This application is the U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2018/063286 filed May 22, 2018, published as WO 2018/219704 on Dec. 6, 2018, which claims the benefit of European Patent Application Number 17173561.6 filed May 30, 2017. These applications are hereby incorporated by reference herein.
The present disclosure relates to a stationary blade for a blade set of a hair cutting appliance, to a blade set and to a respectively equipped hair cutting appliance. Further, the present disclosure relates to a method of manufacturing a blade set for a hair cutting appliance.
WO 2013/150412 A1 discloses a stationary blade for a blade set of an electrically operated hair cutting appliance, the blade including a first wall and a second wall, each wall defining a first surface, a second surface facing away from the first surface, and a laterally extending leading edge defining a plurality of laterally spaced apart longitudinally extending projections, wherein the first surfaces of the first and second walls face each other, at least at their leading edges, while facing projections along the leading edges of the first and second walls are mutually connected at their tips to define a plurality of generally U-shaped teeth, and the first surfaces of the first and second walls define a laterally extending guide slot for a movable blade of said blade set between them, wherein the projections of the first wall have an average thickness that is less than an average thickness of the projections of the second wall.
Manufacturing approaches to double walled stationary blades are disclosed in WO 2016/001019 A1 and WO 2016/042158 A1 that describe arrangements wherein at least the top wall of the stationary blade is at least substantially made from sheet metal material. In both documents, an integral design of metal parts and non-metal parts is proposed, involving integrally manufacturing sheet metal and injection molding parts. Hence, insert molding and/or overmolding are proposed to combine the benefits of metal components and non-metal molded components.
CN 106346519 A discloses a blade set for a cutter head of a shaver, the blade set comprising a fixed blade that is provided with a toothed leading edge, a fixed blade bracket for supporting and securing the fixed blade, and, at an inner side of the fixed blade, a moving blade having corresponding teeth, wherein the moving blade can move back and forth relative to the fixed blade to cut hair, and wherein the fixed blade is a flexible metal sheet that is tensioned and secured at the fixed blade bracket. CN 106346519 A further proposes to tension the flexible metal sheet by the fixed blade bracket similar to a bowstring. To this end, it is further proposed to fold the flexible metal sheet around front and rear edges of the fixed blade bracket, and to secure the folded flexible metal sheet at the fixed blade bracket by any of welding, riveting and bonding.
Cutting appliances are well known in the art. Cutting appliances may particularly involve hair cutting appliances. In a more general context, the present disclosure addresses personal care appliances, particularly grooming appliances. Grooming appliances involve, but are not limited to, hair cutting appliances, particularly trimming appliances, shaving appliances, and combined (dual-purpose or multi-purpose) appliances.
Hair cutting appliances are used for cutting human hair, and occasionally animal hair. Hair cutting appliances may be used for cutting facial hair, particularly for shaving and/or for beard trimming. Further, cutting appliances are used for cutting (involving shaving and trimming) head hair and body hair.
In the trimming mode, the hair cutting appliance is typically equipped with a so-called spacing comb that is arranged to space away the blade set of the hair cutting appliance from the skin. Depending on the effective (offset) length of the spacing comb, a remaining hair length after the trimming operation may be defined.
Hair cutting appliances in the context of the present disclosure typically comprise a cutting head which may be referred to as processing head. At the cutting head, a blade set is provided, the blade set comprising a so-called stationary blade and a so-called movable blade. When the hair cutting appliance is operated, the movable blade is moved with respect to the stationary blade which may involve that respective cutting edges cooperate with one another to cut hair.
Hence, in the context of the present disclosure a stationary blade is arranged to be attached to the hair cutting appliance in such a way that a drive unit thereof is not cooperating with the stationary blade. Rather, the drive unit is typically coupled with the movable blade and arranged to set the movable blade into motion with respect to the stationary blade. Hence, the stationary blade may be, in some embodiments, fixedly attached to a housing of the hair cutting appliance.
However, in alternative embodiments, the stationary blade is arranged at the housing of the hair cutting appliance in a pivotable fashion. This may for instance enable a contour-following feature of the cutting head of the hair cutting appliance. Therefore, the term stationary blade, as used herein, shall not be interpreted in a limiting sense. Further, needless to say, when the hair cutting appliance as such is moved, also the stationary blade is moved. However, the stationary blade is not arranged to be actively actuated to cause a cutting action. Rather, the movable blade is arranged to be moved with respect to the stationary blade.
The stationary blade may also be referred to as guard blade. Typically, when the hair cutting appliance is operated to cut hair, the stationary blade is, at least in part, arranged between the movable blade and the hair or skin of the user. As used herein, the term user shall refer to a person or subject whose hair is being processed or cut. In other words, the user and the operator of the hair cutting appliance are not necessarily one and the same person. The term user may also involve a client at a hairdresser or barber shop.
In some aspects, the present disclosure relates to hair cutting appliances that are capable of both trimming and shaving operations. In this context, hair cutting appliances are known that incorporate a dual cutting arrangement including a first blade set that is suitably configured for trimming and a second blade set that is suitably configured for shaving. For instance, the shaving blade set may include a perforated foil that cooperates with a movable cutting element. Rather, the trimming blade set may include two blades that are respectively provided with teeth that cooperate with one another. In principle, the perforated foil that forms the stationary part of the shaving blade set may be much thinner than the stationary blade of a trimming blade set which, primarily for strength reasons, must be considerably thicker in conventional appliances.
The above WO 2013/150412 A1 proposes to provide the stationary blade with two walls, one of which is facing the skin of the user and the other one facing away from the user. The two walls are connected to one another and define, in a lateral view, a U-shaped profile that forms a guide slot for a movable cutter blade. Hence, the stationary blade is a double-walled blade. This has the advantage that the first wall may be arranged in a considerably thinner fashion as the second wall provides the stationary blade with sufficient strength. Therefore, such an arrangement is suitable for trimming, as respective teeth may be provided at the stationary blade and the movable blade. Further, the blade set is suitable for shaving as the effective thickness of the first wall of the stationary blade is considerably reduced.
Hence, several approaches to the manufacture of double-walled stationary blades and respective blade sets have been proposed. However, at least some of the above-indicated approaches still involve relatively high manufacturing costs, particularly molding costs and tooling costs. In particular, a combined sheet metal and injection molding approach, that involves insert molding or overmolding techniques, requires specific tools and manufacturing facilities. Further, relatively complex and cost-increasing auxiliary processes may be required, for instance grinding, lapping, deburring, etc.
Hence, in this respect, there is still room for improvement in the manufacture of blade sets for hair cutting appliances.
In view of the above, it is an object of the present disclosure to provide a stationary blade for a blade set of a hair cutting appliance and a corresponding method of manufacturing a stationary blade that enable a cost-efficient manufacture while maintaining the benefits of the double-walled design as discussed above. More particularly, it would be beneficial to present a method of manufacturing a stationary blade that primarily relies on rather simple manufacturing approaches that preferably do not require expensive tooling and complicated post-processing and/or assembly procedures. Further, it would be beneficial to dispense with hybrid manufacturing approaches that combine two or more rather distinct and different manufacturing methods (such as insert molding and/or overmolding of sheet metal components).
In other words, it would be beneficial to present a manufacturing approach that is based on conventional manufacturing methods but that enables the manufacture of stationary blades and blade sets in accordance with the above-indicated novel design approaches.
It is a further object of the present disclosure to provide a blade set that is equipped with a respective stationary blade and a movable blade that is movably retained in the stationary blade. Further, it is desirable to provide a hair cutting appliance to which a respective blade set may be mounted.
In a first aspect of the present disclosure a stationary blade for a blade set of a hair cutting appliance is presented, said blade set being arranged to be moved through hair in a moving direction to cut hair, said stationary blade comprising:
This aspect is based on the insight that the stationary blade may be manufactured using relatively simple and well-established manufacturing techniques, such as sheet metal processing, injection molding, etc. Preferably, the stationary blade is an assembled component of the blade set which may dispense with the need of complicated manufacturing techniques, such as 2K-injection molding, insert molding, overmolding and/or complex bonding techniques, involving welding, soldering, gluing, etc.
Hence, in contrast to the teaching of CN 106346519 A, it is not necessary to apply additional bonding techniques involving gluing, welding, riveting, soldering, etc., as the support insert may apply a pretensioning force on the metal component that sufficiently secures the mounting position. Eventually, the metal component and the support insert form a joint subassembly. Further, to form the first wall and the second wall, the metal component is transformed already before the insertion process takes place that results in the joint assembly comprising the support insert and the at least slightly pretensioned metal component.
Preferably, the support insert and the metal component that form at least a fundamental portion of the stationary blade each are easy to manufacture and, to form the stationary blade, easy to assemble. Further, the guide slot in which the movable blade is accommodated in the assembled state of the blade set is accomplished by assembling the support insert and the metal component. Hence, a positive fit mounting for the movable blade may be provided.
The support insert is arranged to secure the mounted position of the metal component. The support insert extends between the first wall and the second wall of the metal component and forms a vertical connection between the first wall and the second wall that defines the relative position of the first wall and the second wall in the mounted state.
Further, as a result of the mounting procedure when the metal component and the support insert are attached to one another, the metal component may be at least partially pretensioned, due to the shape of the support insert to define a certain retaining force that secures the mounted relative position of the metal component and the support insert.
Generally, the first wall and the second wall may be parallel to one another, and/or inclined with respect to one another. Further, also at least partially curved shapes at at least one of the first wall and the second wall may be envisaged. All these alternatives may form a double-walled arrangement having a first wall and a second wall that are facing away from one another.
In some embodiments, the metal component is based on a sheet metal blank that is deformed to form a U-shaped or a V-shaped arrangement at the respective toothed leading edges. This may involve bending or folding respective sections of the originally flat sheet metal component. In other words, at least in some embodiments, sections of the original sheet metal blank are wrapped around the support insert, thereby forming the first wall, the second wall, and the leading edge at the transition therebetween.
Generally, the stationary blade may also be referred to as guard blade. Generally, the movable blade may also be referred to as cutter blade.
The support insert may be regarded as an inlay that strengthens the metal component and that defines a final, assembled shape of the metal component. In other words, at least in a contact region of the stationary blade, the support insert may provide a connection or link between the first wall and the second wall of the metal component.
As indicated above, approaches to deform the metal component may involve bending, folding, etc. Respective material processing methods are generally subject to certain tolerances. In other words, bending, folding and similar processing methods for sheet metal parts often do not result in high-precision parts, but involve certain relatively large tolerances.
However, by providing the support insert that may be produced using a manufacturing method that enables high precision and great accuracy, a gage for the metal component may be provided. As the metal component is preferably shaped such that in the assembled state a certain preloading is present, primarily the shape of the support insert defines the resulting shape of the stationary blade, particularly in portions thereof that are important for the cutting performance.
The top side of the guide slot that is facing the skin when the blade set is in operation is delimited by the first wall of the stationary blade. In other words, the movable blade cooperates with the first wall, particularly with the portions of the stationary blade teeth that are formed at the first wall, to cut hair.
The support insert provides a vertical connection between the first wall and the second wall, particularly in a central region of the stationary blade that is spaced away from the teeth thereof. Generally, the vertical direction is perpendicular to a main extension plane of the first wall. Hence, the support insert may define a height of the guide slot at the stationary blade. The vertical extension (height) of the guide slot is primarily defined by the shape of the support insert which may be produced with relatively small tolerances. This has a beneficial effect on the overall accuracy and performance of the blade set that incorporates the stationary blade.
The support insert may be obtained from a molding process, particularly from injection molding. However, in some alternative embodiments, the support insert may be obtained from a casting process that processes metal material. Further, the support insert may be obtained by machining an intermediate part to form the desired final shape.
However, in major embodiments of the present disclosure, the support insert is a plastic part that is obtained from a relatively simple injection molding procedure. Preferably, complex combined manufacturing procedures such as insert molding, overmolding, multi-component molding, etc. may be avoided.
Generally, the support insert may be produced from plastic material, metal material, involving light metal, such as aluminum alloy, or from another appropriate material that is considerably solid and dimensionally stable.
In an exemplary embodiment of the stationary blade, the stationary blade teeth are, when viewed in a cross-sectional plane perpendicular to a lateral direction, substantially U-shaped or V-shaped and comprise a first leg formed by the first wall and a second leg formed by the second wall, wherein the first leg and the second leg merge into one another to form a tip of the stationary blade teeth.
In this way, as indicated above, the second leg that is defined by the second wall may provide the stationary blade teeth with an increased strength and stability, whereas the minimum cutting length is defined by the first leg only.
In a further exemplary embodiment of the stationary blade, the metal component is basically planar at the skin-facing first wall. This improves the operational comfort and reduces the operating force for the user.
In a further exemplary embodiment of the stationary blade, the first wall and the second wall are spaced away from one another by the support insert. Hence, as indicated above, the support insert may act as a spacer or a gage between the first wall and the second wall, particularly to define a spacing between the first leg and the second leg. Further, the support insert may be used to define a vertical extension (height) of the guide slot.
In yet another exemplary embodiment of the stationary blade, the metal component and the support insert are force-fitted to one another in an assembled state of the stationary blade. Hence, due to the pretensioning or preloading that is necessary to mount the metal component at the support insert, a certain force is generated that retains the metal component in the intended assembly position. As such, the assembly composed of the metal component and the support insert is self-retaining. However, this does not exclude that further measures are taken to secure the mounted state.
In yet another exemplary embodiment of the stationary blade, the metal component and the support insert form an interference-fitted assembly. Again, it is necessary to (resiliently) deform the metal component to enable the mounting procedure. In the mounted state, an internal stress of the metal component, due to the resilient deformation, causes the retaining force.
In a further exemplary embodiment of the stationary blade, the first wall and the second wall of the metal component are, in an unassembled state, spaced away from one another in a contact region by a clearance αcl, lcl that is smaller than a spacing offset αo, lo that is present at the support insert at the contact region in the assembled state. Hence, the spacing offset αo, lo is defined by the manufacture of the support insert and does not considerably change during mounting. By contrast, the clearance at the metal component is only present in the non-assembled state as the metal component is at least slightly deformed in the mounted state so that the clearance approaches the spacing offset αo, lo.
In a further exemplary embodiment of the stationary blade, the clearance is one of a vertical spacing distance lcl and a spacing opening angle αcl between the first wall and the second wall in the contact region. Generally, in the contact region a certain gap between the first wall and the second wall is provided that is smaller than a corresponding offset formed at the support insert. Due to the interference between the offset and the gap, the metal component is preloaded/pretensioned in the mounted state.
In yet another exemplary embodiment of the stationary blade, the metal component is a sheet metal component, wherein the support insert is a separately formed injection molded plastic part. Preferably, the metal component and the support insert are not jointly manufactured by any of multiple-component injection molding, insert molding, overmolding, etc.
In yet another exemplary embodiment of the stationary blade, the support insert defines a laterally extending guide contour for the movable blade. Hence, the support insert may be used to form further features of the stationary blade that are not easy to form by processing the metal component. As the support insert is preferably molded, it is easy to include further features therein.
In yet another exemplary embodiment of the stationary blade, at the support insert a laterally extending guide projection is formed that forms a longitudinal boundary of the guide slot and that contacts the first wall of the metal component. The laterally extending guide projection may enable a lateral movement of the movable blade with respect to the stationary blade, and may define a longitudinal position of the movable blade with respect to the stationary blade. Hence, the laterally extending guide projection may also define a tip to tip distance between the tips of the teeth of the movable blade and the stationary blade.
In yet another exemplary embodiment of the stationary blade, the support insert forms a frontal longitudinal boundary and a rear longitudinal boundary of the guide slot. The rear longitudinal boundary may be formed by the laterally extending guide projection. Further, the guide slot is bounded by the first wall at a top side thereof. Eventually, the stationary blade forming the guide slot may entirely or nearly entirely encompass or embrace the movable blade. Hence, the movable blade is secured and guarded in the stationary blade.
Further, in another exemplary embodiment of the stationary blade, the support insert forms a bottom boundary of the guide slot. An opposite top boundary of the guide slot is formed by the first wall. Hence, in some embodiments, the movable blade is accommodated between the support insert and the first wall. As in some embodiments the support insert is a plastic part, this may have a beneficial effect on ease of movement of the movable blade. Frictional forces are greatly reduced. At the side where the cutting edges of the movable blade teeth and the stationary blade teeth are present, metal parts contact one another.
However, in some alternative embodiments, the bottom boundary of the guide slot is formed by the second wall of the metal component, at least in part. Hence, in these embodiments, the movable blade is at least partially retained in the vertical direction between two metal layers that are defined by the metal component.
In yet another exemplary embodiment, the stationary blade comprises a first toothed leading edge and a second toothed leading edge opposite to the first wall of the metal component extends from the first toothed leading edge to the second toothed leading edge. Hence, a dual-side stationary blade and a corresponding blade set may be formed. This increases the performance and the field of application for a respectively equipped hair cutting appliance.
The above exemplary embodiment does not exclude that the toothed leading edge at the stationary blade is curved or even circularly shaped. Hence, the relative movement between the movable blade and the stationary blade may involve a reciprocating movement, an oscillatory movement, and/or a rotatory movement.
In still another exemplary embodiment of the stationary blade, a laterally extending guide projection is formed between the first toothed leading edge and the second toothed leading edge. Hence, a central region of the stationary blade may be used for a guide arrangement that defines the longitudinal relative position of the movable blade with respect to the stationary blade.
In yet another exemplary embodiment of the stationary blade, at a bottom side, the support insert extends beyond the metal component, wherein mounting features are formed at the bottom side of the support insert. Preferably, the mounting features are integrally formed with the support insert. Hence, a snap-on mounting or a similar mounting may be provided without the need of adding separate mounting parts to the stationary blade.
In still another exemplary embodiment of the stationary blade, in the mounted state, a longitudinal tip offset is provided between tips of the tooth portions of the support insert and tips of the tooth portions of the metal component that defines a clearance between the support insert and the metal component at at least some of the a stationary blade teeth. This facilitates assembling the metal component and the support insert which includes, in some exemplary embodiments, a lateral relative sliding movement therebetween when the support insert in inserted in the metal component.
In another aspect of the present disclosure there is presented a blade set for a hair cutting appliance, the blade set comprising:
Generally, the blade set may provide a positive-fit mounting for the movable blade at the guide slot that is mutually defined by the metal component and the support insert.
In some exemplary embodiments, to define the vertical position of the movable blade, the metal component and the support insert define therebetween a tight (vertical) mounting clearance for the movable blade in the guide slot.
However, in alternative embodiments, the metal component and the support insert define therebetween a considerably large (vertical) mounting clearance for the movable blade in the guide slot. In accordance with this embodiment, at least one force generating element (e.g. a spring) is provided at the bottom end of the guide slot that urges the movable blade against to top end of the guide slot. Hence, also a force-closed or force-supported assembly of the movable blade in the guide slot is conceivable. The movable blade may be spring loaded in the guide slot.
Preferably, the movable blade is retained between the metal component and the support insert in the assembled state in an undetachable manner.
In an exemplary embodiment of the blade set, in the movable blade, a guide recess is formed, wherein a guide projection of the support insert extends into the guide recess to provide a positive-fit mounting for the movable blade at the stationary blade. The guide recess and the guide projection jointly define the longitudinal position of the movable blade at the stationary blade.
In another exemplary embodiment of the blade set, the metal component and the support insert form an assembly, wherein the metal component and the support insert are separately formed. Preferably, the metal component and the support insert are not directly bonded to one another. In other words, the metal component and the support insert may be assembled to one another to form the stationary blade.
In yet another exemplary embodiment, the blade set further comprises a lateral end cap that contacts a lateral end of the support insert via which the metal component is assembled thereto. Hence, a simply shaped mounting part may be provided that secures the assembly of the stationary blade and that further defines a lateral limit stop for the movable blade in the guide slot.
In a further aspect of the present disclosure there is presented a method of manufacturing a blade set for a hair cutting appliance, the method comprising:
In other words, the step of joining the metal component and the support insert involves temporarily deforming (enlarging the mounting clearance of) the metal component to enable the insertion of the support insert therein. In the mounted state, the metal component is pretensioned and secured by the support insert that urges the first wall and the second wall away from one another.
The deformation of the metal component may involve outwardly bending the second wall away from the first wall, i.e. urging the second wall away from the first wall to increase the mounting clearance. Hence, in the mounted state, a remaining bias urges or bends or flexes the second wall inwardly, i.e. towards the first wall. That is, a preloading force is generated as the first wall and the second wall contact the support insert arranged therebetween.
In an exemplary embodiment of the manufacturing method, the step of joining a metal component and the support insert involves a force-fitted joining of the metal component and the support insert.
In yet another exemplary embodiment of the manufacturing method, the step of providing the metal component involves defining a mounting clearance αcl, lcl between the first wall and the second wall of the metal component that is smaller than the mounting extension αo, lo of the support insert in the contact region. Hence, by deliberately defining an interference between the metal component and the support insert, the assembly of the two parts may be secured.
In still another exemplary embodiment of the manufacturing method, the mounting clearance is one of a vertical spacing distance lcl and a spacing opening angle αcl between the first wall and the second wall in the contact region.
In yet another aspect of the present disclosure there is presented a hair cutting appliance arranged to be moved through hair to cut hair, the appliance comprising:
Generally, the blade set may comprise a basically linear leading edge defined by a respective series of stationary blade teeth (and movable blade teeth). In accordance with this embodiment, a basically reciprocating and substantially linear relative movement between the movable blade and the stationary blade is present. However, this does not exclude embodiments, wherein an at least somewhat curved (oscillatory) movement path of the movable blade with respect to the stationary blade is present. This may be caused, for instance, by a respective guiding linkage for the movable blade.
Further, in addition to basically linear arrangements of blade sets, also curved or even circular arrangements of blade sets may be envisaged. Hence, accordingly, a somewhat curved or circular leading edge defined by a respective arrangement of stationary blade teeth (and movable blade teeth) may be provided. Therefore, whenever reference herein is made to a longitudinal direction, a lateral direction and/or a height direction, this shall not be interpreted in a limiting sense. A curved or circular blade set may be defined and described with reference to similar directions, but also with reference to polar directions and/or further appropriate directional information. Hence, Cartesian coordinate systems, but also polar coordinate systems and further appropriate coordinate systems may be used to describe linear and/or curved designs of blade sets.
In some embodiments, the blade set is provided with two opposite leading edges, i.e. two opposite series of stationary blade teeth and movable blade teeth. In this way, both a pulling and a pushing movement of the blade set may be used for the cutting operation. Further, in this way the hair cutting appliance can be deployed more flexible which may facilitate styling operations and hair cutting operations in hard-to-reach areas.
Further preferred embodiments are defined in the dependent claims. It shall be understood that the claimed method has similar and/or identical preferred embodiments as the claimed device(s) and as defined in the dependent claims.
These and other aspects of the disclosure will be apparent from and elucidated with reference to the embodiments described hereinafter. In the following drawings:
The appliance 10 comprises a housing 12 which is arranged in an elongated fashion. At the housing 12, a handle section 14 is defined. In the housing 12, a drive unit 16 is arranged. Further, a battery 18 may be arranged in the housing 12. In
At a top end thereof, the appliance 10 comprises a processing head 24 that is attached to the housing 12. The processing head 24 comprises a blade set 26. The blade set 26, particularly a movable blade thereof, may be actuated and driven by the drive unit 16 in a reciprocating fashion, refer also to the double arrow 28 in
The blades of the blade set 26 may be arranged at a first leading edge 32 and, in at least some embodiments, at a second leading edge 34 that is opposite to the first leading edge 32. The first leading edge 32 may be also referred to as frontal leading edge. A second leading edge 34 may be also referred to as rear leading edge.
Further, a general advancing or moving direction of the appliance 10 is indicated in
In the following, exemplary embodiments of stationary blades and blade sets 26 will be elucidated and described in more detail. The blade sets 26 may be attached to the appliance 10, or to a similar appliance. It goes without saying the single features disclosed in the context of a respective embodiment may be combined with any of the other embodiments, also in isolated fashion, thereby forming further embodiments that still fall under the scope of the present disclosure.
In some Figures shown herein, exemplary coordinate systems are shown for illustrative purposes. As used herein, an X-axis is assigned to a longitudinal direction. Further, a Y-axis is assigned to a lateral direction. Accordingly, a Z-axis is assigned to a vertical (height) direction. Respective associations of the axes/directions X, Y, Z with respective features and extensions of the blade set 26 can be derived from those Figures. It should be understood that the coordinate system X, Y, Z is primarily provided for illustrative purposes and not intended to limit the scope of the disclosure. This involves that the skilled person may readily convert and transform the coordinate system when being confronted with further embodiments, illustrations and deviating view orientations. Also a conversation of Cartesian coordinate systems into polar coordinate system may be envisaged, particularly in the context of a circular or curved blade set.
In
The movable blade of the blade set 26 that is not visible in
In
With reference to
The movable blade 62 is accommodated in a guide slot 60 defined by the stationary blade 42. In the guide slot 60, the movable blade 62 is reciprocatingly movable, refer to the double-arrow 28 in
In accordance with major aspects of the present disclosure, the stationary blade 42 is an assembly that includes a metal component 68 and a support insert 70. In this context, reference is made to the exploded top view of
A second, opposite lateral end of the stationary blade 42 is formed in the exemplary embodiment by an end cap 76. As shown in
In at least some embodiments, the support insert 70 is a molded part. By way of example, the support insert 70 is an injection-molded plastic part. Hence, further features and elements may be integrally formed with the support insert 70. By way of example, at a bottom side of the support insert 70 that is visible in
A lateral end of the support insert 70 that is engaged by the end cap 76 in the mounted state is indicated by 82 in
In the exemplary embodiments discussed in connection with
The tooth portions 90 extend from the support wall 84 of the support insert 70 in a longitudinal direction. The tooth portions 88 of the metal component 68 are jointly defined by a first wall 100 and a second wall 102 thereof. In this context, reference is made to
In the exemplary embodiments of
At the leading edges 32, 34, a folding/bending edge 104 is provided at a transition between the first wall 100 and the second wall 102. In other words, the portion of the original planar sheet metal blank that forms the second wall 102 is bended by about 150° to 180° (degree) to define the U-shape or V-shape of the tooth portions 88 and the resulting teeth 44. At the folding/bending edge 104, a respective rounding may be provided.
Further, as shown in
The guide recess 106 of the movable blade 62 is formed between a first support wall 110 and a second support wall 112. From the support walls 110, 112, the movable blade teeth 64 extend in the longitudinal direction. Further, the support walls 110, 112 are connected at the lateral ends of the movable blade 62, thereby defining the guide recess 106.
In an exemplary embodiment, the end cap 76 is arranged to be fitted in/onto the support insert 70. To this end, mounting recesses 114 are formed at the lateral end 82 of the support insert 70, refer to
Needless to say, there are further alternatives to attach the end cap 76 at the support insert 70. Further, in alternative embodiments, no separate end cap 76 is necessary. The mounting of the end cap 76 may involve a snap-on locking, a bonding procedure, and/or similar connection techniques.
In
In
In
As shown in
Further reference is made to the partial top view of
In the cross-sectional view of
As can be best seen in
In
Between the first wall 100 and the second wall 102, adjacent to the guide slot 60, a connector arm 148 is formed at the support insert 70. The connector arm 148 extends between the first wall 100 and the second wall 102. The connector arm 148 forms the frontal longitudinal boundary 138, the rear longitudinal boundary 140, and the bottom boundary 142. Further, the connector arm 148 defines an offset that ensures a tight and close contact between the support insert 70 and the first wall 100 and the second wall 102 of the metal component 68 in the mounted state.
In some embodiments, as indicated in
Further, the tip offset 152 facilitates mounting the metal component 68 and the support insert 70. The mounting procedure typically involves a relative lateral sliding movement between the metal component 68 and the support insert 70. When the tooth portions 90 of the support insert 70 would completely fill the gap defined by the metal component tooth portions 88 in the longitudinal direction, there might be a certain likelihood of damaging or even breaking the tooth portions 90. So it is beneficial to form the tooth portions 90 of the support insert 70 in the longitudinal direction in such a way that the interior space provided by the convexly shaped tooth portions 88 of the metal component 68 is not completely filled.
In
As discussed above, the metal component 68 is arranged such that in an unassembled state a distance or gap between the first wall 100 and the second wall 102 in the contact region 156 is smaller than a corresponding mating contour of the connector arm 148 of the support insert 70. Hence, in the mounted state, a certain preloading and the metal component 68 is induced, as the first wall 100 and the second wall 102 are at least slightly urged away from one another in the contact region 156.
As indicated herein before, the tooth portions 88 of the metal component 68 that form a considerable portion of the stationary blade teeth 44 are U-shaped or V-shaped. That is, the tooth portions 88 comprise a first leg 160 and a second leg 162 that contact one another to form the tips 144. The first leg 160 is formed by the first wall 100. The second leg 162 is formed by the second wall 102.
In
At the support insert 70, particularly at the connector arm 148, at least one of a vertical offset lo or a vertical mounting angle αo (alphao) is present at opposite surfaces that are arranged to contact the first wall 100 and the second wall 102 in the mounted state, respectively.
In the detached state as shown in
As a consequence, a force-fitted or interference-fitted mounting of the metal component 68 and the support insert 70 is enabled. Preferably, a close contact between any of the first leg 160 and the second leg 162 and the corresponding surfaces of the connector arm 148 is possible. Hence, any resulting gaps after the mounting procedure are preferably avoided.
In connection with the above-described
As already discussed herein before, the metal component 268 comprises a first wall 300 and a second wall 302. In the mounted state of the stationary blade 242, the support insert 270 is arranged between the first wall 300 and the second wall 302 to form the blade set 226, and to define a guide slot 260 therein. In the mounted state, the movable blade 262 is accommodated in the guide slot 260, refer to reference numerals 310, 312 indicating respective support walls of the movable blade 262. Further, a contact region between the metal component 268 and the support insert 270 is indicated by a dashed box 356.
The metal component 268 comprises a first wall 500 and a second wall 502. In the mounted state of the stationary blade 442, the support insert 570 is arranged between the first wall 500 and the second wall 502 to form the blade set 426, and to define a guide slot 460 therein. In the mounted state, the movable blade 462 is accommodated in the guide slot 460, refer to reference numerals 510, 512 indicating respective support walls of the movable blade 562. Further, a contact region between the metal component 568 and the support insert 570 is indicated by a dashed box 556.
The metal component 668 comprises a first wall 700 and a second wall 702. In the mounted state of the stationary blade 642, the support insert 670 is arranged between the first wall 700 and the second wall 702 to form the blade set 626, and to define a guide slot 660 therein. In the mounted state, the movable blade 662 is accommodated in the guide slot 760, refer to reference numerals 710, 712 indicating respective support walls of the movable blade 762. Further, a contact region between the metal component 668 and the support insert 670 is indicated by a dashed box 756.
In any of
Hence, in
Similarly, in
Further reference is made to
In a first step S10, a sheet metal blank is provided based on which the metal component is formed. In a following step S12, a series of tooth slots is processed in the sheet metal blank, preferably in an unfolded state. Hence, relatively simple manufacturing methods may be used. In a further step S14, the originally planar sheet metal blank is transformed. This may involve bending or folding the sheet metal material around a folding edge that is parallel to and crosses the series of tooth slots. Hence, a first wall and a second wall are formed that are connected to define a series of stationary blade teeth.
In a further step S20, a support insert is provided that is arranged to be inserted in the metal component processed in steps S10 to S14. The support insert may be obtained through molding, particular through injection-molding. Hence, the support insert may be made from plastic material, for instance. At the support insert, further features may be integrally formed, for instance a guide protrusion, mounting features, lateral end pieces, etc.
Further, in a step S30, a movable blade for the blade set is provided. Generally, the movable blade is adapted to be accommodated in a guide slot that is jointly defined by the metal component and the support insert.
To assemble the blade set, in a first assembly step S40, the movable blade is arranged in a mounting position at the support insert. In the joined state obtained through step S40, the sub-assembly of the support insert and the movable blade may be inserted in the metal component in a further assembly step S50. The first wall and the second wall of the metal component embrace or cover the support insert and also the movable blade, at least partially. Both the metal component and the support insert form the stationary blade.
Preferably, the metal component and the support insert are force-fitted or interference-fitted. Hence, a certain preloading or pretensioning is induced in the metal component that generates a retaining force. In the resulting assembled blade set, the movable blade is movably accommodated in a guide slot formed between the metal component and the support insert.
As indicated by dashed blocks, further optional steps S60 and S70 may follow. The optional step S60 involves the provision of an end cap for the stationary blade. The end cap may be an injection-molded plastic part.
In the step S70, the end cap is mounted to the support insert, to secure the assembly of the metal component and the support insert, and to retain the movable blade between respective lateral ends of the stationary blade.
In alternative embodiments, the mounted state of the metal component and the support insert and the defined movable arrangement of the movable blade in the guide slot is otherwise secured.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.
In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single element or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
17173561 | May 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/063286 | 5/22/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/219704 | 12/6/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2114219 | Florman | Apr 1938 | A |
2151965 | Hanley | Mar 1939 | A |
2184757 | Samotey | Dec 1939 | A |
2249825 | Hanley | Jul 1941 | A |
2253037 | Knapp | Aug 1941 | A |
2273739 | Coletta | Feb 1942 | A |
2296094 | Dalkowitz | Sep 1942 | A |
2323655 | Hanley | Jul 1943 | A |
2326192 | Andis | Aug 1943 | A |
3008233 | Waggoner | Nov 1961 | A |
3107423 | Caesar | Oct 1963 | A |
3178815 | Madrid | Apr 1965 | A |
3477127 | Regan | Nov 1969 | A |
4174568 | Mixner | Nov 1979 | A |
4337575 | Trotta | Jul 1982 | A |
4403412 | Trotta | Sep 1983 | A |
4549352 | Ochiai | Oct 1985 | A |
4866843 | Kumano | Sep 1989 | A |
5341571 | Prochaska | Aug 1994 | A |
6418623 | Marcarelli | Jul 2002 | B1 |
6499218 | Rocha | Dec 2002 | B2 |
8689448 | Ren | Apr 2014 | B2 |
9381655 | Lau | Jul 2016 | B2 |
9604373 | Park | Mar 2017 | B2 |
10406702 | Vredeveld | Sep 2019 | B2 |
10639806 | Bozikis | May 2020 | B2 |
10647010 | Sablatschan | May 2020 | B2 |
11090824 | Bozikis | Aug 2021 | B2 |
11154998 | Liberatore | Oct 2021 | B2 |
20080052883 | Shiba | Mar 2008 | A1 |
20090188112 | Prochaska | Jul 2009 | A1 |
20090307908 | Nakasuka | Dec 2009 | A1 |
20130160296 | Park | Jun 2013 | A1 |
20130205595 | Bykowski | Aug 2013 | A1 |
20150047203 | Stepelbroek | Feb 2015 | A1 |
20170028576 | Sablatschan | Feb 2017 | A1 |
20170113361 | Feijen | Apr 2017 | A1 |
20170144319 | Sablatschan | May 2017 | A1 |
20180104834 | Zuidervaart | Apr 2018 | A1 |
20180257248 | Wu | Sep 2018 | A1 |
20180311845 | Moustakas | Nov 2018 | A1 |
20180311847 | Ntavos | Nov 2018 | A1 |
20180354146 | Brellis | Dec 2018 | A1 |
20190381681 | Park | Dec 2019 | A1 |
20220314478 | Galanis | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
106346519 | Jan 2017 | CN |
114043533 | Feb 2022 | CN |
3854547 | Jan 2021 | EP |
2013150412 | Oct 2013 | WO |
2016042158 | Mar 2016 | WO |
Entry |
---|
International Search Report and Written Opinion Dated Aug. 13, 2018 For International Application No. PCT/EP2018/063286 Filed May 22, 2018. |
Number | Date | Country | |
---|---|---|---|
20200164533 A1 | May 2020 | US |