Certain stationary exercise machines with reciprocating leg and/or arm portions have been developed. Such stationary exercise machines include stair climbers and elliptical trainers, each of which typically offers a different type of workout. For example, a stair climber may provide a lower frequency vertical climbing simulation while an elliptical trainer may provide a higher frequency horizontal running simulation. Additionally, these machines may include handles that provide support for the user's arms during exercise. However, the connections between the handles and leg portions of traditional stationary exercise machines may not enable sufficient exercise of the user's upper body. Generally, existing stationary exercise machines typically have minimal adjustability mainly limited to adjusting the amount of resistance applied to the reciprocating leg portions. Also, existing stationary machines with both upper and lower inputs (e.g., responsive to leg and arm movements) may not be equipped with means for determining the amount of power generated by one of the upper or lower inputs versus the other. It may therefore be desirable to provide an improved stationary exercise machine which addresses one or more of the problems in the field and which generally improves the user experience.
The description will be more fully understood with reference to the following figures in which components may not be drawn to scale, which are presented as various embodiments of the exercise machine described herein and should not be construed as a complete depiction of the scope of the exercise machine.
Described herein are embodiments of stationary exercise machines having reciprocating foot and/or hand members, such as foot pedals that move in a closed loop path. The disclosed machines can provide variable resistance against the reciprocal motion of a user, such as to provide for variable-intensity interval training. Some embodiments can comprise reciprocating foot pedals that cause a user's feet to move along a closed loop path that is substantially inclined, such that the foot motion simulates a climbing motion more than a flat walking or running motion. Some embodiments can further comprise reciprocating hand members that are configured to move in coordination with the foot pedals and allow the user to exercise the upper body muscles. Variable resistance can be provided via a rotating air-resistance based fan-like mechanism, via a magnetism based eddy current mechanism, via friction based brakes, and/or via other mechanisms, one or more of which can be rapidly adjustable while the user is using the machine to provide variable intensity interval training.
The machine 100 may include an upper moment-producing mechanism and a lower moment producing mechanism. The upper moment-producing mechanism and the lower moment producing mechanism may each provide an input into a crankshaft 125 (see e.g.,
In various embodiments, the lower moment-producing mechanism may include a first lower linkage 92 and a second lower linkage 92 corresponding to a left and right side of machine 100. Each of the first and second lower linkages may include one or more links operatively arranged to transform a force input from the user (e.g., from the lower body of the user) into a moment about the crankshaft 125. For example, the first and second lower linkages may include one or more of first and second pedals 132, first and second rollers 130, first and second lower reciprocating members 126 (also referred to as foot members 126), and/or first and second crank arms 128, respectively. The first and second lower linkages may operably transmit a force input from the user into a moment about the crankshaft 125.
The first and second crank arms 128 are fixed relative to the respective side of the crankshaft 125. The machine 100 may optionally include first and/or second crank wheels 124 which may be rotatably supported on opposite sides of the upper support structure 120 about a horizontal rotation axis A. The crank arms 128 may be positioned on outer sides of the crank wheels 124 and may be fixed relative to the respective first and second crank wheels 124. The crank arms 128 may be rotatable about the rotation axis A, such that rotation of the crank arms 128 causes the crankshaft 125 and/or crank wheels 124 to rotate. The first and second crank arms 128 extend from the crankshaft 125 (e.g., from the axis A) in opposite radial directions to their respective radial ends. For example, the first side and the second side of the crank shaft 125 may be fixedly connected to the output ends of the first and second crank arms 128 and the input ends of each crank arm may extend radially from the connection between the crank arm and the crank shaft. First and second lower reciprocating members 126 may have forward ends (i.e., output ends) that are pivotably coupled to the radial ends (i.e., input ends) of the first and second crank arms 128, respectively. The terms pivotably and pivotally are used interchangeably herein. The rearward ends (i.e., input ends) of the first and second lower reciprocating members 126 may be coupled to first and second foot pedals 132, respectively. The rearward ends (i.e., input ends) of the first and second lower reciprocating members 126 may thus be interchangeably referred to as pedal ends.
First and second rollers 130 may be coupled to the first and second lower reciprocating members 126, respectively, for example to or proximate the pedal ends or to an intermediate location. In various examples, the first and second rollers 130 may be connected to the pedals, e.g., the first and second pedals 132 may each have first ends with first and second rollers 130, respectively, extending therefrom. Each of the first and second pedals 132 may have second ends with first and second platforms 126b (or similarly pads), respectively. First and second brackets 126a may form the portion of the first and second pedals 132 which connects the first and second platforms 132b and the first and second brackets 132a. The first and second lower reciprocating members 126 may be fixedly connected to the first and second brackets 126a between the first and second rollers 130, respectively, and the first and second platforms 132b, respectively. The connection may be closer to a front of the first and second platform than the first and second rollers 130. The first and second platforms 132b may be operable for a user to stand on and provide an input force. The first and second rollers 130 rotate about individual roller axes T. The first and second rollers may rotate on and travel along first and second inclined members 122, respectively. The first and second inclined members 122 may form a travel path along the length and height of the first and second incline members. The rollers 130 can rollingly translate along the inclined members 122 of the frame 112. In alternative embodiments, other bearing mechanisms can be used to provide translational motion of the lower reciprocating members 126 along the inclined members 122 instead of or in addition to the rollers 130, such as sliding friction-type bearings.
When the foot pedals 132 are driven by a user, the pedal ends of the reciprocating members 126 (also referred to as foot members 126) translate in a substantially linear path via the rollers 130 along the inclined members 122. In alternative embodiments, the inclined members can comprise a non-linear portion, such as a curved or bowed portion, such that pedal ends of the foot members 126 translate in non-linear path via the rollers 130 along the non-linear portion of the inclined members. The non-linear portion of the inclined members can have any curvature, such as a curvature of a constant or non-constant radius, and can present convex, concave, and/or partially linear surfaces for the rollers to travel along. In some embodiments, the non-linear portion of the inclined members 122 can have an average angle of inclination of at least 45°, and/or can have a minimum angle of inclination of at least 45°, relative to a horizontal ground plane.
The output ends of the foot members 126 move in circular paths about the rotation axis A, which drives the crank arms 128 and/or the crank wheels 124 in a rotational motion about axis A. The circular movement of the output ends of the foot members 126 causes the pedal ends to pivot at the roller axis D as the rollers (and thereby roller axis D) translates along the inclined members 122. The combination of the circular motion of the output ends, the linear motion of the pedal ends, and pivotal action about the axis D, causes the pedals 132 to move in non-circular closed loop paths, such as substantially ovular and/or substantially elliptical closed loop paths. The closed loop paths traversed by different points on the foot pedals 132 can have different shapes and sizes, such as with the more rearward portions of the pedals 132 traversing longer distances. A closed loop path traversed by the foot pedals 132 can have a major axis defined by the two points of the path that are furthest apart. The major axis of one or more of the closed loop paths traversed by the pedals 132 can have an angle of inclination closer to vertical than to horizontal, such as at least 45°, at least 50°, at least 55°, at least 60°, at least 65°, at least 70°, at least 75°, at least 80°, and/or at least 85°, relative to a horizontal plane defined by the base 114. To cause such inclination of the closed loop paths of the pedals 132, the inclined members 122 can comprise a substantially linear portion over which the rollers 130 traverse. The inclined members 122 form a large angle of inclination a relative to the horizontal base 114, such as at least 45°, at least 50°, at least 55°, at least 60°, at least 65°, at least 70°, at least 75°, at least 80°, and/or at least 85°. This large angle of inclination which sets the path for the foot pedal motion can provide the user with a lower body exercise more akin to climbing than to walking or running on a level surface. Such a lower body exercise can be similar to that provided by a traditional stair climbing machine.
In various embodiments, the upper moment-producing mechanism may include a first upper linkage 90 and a second upper linkage 90 corresponding to a left and right side of machine 100. Each of the first and second upper linkages may include one or more links operatively arranged to transform a force input from the user (e.g., from the upper body of the user) into a moment about the crankshaft 125. For example the first and second upper linkages may include one or more of first and second handles 134, first and second links 138, first and second upper reciprocating members 140 (also referred to herein as hand member 140), and/or first and second virtual crank arms 142a, respectively. The first and second upper linkages may operably transmit a force input from the user, at the handles 134, into a moment about the crankshaft 125. The first and second handles 134 may be pivotally coupled to the upper support structure 120 at a horizontal axis D.
The handles 134 may be rigidly connected to the input end of respective first and second links 138 such that reciprocating pivotal movement of the handles 134 about the horizontal axis D causes corresponding reciprocating pivotal movement of the first and second links 138 about the horizontal axis D.
For example, the first and second links 138 may be cantilevered off of handles 134 at the pivot aligned with the D axis. Each of the first and second links 138 may have angle ω with the respective handles 134. The angle ω may be measured from a plane passing through the axis D and the curve in the handle proximate the connection to the link 138. The angle ω may be any angle such as angles between 0 and 180 degrees. The angle ω may be optimized to one that is most comfortable to a single user or an average user. The links 138 are pivotably coupled at their radial ends (i.e., output ends) to first and second reciprocating hand members 140. The lower ends of the hand members 140 may include respective circular disks 142 (see e.g.,
The lower ends of the upper reciprocating members 140 may be pivotably connected to the first and second virtual crank arms 142a (see
The links 138 are pivotably coupled at their radial ends (i.e., output ends) to first and second upper reciprocating members 140. The links 138 and upper reciprocating members 140 are pivotally coupled at respective pivots coaxial with axes C. The lower ends of the upper reciprocating members 140 include respective annular collars 141 and respective circular discs 142, each rotatable within the respective collar. As such, the respective circular disks 142 are rotatable relative to the rest of the upper reciprocating member 140 about respective disk axes B. The disk axes B are parallel to the rotation axis A and offset radially in opposite directions from the axis A.
As the handles 134 articulate back and forth (i.e., reciprocate pivotally about axis D), the links 138 move in corresponding arcs, which in turn articulates the upper reciprocating members 140. Via the fixed connection between the upper reciprocating member 140 and annular collar 141, the articulation of handle 134 also moves annular collar 141. As rotatable disk 142 is fixedly connected to and rotatable around the crankshaft which pivots about axis A, rotatable disk 142 also rotates about axis A. As the upper reciprocating member 140 articulates back and forth it forces the annular collar 141 toward and away from the axis A along a circular path with the result of causing axis B and/or the center of disk 142 to circularly orbit around axis A. As the crank arms 128 and/or crank wheels 124 rotate about the axis A, the disk axes B orbit about the axis A. The disks 142 are also pivotably coupled to the crank axis A, such that the disks 142 rotate within the respective lower ends of the upper reciprocating members 140 as the disks 142 pivot about the crank axis A on opposite sides of the upper support member 120. The disks 142 can be fixed relative to the respective crank arms 128, such that they rotate in unison around the crank axis A when the pedals 132 and/or the handles 134 are driven by a user.
The upper linkage assemblies may be configured in accordance with the examples herein to cause the handles 134 to reciprocate in opposition to the pedals 132 such as to mimic the kinematics of natural human motion. For example, as the left pedal 132 is moving upward and forward, the left handle 134 pivots rearward, and vice versa. As shown in
The exercise machine 100 may include a resistance mechanism operatively arranged to resist the rotation of the crankshaft. In some embodiments, the exercise machine may include one or more resistance mechanism such as an air-resistance based resistance mechanism, a magnetism based resistance mechanism, a friction based resistance mechanism, and/or other resistance mechanisms.
For example, resistance may be applied via an air brake, a friction brake, a magnetic brake or the like. The machine 100 may include an air-resistance based resistance mechanism, or air brake 150, that is rotationally mounted to the frame 112 on a horizontal shaft 166. The machine 100 may additionally or alternatively include a magnetic-resistance based resistance mechanism, or magnetic brake 160 (see e.g.,
One or more of the resistance mechanisms can be adjustable to provide different levels of resistance at a given reciprocation frequency. Further, one or more of the resistance mechanisms can provide a variable resistance that corresponds to the reciprocation frequency of the exercise machine, such that resistance increases as reciprocation frequency increases. For example, one reciprocation of the pedals 132 can cause several rotations of the air brake 150 and rotor 161 to increase the resistance provided by the air brake 150 and/or the magnetic brake 160. The air brake 150 can be adjustable to control the volume of air flow that is induced to flow through the air brake at a given angular velocity in order to vary the resistance provided by the air brake.
The magnetic brake 160 provides resistance by magnetically inducing eddy currents in the rotor 161 as the rotor rotates. As shown in
In some embodiments, the brake caliper 162 can be adjusted rapidly while the machine 10 is being used for exercise to adjust the resistance. For example, the radial position of the magnets 164 of the brake caliper 162 relative to the rotor 161 can be rapidly adjusted by the user while the user is driving the reciprocation of the pedals 132 and/or handles 134, such as by manipulating a manual lever, a button, or other mechanism positioned within reach of the user's hands (see e.g.,
A stationary exercise machine in accordance with some examples herein may include a frame, a crankshaft rotatably supported by the frame, an upper moment-producing mechanism and a lower moment-producing mechanism both operatively engaged to the crankshaft to cause the crankshaft to rotate. In some examples, the lower moment producing mechanism includes at least one crank arm coupled to the crankshaft to cause rotation of the crankshaft responsive to rotation of the crank arm. In some examples, the upper moment producing mechanism may include at least one link coupled to the crankshaft to also cause rotation of the crankshaft responsive to movement of the link. In some examples, the link may be a rigid link, such as a straight bar member, or a portion of a rotating disk, or a plurality of links operatively coupled to the crankshaft to cause it to rotate. The link may also be referred to as a virtual crank arm. The lower moment-producing mechanism and the upper moment-producing mechanism may be resiliently coupled to one another, such as via a resilient coupling between the crank arm of the lower moment-producing mechanism and the link or virtual crank arm or the upper moment-producing mechanism. In some examples, herein, the stationary exercise machine may further include a measurement apparatus which may be configured to measure differential forces between the upper and lower mechanisms. The measurement apparatus may employ one or more optical sensing components, strain gauges, load cells, etc. for measuring the applied force via the upper moment-producing mechanism and independently and/or relatively via the lower moment-producing mechanism. In one embodiment, the measurement apparatus may include an optical sensor operatively arranged with a pair of code wheels to detect a relative displacement between the two code wheels. In some examples, the first code wheel may be coupled such that it rotates synchronously with the crank arm of the lower moment-producing mechanism. For example, the first code wheel may be rigidly coupled to the crank shaft and/or the crank arm of the lower moment-producing mechanism. The second code wheel may be coupled such that it rotates synchronously with the virtual crank arm, e.g., by being rigidly or otherwise operatively coupled to the virtual crank arm. The two code wheels may be movable relative to one another to allow a relative displacement between the code wheels responsive to application of force via both of the upper and lower moment-producing mechanisms. In some examples, the code wheels may be coaxially coupled to one another and rotatable about the crank shaft axis.
Referring now also to
In some embodiments, the upper and lower moment-producing mechanisms 90 and 92 of exercise machine 100 may be resiliently coupled to one another such that force applied to the crank shaft via one of the moment-producing mechanisms versus the other may be determined. A resilient coupling is generally a coupling which may deform (e.g., bend, stretch, deflect, compress) under loads typical for normal use and is able to recoil or spring back substantially into its original shape, configuration, or position after deforming (e.g., bending, stretching, deflecting, or being compressed), for example as is typical for components such as springs or other compliant members (e.g., a compliant material such as rubber). The terms compliant and resilient may be used interchangeably herein. In one example, and as described, the crank arms 128 may be rigidly coupled to the crank shaft 125 to cause the crank shaft 125 to rotate responsive to movement of the pedals 132. On the other hand, the output member of the upper moment-producing mechanism 90 (e.g., disk 142 of one of the left or right upper linkages 90) may be resiliently coupled to the crank shaft 125 thereby enabling some relative movement (e.g., slip) between the disk 142 and the crank shaft 125 when load from the upper moment-producing mechanism 90 is being applied to the crank shaft 125. The relative movement or slip may be temporary, e.g., while load is being applied to each of the two resiliently coupled components or assemblies, and the relative displacement may be removed (e.g., due to the resilience of the coupling) in the absence of applied loads.
In some embodiments, the processing circuit 210 of the energy tracking system 200 may be communicatively coupled to a measurement apparatus 230, which may be operable to generate signals indicative of relative movement of the upper and lower moment-producing mechanisms 90 and 92, respectively, as will be further described. The measurement apparatus 230 may be operatively coupled to one or more moving components of the exercise machine 100. For example, as shown in
The measurement apparatus 230 may be implemented using an optical sensing component 260 in conjunction with a pair of concentric code wheels 240 and 250. For example, as shown in
The other code wheel (e.g., second code wheel 250) may be rigidly coupled to the virtual crank arm 142a, in this case rigidly coupled to the disk 142 which defines the virtual crank arm 142a. The disk 142 rotates eccentrically about the axis A of the crank shaft 125. The code wheel 250 may be coaxially arranged at the axis A such that the code wheel 250 rotates about axis A synchronously with rotation of the disk 142, e.g., responsive to force applied via the upper moment-producing mechanism 90. Thus, the force applied to the crank shaft 125 via the virtual crank arm 142a, and thus via the upper moment-producing mechanism 90, can be determined by tracking the angular position and/or velocity of the second code wheel. As described, the upper and lower moment-producing mechanisms 90 and 92 may be resiliently coupled. For example, the upper and lower moment-producing mechanisms 90 and 92 may be resiliently coupled by a resilient coupling between at least one of the left or right crank arms 128 and the respective disk 142. This may result in a slight relative displacement (e.g., a shift or offset) between the crank arm 128 and the disk 142 and thus between the first and second code wheels 240 and 250. The slight relative displacement (e.g., a shift or offset) may be indicative of the difference in force/energy applied to either side of the resilient member. The energy tracking system 200 may be configured to detect this slight relative displacement (e.g., shift or offset) and thus determine relative input of force via the upper moment-producing mechanism 90 versus the lower moment producing mechanism 92.
Resilient coupling between the upper and lower moment-producing mechanisms 90 and 92 may be achieved for example in accordance with the embodiment shown in
Each of the code wheels 240 and 250 includes a plurality of slots or windows (e.g., first windows 242-1 through 242-9 of the first code wheel 240 and second windows 252-2 through 252-9 of the second code wheel 250). In some examples, the code wheels 240 and 250 may each include the same number of windows. In some examples, the first windows 242 of the code wheel 240 may have the same width W1 and the width W2 of the second windows 252 of the code wheel 250. The windows 242, 252 of each code wheel may be arranged radially along the peripheral portion of each code wheel at about the same radial distance from the center of each code wheel such that at least a portion of each window of the one of the code wheels overlaps a portion of a respective window of the other code wheel, to define an effective window of the pair of code wheels. That is, as shown e.g., in
In
During use, e.g., when the crank shaft 125 is rotated only responsive to force applied by one of the moment-producing mechanism (e.g., the lower moment-producing mechanism 92), the sensing component 260 may produce a signal pattern having a generally rectangular waveform 310-1 as shown in
The machine 100 may be configured such that, during use of the machine, the pair of code wheels remain in the neutral position (e.g., with the alignment features 243 and 253 substantially aligned) relative to one another if force is being applied via only one of the upper or lower moment-producing mechanisms 90, 92, typically via the lower moment-producing mechanisms 90 which is driven by the legs of the user. This may be achieved for example, by selecting the stiffness of the resilient coupling between the upper or lower moment-producing mechanisms 90, 92 such that the resilient coupling does not appreciably deform in the absence of force from both the upper and lower moment-producing mechanisms 90, 92. Thus, in some examples, the resilient coupling may be sufficiently stiff to prevent any appreciable compression, and thus any detectable slip, absent the application of force by both the upper and lower moment-producing mechanisms 90, 92. The energy tracking system 200 may be configured to detect variations from the neutral alignment, e.g., by detecting a change in the width WE of the effective window. Such variations from the neutral alignment may thus be indicative of slip and thus indicative of the application of force via the upper moment producing mechanism.
Returning back to the illustrated examples, the width of a positive pulse 312 may correspond to the width of the effective window. Thus, when force is applied via the upper moment-producing mechanism in a direction causing the wheel to slip in the same direction as the rotation direction (e.g., direction 270) of the crank shaft, the width of the effective window may decrease, and correspondingly the period of the positive pulse 312 may decrease as shown in the wave form 310-2
When no appreciable force is being applied by the upper moment-producing mechanism (e.g., responsive to upper body work by the user such as when the user's arms are free riding on work produced by the user's lower body), the pair of code wheels may remain in the neutral alignment. The energy tracking system 200 may be configured to display an indication of zero or nominal work being performed by the user's upper body. The narrowing of the effective window may be indicative of additional force being applied by the upper moment-producing mechanism (e.g., additional to just allowing the arm links to free ride on the force applied by the lower moment-producing mechanism). In such instances, the energy tracking system 200 may be configured to display an indication of positive work being performed by the user's upper body. Depending on the amount of narrowing of the effective window, the energy tracking system 200 may be configured to determine and display an indication of the relative amount of additional work being performed by the user's upper body. A widening of the effective window may be indicative of resistive force being applied by the upper moment-producing mechanism (e.g., against the work being done by the lower moment-producing mechanism). In such instances, the energy tracking system 200 may be configured to display an indication of negative work being performed by the user's upper body and/or the amount of negative work based on the amount of narrowing of the effective window. In some examples, the energy tracking system 200 may be additionally or alternatively configured to display an instruction to modify movement of the upper body (e.g., to increase the speed or effort exerted by the upper body). The instruction may be displayed until the energy tracking system 200 detects zero or nominal work being performed by the user's upper body, or in some cases until the energy tracking system 200 detects positive work being performed by the user's upper body.
All relative and directional references (including: upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, side, above, below, front, middle, back, vertical, horizontal, and so forth) are given by way of example to aid the reader's understanding of the particular embodiments described herein. They should not be read to be requirements or limitations, particularly as to the position, orientation, or use unless specifically set forth in the claims. Connection references (e.g., attached, coupled, connected, joined, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other, unless specifically set forth in the claims.
Those skilled in the art will appreciate that the presently disclosed embodiments teach by way of example and not by limitation. Therefore, the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall there between.
This application is a continuation of U.S. patent application Ser. No. 15/633,689, filed Jun. 26, 2017, entitled “STATIONARY EXERCISE MACHINE WITH A POWER MEASUREMENT APPARATUS,” now issued as U.S. Pat. No. 10,226,657, which claims benefit under 35 U.S.C. § 119 of the earlier filing date of U.S. Provisional Application No. 62/440,873, filed Dec. 30, 2016, entitled “STATIONARY EXERCISE MACHINE WITH A POWER MEASUREMENT APPARATUS,” which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5486923 | Mitchell et al. | Jan 1996 | A |
5754295 | Mitchell et al. | May 1998 | A |
6147674 | Rosenberg et al. | Nov 2000 | A |
6356847 | Gerlitzki | Mar 2002 | B1 |
9950209 | Yim et al. | Apr 2018 | B2 |
20050233871 | Anders et al. | Oct 2005 | A1 |
20060003872 | Chiles | Jan 2006 | A1 |
20080248926 | Cole et al. | Oct 2008 | A1 |
20090011907 | Radow et al. | Jan 2009 | A1 |
20090298649 | Dyer et al. | Dec 2009 | A1 |
20140274575 | Yim et al. | Sep 2014 | A1 |
20150065303 | Born | Mar 2015 | A1 |
20160008658 | Yim et al. | Jan 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190201730 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62440873 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15633689 | Jun 2017 | US |
Child | 16296050 | US |