | May 1973 | A |
3771483 | Spencer | Nov 1973 | A |
4253149 | Cunningham et al. | Feb 1981 | A |
4257718 | Rosa et al. | Mar 1981 | A |
4428052 | Robinson et al. | Jan 1984 | A |
4513378 | Antkowiak | Apr 1985 | A |
4769773 | Shatto, Jr. | Sep 1988 | A |
4939661 | Barker et al. | Jul 1990 | A |
4975709 | Koike | Dec 1990 | A |
5172324 | Knight | Dec 1992 | A |
5202835 | Knight | Apr 1993 | A |
5331558 | Hossfield et al. | Jul 1994 | A |
5362263 | Petty | Nov 1994 | A |
5386368 | Knight | Jan 1995 | A |
5390125 | Sennott et al. | Feb 1995 | A |
5491636 | Robertson et al. | Feb 1996 | A |
5736962 | Tendler | Apr 1998 | A |
5884213 | Carlson | Mar 1999 | A |
6059226 | Cotton et al. | May 2000 | A |
6092007 | Cotton et al. | Jul 2000 | A |
6230642 | Mckenney et al. | May 2001 | B1 |
6234853 | Lanyi et al. | May 2001 | B1 |
6273771 | Buckley et al. | Aug 2001 | B1 |
6308651 | Mckenney et al. | Oct 2001 | B2 |
6377889 | Soest | Apr 2002 | B1 |
6446003 | Green et al. | Sep 2002 | B1 |
6485341 | Lanyi et al. | Nov 2002 | B1 |
6604479 | Mckenney et al. | Aug 2003 | B2 |
6611737 | El-Tahan et al. | Aug 2003 | B1 |
6678589 | Robertson et al. | Jan 2004 | B2 |
6848382 | Bekker | Feb 2005 | B1 |
6995527 | Depasqua | Feb 2006 | B2 |
7140315 | Okuyama | Nov 2006 | B2 |
7267068 | Bradley et al. | Sep 2007 | B2 |
7268703 | Kabel et al. | Sep 2007 | B1 |
7305928 | Bradley et al. | Dec 2007 | B2 |
7366593 | Fujimoto et al. | Apr 2008 | B2 |
7398742 | Gonring | Jul 2008 | B1 |
7416458 | Suemori et al. | Aug 2008 | B2 |
7467595 | Lanyi et al. | Dec 2008 | B1 |
7476134 | Fell et al. | Jan 2009 | B1 |
7538511 | Samek | May 2009 | B2 |
7561886 | Gonring et al. | Jul 2009 | B1 |
7577526 | Kim et al. | Aug 2009 | B2 |
7630798 | Mossman et al. | Aug 2009 | B2 |
7727036 | Poorman et al. | Jun 2010 | B1 |
8050630 | Arbuckle | Nov 2011 | B1 |
8082100 | Grace et al. | Dec 2011 | B2 |
8145370 | Borrett | Mar 2012 | B2 |
8145371 | Rae et al. | Mar 2012 | B2 |
8150621 | Phillips et al. | Apr 2012 | B1 |
8155811 | Noffsinger et al. | Apr 2012 | B2 |
8215252 | Chun | Jul 2012 | B1 |
8265812 | Pease | Sep 2012 | B2 |
8326472 | Igarashi et al. | Dec 2012 | B2 |
8417399 | Arbuckle et al. | Apr 2013 | B2 |
8442710 | Glaeser | May 2013 | B2 |
8478464 | Arbuckle et al. | Jul 2013 | B2 |
8480445 | Morvillo | Jul 2013 | B2 |
8510028 | Grace et al. | Aug 2013 | B2 |
8515660 | Grace et al. | Aug 2013 | B2 |
8515661 | Grace et al. | Aug 2013 | B2 |
8527192 | Grace et al. | Sep 2013 | B2 |
8543324 | Grace et al. | Sep 2013 | B2 |
8645012 | Salmon et al. | Feb 2014 | B2 |
8694248 | Arbuckle et al. | Apr 2014 | B1 |
8761976 | Salmon et al. | Jun 2014 | B2 |
8777681 | Mcnalley et al. | Jul 2014 | B1 |
8807059 | Samples et al. | Aug 2014 | B1 |
8808041 | Hine et al. | Aug 2014 | B2 |
8831868 | Grace et al. | Sep 2014 | B2 |
8924054 | Arbuckle et al. | Dec 2014 | B1 |
9039468 | Arbuckle et al. | May 2015 | B1 |
9110467 | Yuet et al. | Aug 2015 | B2 |
9132900 | Salmon et al. | Sep 2015 | B2 |
9132903 | Gable et al. | Sep 2015 | B1 |
9162743 | Grace et al. | Oct 2015 | B2 |
9248898 | Kirchhoff et al. | Feb 2016 | B1 |
9359057 | Arbuckle et al. | Jun 2016 | B1 |
9377780 | Arbuckle et al. | Jun 2016 | B1 |
9676464 | Johnson et al. | Jun 2017 | B2 |
9733645 | Andrasko et al. | Aug 2017 | B1 |
9904293 | Heap et al. | Feb 2018 | B1 |
9927520 | Ward et al. | Mar 2018 | B1 |
9952595 | Arbuckle et al. | Apr 2018 | B2 |
10000270 | Kishimoto et al. | Jun 2018 | B2 |
10095232 | Arbuckle et al. | Oct 2018 | B1 |
10198005 | Arbuckle et al. | Feb 2019 | B2 |
10322787 | Ward | Jun 2019 | B2 |
10671073 | Arbuckle et al. | Jun 2020 | B2 |
20040221787 | Mckenney et al. | Nov 2004 | A1 |
20050092225 | Kaji et al. | May 2005 | A1 |
20050164569 | Kaji et al. | Jul 2005 | A1 |
20050170713 | Okuyama | Aug 2005 | A1 |
20060089794 | Depasqua | Apr 2006 | A1 |
20060116796 | Fossen et al. | Jun 2006 | A1 |
20070017426 | Kaji et al. | Jan 2007 | A1 |
20070162207 | Shimo et al. | Jul 2007 | A1 |
20070178779 | Takada et al. | Aug 2007 | A1 |
20070203623 | Saunders et al. | Aug 2007 | A1 |
20070233389 | Stephens | Oct 2007 | A1 |
20080027597 | Barrett et al. | Jan 2008 | A1 |
20090037040 | Salmon et al. | Feb 2009 | A1 |
20090076671 | Mizutani | Mar 2009 | A1 |
20090171520 | Kaji | Jul 2009 | A1 |
20090276148 | Ardvisson | Nov 2009 | A1 |
20100034594 | Major | Feb 2010 | A1 |
20100070124 | Yeager et al. | Mar 2010 | A1 |
20100109944 | Whitehead et al. | May 2010 | A1 |
20110153126 | Arbuckle | Jun 2011 | A1 |
20110288714 | Flohr et al. | Nov 2011 | A1 |
20120129410 | Tyers | May 2012 | A1 |
20120248259 | Page et al. | Oct 2012 | A1 |
20130080044 | Tyers et al. | Mar 2013 | A1 |
20130297104 | Tyers et al. | Nov 2013 | A1 |
20140114509 | Venables et al. | Apr 2014 | A1 |
20140362661 | Muijzert et al. | Dec 2014 | A1 |
20150032304 | Nakamura et al. | Jan 2015 | A1 |
20150089427 | Akuzawa | Mar 2015 | A1 |
20150277442 | Ballou | Oct 2015 | A1 |
20150321740 | Bradley et al. | Nov 2015 | A1 |
20150346730 | Stephens et al. | Dec 2015 | A1 |
20160016651 | Anderson et al. | Jan 2016 | A1 |
20160039500 | Heyring et al. | Feb 2016 | A1 |
20160061980 | Tonchia et al. | Mar 2016 | A1 |
20160101838 | Kojima | Apr 2016 | A1 |
20160125739 | Stewart et al. | May 2016 | A1 |
20160246300 | Langford-Wood | Aug 2016 | A1 |
20160252907 | Parkinson | Sep 2016 | A1 |
20160299507 | Shah et al. | Oct 2016 | A1 |
20160334792 | Jopling | Nov 2016 | A1 |
20170139426 | Ito et al. | May 2017 | A1 |
20170205828 | Estabrook | Jul 2017 | A1 |
20170205829 | Tyers | Jul 2017 | A1 |
20170210449 | Frisbie et al. | Jul 2017 | A1 |
20170253314 | Ward | Sep 2017 | A1 |
20170277189 | Johnson | Sep 2017 | A1 |
20170349257 | Hara et al. | Dec 2017 | A1 |
20170365175 | Harnett | Dec 2017 | A1 |
20180015994 | Kishimoto et al. | Jan 2018 | A1 |
20180106619 | Johnson et al. | Apr 2018 | A1 |
20180231980 | Arbuckle et al. | Aug 2018 | A1 |
20180284815 | Cui et al. | Oct 2018 | A1 |
20190286169 | Cui et al. | Sep 2019 | A1 |
20190291839 | Hirst | Sep 2019 | A1 |
20190359300 | Johnson et al. | Nov 2019 | A1 |
20200062366 | Murata | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2161542 | Mar 2010 | EP |
2952994 | Dec 2015 | EP |
1173442 | Dec 1969 | GB |
S5861097 | Apr 1983 | JP |
H05-203638 | Aug 1993 | JP |
7223591 | Aug 1995 | JP |
2926533 | Jul 1997 | JP |
H11-129978 | May 1999 | JP |
2001287697 | Oct 2001 | JP |
2002173091 | Jun 2002 | JP |
2002178990 | Jun 2002 | JP |
2003276677 | Oct 2003 | JP |
2004042884 | Feb 2004 | JP |
2004355105 | Dec 2004 | JP |
2005046034 | Feb 2005 | JP |
2005200004 | Jul 2005 | JP |
2006137309 | Jun 2006 | JP |
2009227035 | Oct 2009 | JP |
2009241738 | Oct 2009 | JP |
2011128943 | Jun 2011 | JP |
5042906 | Jul 2012 | JP |
5226355 | Jul 2013 | JP |
2014065495 | Apr 2014 | JP |
WO 1992005505 | Apr 1992 | WO |
WO 2006058400 | Jun 2006 | WO |
WO 2017095235 | Jun 2017 | WO |
Entry |
---|
Poorman et al., “Multilayer Control System and Method for Controlling Movement of a Marine Vessel,” Unpublished U.S. Appl. No. 11/965,583, filed Dec. 27, 2007. |
Arbuckle et al., “Station Keeping Methods,” Unpublished U.S. Appl. No. 15/425,184, filed Feb. 6, 2017. |
Gonring, “System and Method for Controlling Course of a Marine Vessel,” Unpublished U.S. Appl. No. 15/415,095, filed Jan. 25, 2017. |
Arbuckle et al., “Vessel Maneuvering Methods and Systems,” Unpublished U.S. Appl. No. 15/437,233, filed Feb. 20, 2017. |
Arbuckle et al., “Methods for Positioning Marine Vessels,” Unpublished U.S. Appl. No. 16/028,019, filed Jul. 5, 2018. |
Number | Date | Country | |
---|---|---|---|
62301887 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15425184 | Feb 2017 | US |
Child | 16788984 | US |