The present technology relates generally to improving the quality of source text that is to be translated into one or more languages. The source text may be improved using one or more types of statistical linguistic analysis to evaluate source text input into an authoring environment.
Purely rule-based methods for analyzing the translatability of source texts into other languages are often inflexible processes that generate considerable noise. For example, false positive errors may be generated when evaluating a possible translation of a source text into one or more target languages because the rule-based analysis outputs either a pass or fail for a proposed translation. Purely rule-based methods for analyzing the overall quality of source text for linguistic features such as spelling, syntax, grammar, style, word choice, and so forth are also similarly deficient.
According to some embodiments, the present technology may be directed to methods that include: (a) evaluating a source text using one or more types of statistical linguistic analysis to determine a translatability of the source text; and (b) providing the translatability of the source text to a client node.
According to other embodiments, the present technology may be directed to systems that include: (a) at least one computing device comprising a memory that includes executable instructions and a processor executing the instructions to: (i) evaluate a source text using one or more types of statistical linguistic analysis to determine a translatability of the source text; and (ii) provide the translatability of the source text to a client node.
According to additional embodiments, the present technology may be directed to methods that include improving an overall quality of a source text input into an authoring environment, the overall quality of the source text being determined from an analysis of outputs of a plurality of statistical linguistic analyzers, the overall quality of the source text being improved by replacing at least a portion of the source text with one or more suggestions having a high statistical match with content previously reviewed as high quality and applicable to a target audience.
According to various embodiments, the present technology may be directed to a non-transitory machine-readable storage medium having embodied thereon a program. In some embodiments the program may be executed by a machine to perform a method. The method may comprise: (a) evaluating a source text using one or more types of statistical linguistic analysis to determine a translatability of the source text; and (b) providing the translatability of the source text to a client node.
Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
Generally speaking, the present technology may be used to improve the translatability of a source text. Additionally, the present technology may be configured to improve an overall quality of a source text in order to reduce translation costs, increase search engine optimization attributes, and/or improve other qualities of the source text. In some instances, the present technology may increase readability of content and provide assistance to non-native writers (e.g., authors who are not fluent in the source language), as well as helping to ensure that content adheres to established corporate guidelines.
These and other advantages of the present technology will be described in greater detail below with reference to the collective drawings (e.g.,
In some embodiments, the system 105 may improve an overall quality of a source text input into an authoring environment. The overall quality of the source text may be determined from an analysis of outputs of a plurality of statistical linguistic analyzers. The system 105 may improve the overall quality of the source text by replacing at least a portion of the source text with one or more suggestions generated from one or more statistical models. Additional details regarding many of the statistical linguistic analyzers which may be used in accordance with the present disclosure are provided below.
In some instances, the system 105 may be implemented within a cloud-based computing environment. In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors and/or that combines the storage capacity of a large grouping of computer memories or storage devices. For example, systems that provide a cloud resource may be utilized exclusively by their owners, such as Google™ or Yahoo!™; or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
The cloud may be formed, for example, by a network of servers, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource consumers or other users). Typically, the users place workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depend on the type of business associated with the user.
The system 105 may communicatively couple with the client node 110 via a network connection, which may comprise any private, such as a local area network (LAN) and/or public network, such as the Internet, although the network may comprise any computing network that would be known to one of ordinary skill in the art with the present disclosure before them.
According to some embodiments, the system 105 may receive a source text (e.g., words in a source language) from the authoring environment 110A. That is, when an end user types or otherwise inputs source text into the authoring environment 110A, the source text may be passed to the system 105. In some circumstances, the words may be passed in a synchronous manner, such that when the end user completes typing of a word (or even character-by-character) into the authoring environment 110A, the word is then passed to the system 105. In other instances, the source text may be passed to the authoring environment 110A upon the end user entering a completed sentence.
It is envisioned that after receiving the source text from the authoring environment 110A, the system 105 may transmit the source text to one or more statistical linguistics analyzers 120. The number of statistical linguistic analyzers used to process the source text may vary according to author preference. For example, the author may only desire to understand the translatability of their source text from a purely translation-based analysis. In other instances, the author may also desire to understand the translatability of their source text with reference to other statistical linguistic metrics such as spelling, grammar, style, expressions, and so forth, in addition to the translation-based analysis. In some embodiments, the present technology may allow for word frequency and n-gram analysis to determine rare word sequences. Thus, the author may evaluate the translatability of the source text using any desired permutation of statistical linguistic analysis methods described herein.
For example, while a source text that includes a spelling error may translate well into one target language, the same may not be true when the source text is translated into other target languages. Errors in grammar, style, syntax, terminology, expressions, and so forth may also pose significant problems when translating a source text into multiple target languages. Thus, it may be advantageous to conduct a multifaceted translatability analysis for an instance of source text.
Advantageously, the “translatability” of a source text may refer not only to how well the source text may be translated into one or more target languages from statistical matching against various parallel corpora, but also how other statistical linguistic metrics (e.g., spelling, SEO value, grammar, etc.) quantify the overall quality of the source text.
According to some embodiments, the translatability of a source text may be determined by transmitting the source text to one or more statistical machine translation engines, such as statistical machine translation engine, or “SMT engine 125.” The SMT engine 125 may generate a translation of the source text using, for example, a parallel corpus for facilitating the capability of translating words in the source language into a target language. In some embodiments, the SMT engine 125 may comprise a translation memory. In some instances, the SMT engine 125 may locate possible alternative translations for the source text. The SMT engine 125 may also generate trust scores for one or more translations of the source text. In other instances, the system 105 may generate a trust score from a translation generated by one or more SMT engines.
Briefly described, to determine a trust score for a translation the SMT engine 125 may evaluate the source text and the target translation to determine the accuracy of the translation. The SMT engine 125 may evaluate the translation complexity and the translation constructs of the translation to determine a trust score.
In other instances, the SMT engine 125 may compare a target translation generated by a trusted translation system against a translation of the same source text generated by an untrusted translation system. The SMT engine 125 may efficiently calculate a trust score for the target translation of the trusted translation system. In some embodiments, by determining differences between the translations of the same source text by both the trusted and untrusted translation systems, an SMT engine 125 may infer or approximate a trust score for the translation generated by an untrusted translation system. For example, if there are relatively few differences between the target translations, and the trust score for the trusted translation is high, the SMT engine 125 may infer that the trust score for an untrusted translation system is also high.
In some instances, the SMT engine 125 may include a domain-based statistical machine translation engine. A domain based SMT engine is a SMT engine that has been trained on a domain specific corpus of training documents. For example, an SMT engine that is used in the travel industry may be trained on a training corpus of travel specific documents. Thus, if your source text is domain specific, a domain-based SMT engine may be used to efficiently translate the domain specific source text. Thus, trust scores generated by domain-based SMT engines are indicative of how translatable the source text is relative to a particular domain. Additionally, trust scores may also be utilized to determine how well textual content matches the domain used by the domain-based SMT engine.
Translating a domain specific source text with a domain-based SMT engine, where the domain of the source text and the domain of the SMT engine are different from each another may be used to create a “general understanding” trust score. For example, translating a source text that is sports specific with a non-domain specific (general) SMT may be use as a basis for calculating a general readability score for non-domain experts. It can be used to pick up domain jargon embedded in the text. Indeed, brief source texts with correctly spelled words, and simple and proper grammar, are more likely to be translated correctly by any given SMT engine, regardless of the domain associated with either the source text or the parallel corpus used by the SMT engine.
In some instances, to determine a more robust translatability for a source text, trust scores may be generated by translating the source text into a plurality of target languages as well as a plurality of domains for each of the target languages.
In some instances, the SMT engine 125 may obtain translations from cache storage. That is, as translations of source text occur, each SMT engine may store translation pairs in a cache repository. The cache repository may reside in memory of the SMT engine 125 or may reside in cloud storage. Additionally, trust scores generated for the translation pairs may also be stored in cache storage. When the source text includes a previously translated instance of source text, the SMT engine 125 may obtain the translation and/or trust score from the cache repository, which results in performance enhancements compared to a retranslation of the source text from scratch.
Additional details regarding the generation of trust scores for translations may be found in U.S. patent application Ser. No. 13/539,037, filed on Jun. 29, 2012, U.S. patent application Ser. No. 12/820,061, filed on Jun. 21, 2010, and U.S. patent application Ser. No. 13/037,262, filed on Feb. 28, 2011, all of which are hereby incorporated by reference herein including all reference cited therein.
Again, the trust score may be used, at least in part, as the basis for determining the translatability of the source text. Thus, in some instances, the translatability may correspond to a trust score for translating the source text into a single target language. In other instances, the trust score may comprise an average trust score. The average trust score may comprise an average of all trust scores generated for a plurality of translations for multiple languages. Therefore, if the source text is to be translated into a plurality of languages, the trust score may be a composite or average of all trust scores. In other embodiments, if certain translations are relatively unimportant, the trust score may comprise an average weighted score. For example, if the author indicates that translations into French and German are more important than translations into Greek or Spanish, the system 105 may assign a different weighting to each trust score used in generating the average trust score value.
The system 105 may use the trust score(s) as a basis for assigning a translatability to the source text. The system 105 may utilize ranges of trust scores to assign a translatability to the source text. For example, if trust scores are measured as a percentage match between the source text and a trusted translation, the system 105 may create percentages to various ranges of trust scores. Relatively low trust scores for a source text may be associated with relatively low translatability, while relatively high trust scores for a source text may be associated with relatively high translatability. Thus, the translatability of the source text may directly correlate with the trust score generated for the source text.
A first sentence 205 of source text may include the words “This is a bright green sentence.” This source text is relatively simple to translate as the first sentence 205 includes simple words. The grammar and syntax used to craft the first sentence 205 is simple and the first sentence 205 contains no complex word pairs, homonyms, or other features that may complicate the translation process. Additionally, the brevity of the first sentence 205 is beneficial when considering potential multilanguage translations. Moreover, if the content is to be used in mobile or web-based publications, brevity of content may be preferred.
Comparatively, the second sentence 210 of source text includes more words and more adjectives. Additionally, the syntactic structure of “sentence that turns medium green” may be relatively difficult to translate into other languages. Therefore, the system 105 may assign a medium shade of green to the second sentence 210. According to some embodiments, color choices can be different based upon task the author is trying to accomplish. For example, the system 105 highlight/color all sentences where a human translator is 100% necessary. The colors used in the example where chosen to help an author dynamically improve a piece of text. An editor tasked with reviewing a document may have a different goal and may want the riskiest text to be strongly highlighted.
Sentences 215-225 are comparatively more difficult to translate than first and second sentences 205 and 210, respectively, for a variety of reasons including word complexity, word combination complexity, grammar errors, and so forth. Each of the sentences 215-225 may be highlighted with a different color. It will be understood that source texts that produce extremely poor translations or that include egregious spelling, syntax, or grammar errors may be highlighted with a bold color such as red.
If the end user desires to determine translatability of the source text in light of more than a trust score, the system 105 may transmit the source text to one or more of the statistical linguistics analyzers 120. Additionally, these additional analyzers may also be used to determine an overall quality of the source text.
Exemplary statistical linguistics analyzers 120 may comprise not only the aforementioned SMT engine(s) 125, but also a statistical spelling module 130, a statistical term/expression module 135, a statistical grammar module 140, a statistical style module 145, and a statistical syntax module 150—just to name a few. One of ordinary skill in the art will appreciate that the statistical linguistics analyzers 120 may comprise any number of devices that are configured to analyze source text relative to one or more facets of linguistics. In some instances, one or more of the statistical linguistics analyzers 120 may employ rule-based verification where appropriate. The use of rule-based verification may avoid false positive analysis of content.
As used herein, the term “module” may also refer to any of an application-specific integrated circuit (“ASIC”), an electronic circuit, a processor (shared, dedicated, or group) that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality. In other embodiments, individual modules may include separately configured web servers.
For example, if the end user desires to analyze overall quality of the source text in terms of spelling, grammar, and syntax, the system 105 may transmit the source text to the statistical spelling module 130, the statistical grammar module 140, and the statistical syntax module 150, respectively. Each of these modules may generate a unique score for the source text. Each of these scores may be used, along with the translation trust score, to determine an overall quality for the source text.
Additionally, the author may assign weights to each of these facets of statistical linguistic analysis. For example, the author may desire to attribute more weight to correctness of spelling as opposed to syntax. Thus, the system 105 may apply a weighting to each of the scores that are used to calculate an overall quality for the source text. An exemplary equation may include an overall quality Q is equal to TT+0.7(LS)+0.4(LG)+0.2(LX), where TT is a translation trust score, TS is a statistical linguistic spelling score, TG is a statistical linguistic grammar score, and TX is a statistical linguistic syntax score.
According to some embodiments, the trust score may also correlate to an estimated translation cost for translating the source text. For example, a relatively low trust score may indicate that the source text will be difficult to translate. Contrastingly, a relatively high trust score may indicate that the source text will be more easily translated. In most instances, translation difficulty is strongly correlated to translation cost. Therefore, the lower the trust score, the higher the estimated translation cost for the source text. Estimated translation cost amounts may be determined by evaluating translation costs for translations of similar source texts relative to the subject source text.
In some instances, authors may set a threshold for which a trust score is high enough to use the machine translation. Again, machine translation is significantly more cost effective than human translation. However, this may not apply for all languages. So per language, authors may establish a cut off trust score, but combining many languages may make the cost drop off more fluent.
In some instances, the system 105 may provide suggestions for improving the translatability of the source text. If the source text is determined by the system 105 to have a relatively poor translatability, the system 105 may provide suggestions for altering the source text to improve the translatability of the source text. Advantageously, the system 105 may provide suggestions for increasing the trust score of the source text.
In some instances, an SMT may be trained automatically by collecting original “bad” sentences and corresponding final “good” sentences and using them as translation pairs. Such SMTs may be very useful to non-native writers because they tend to make the same set of mistakes. Additionally, subject matter experts tend not to be professional writers, increasing the likelihood of the content to contain mistakes.
Moreover, the source text is evaluated not only for translatability, but also for overall quality, using such linguistic metrics such as spelling, grammar, syntax, SEO quality, translation cost, and so forth, the system 105 may suggest improvements to the source text. These suggested improvements to the source text represent statistically relevant suggestions that lie at the intersection of various facets of statistical linguistic analysis methods conducted on the source text. Stated otherwise, suggestions for the source text that rank highly relative to each linguistic analysis method are highly likely to increase the overall quality of the source text.
The suggestions may transform a poorly structured sentence in a source language into a well-structured sentence in the source language that is likely to result in good translations, low translation costs, and high SEO values. Abstractly, the system 105 performs a “translation” of the source text from poorer quality content to higher quality content.
Returning to the example source texts of
In some instances, the suggestions may include proposed modifications to the source text obtained from an n-gram statistical model. An n-gram statistical model may be used to predict a suitable word for an n-gram (e.g., n-number of words) sentence. Thus, if the author provides a four word sentence, the n-gram model may “predict” one or more possible words that may be used as a fifth word for the sentence. The n-gram model may also be used to predict suitable alternatives for replacing words in the current sentence. The n-gram model may be used to select suggestions by finding similar word patterns that exist in a translation dictionary or a parallel corpus.
While an n-gram statistical model has been described, one of ordinary skill in the art will appreciate that other statistical translation models, such as hidden Markov models, n-tuple models, collocation, and so forth, may also likewise be used in accordance with the present technology.
Additionally, statistically relevant suggestions for source text improvement may also be determined for spelling, grammar, syntax, and other linguistic features which have been previously described. For example, the suggestions may comprise suggestions for replacing a misspelled word. The suggestion may also be obtained using an n-gram spelling model that allows the system 105 to choose the most statistically relevant replacement word for the sentence.
Statistically relevant suggestions for the source text may be utilized by the system 105 to improve not only the translatability of the source text, but also the overall quality of the source text relative to various qualities such as search engine optimization. For example, a source text which includes word with a spelling error may nevertheless be translated into a target language correctly. Unfortunately, the spelling error may affect the overall quality of the source text. Typos are not well received by consumers. Additionally, the system 105 may suggest that a properly translated word be replaced with a synonymous word or phrase because the suggested word or phrase is more advantageous for search engine optimization. In some instances, relevant suggestions that may improve the overall quality of a text may include replacing or conforming current to correspond to content that has a high statistical match with content previously reviewed as high quality and applicable to a target audience.
In addition to the various statistical linguistic analysis methods described herein, the system 105 may also utilize one or more rule-based linguistic analysis methods, such as rule-based spelling analysis, syntax analysis, and so forth.
According to some embodiments, the method 400 may comprise a step of 415 of receiving a trust score from one or more SMT engines. Again, the trust score may include a trust score, an average of a plurality of trust scores, a weighted average of a plurality of trust scores. Additionally, the trust score may be generated by a domain-specific SMT engine. The domain-specific SMT engine that is selected may or may not correspond to the domain associated with the source text.
In some embodiments, the method 400 may comprise a step 420 of providing the translatability of the source text to a client node. The client node may comprise a storage media (e.g., physical or virtual), an authoring environment, an end user computing device, a server, and so forth.
The method 400 may also comprise an optional step 425 of highlighting the source text within the authoring environment using a color, the color indicating the translatability and/or an overall quality of the source text, relative to various linguistic metrics such as spelling, grammar, syntax, as well as other non-linguistic features such as translation cost and SEO value.
Aspects of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
The components shown in
Mass storage device 530, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor 510. Mass storage device 530 may store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 520.
Portable storage device 540 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk, digital video disc, or USB storage device, to input and output data and code to and from the computing system 500 of
Input devices 560 provide a portion of a user interface. Input devices 560 may include an alphanumeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 500 as shown in
Graphics display 570 may include a liquid crystal display (LCD) or other suitable display device. Graphics display 570 receives textual and graphical information, and processes the information for output to the display device.
Peripherals devices 580 may include any type of computer support device to add additional functionality to the computing system. Peripheral device(s) 580 may include a modem or a router.
The components provided in the computing system 500 of
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), any other optical storage medium, RAM, PROM, EPROM, a FLASHEPROM, any other memory chip or cartridge.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C#, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
D290952 | Price | Jul 1987 | S |
D291086 | Price | Jul 1987 | S |
4845658 | Gifford | Jul 1989 | A |
4916614 | Kaji et al. | Apr 1990 | A |
4920499 | Skeirik | Apr 1990 | A |
5032979 | Hecht et al. | Jul 1991 | A |
5351189 | Doi et al. | Sep 1994 | A |
5418717 | Su et al. | May 1995 | A |
5640575 | Maruyama et al. | Jun 1997 | A |
5677835 | Carbonell et al. | Oct 1997 | A |
5708780 | Levergood et al. | Jan 1998 | A |
5715314 | Payne et al. | Feb 1998 | A |
5724424 | Gifford | Mar 1998 | A |
5768603 | Brown | Jun 1998 | A |
5812776 | Gifford | Sep 1998 | A |
5873056 | Liddy et al. | Feb 1999 | A |
5909492 | Payne et al. | Jun 1999 | A |
5974372 | Barnes et al. | Oct 1999 | A |
6014628 | Kovarik, Jr. | Jan 2000 | A |
6044344 | Kanevsky | Mar 2000 | A |
6049785 | Gifford | Apr 2000 | A |
6085162 | Cherny | Jul 2000 | A |
6195649 | Gifford | Feb 2001 | B1 |
6199051 | Gifford | Mar 2001 | B1 |
6205437 | Gifford | Mar 2001 | B1 |
6212634 | Geer, Jr. et al. | Apr 2001 | B1 |
6279112 | OToole, Jr. et al. | Aug 2001 | B1 |
6347316 | Redpath | Feb 2002 | B1 |
6356865 | Franz et al. | Mar 2002 | B1 |
6415257 | Junqua et al. | Jul 2002 | B1 |
6449599 | Payne et al. | Sep 2002 | B1 |
6477524 | Taskiran et al. | Nov 2002 | B1 |
6490358 | Geer, Jr. et al. | Dec 2002 | B1 |
6490563 | Hon et al. | Dec 2002 | B2 |
6658627 | Gallup et al. | Dec 2003 | B1 |
6865528 | Huang et al. | Mar 2005 | B1 |
6920419 | Kitamura et al. | Jul 2005 | B2 |
6976207 | Rujan et al. | Dec 2005 | B1 |
6990439 | Xun | Jan 2006 | B2 |
7013264 | Dolan et al. | Mar 2006 | B2 |
7031908 | Huang et al. | Apr 2006 | B1 |
7050964 | Menzes et al. | May 2006 | B2 |
7089493 | Hatori et al. | Aug 2006 | B2 |
7124092 | OToole, Jr. et al. | Oct 2006 | B2 |
7177792 | Knight et al. | Feb 2007 | B2 |
7191447 | Ellis et al. | Mar 2007 | B1 |
7207005 | Lakritz | Apr 2007 | B2 |
7209875 | Quirk et al. | Apr 2007 | B2 |
7219123 | Fiechter et al. | May 2007 | B1 |
7242988 | Hoffberg et al. | Jul 2007 | B1 |
7249013 | Al-Onaizan et al. | Jul 2007 | B2 |
7272639 | Levergood et al. | Sep 2007 | B1 |
7295962 | Marcia | Nov 2007 | B2 |
7295963 | Richardson | Nov 2007 | B2 |
7333927 | Lee et al. | Feb 2008 | B2 |
7340388 | Soricut et al. | Mar 2008 | B2 |
7353165 | Zhou et al. | Apr 2008 | B2 |
7369984 | Fairweather | May 2008 | B2 |
7389222 | Langmead et al. | Jun 2008 | B1 |
7389223 | Atkin et al. | Jun 2008 | B2 |
7448040 | Ellis et al. | Nov 2008 | B2 |
7454326 | Marcu et al. | Nov 2008 | B2 |
7509313 | Colledge et al. | Mar 2009 | B2 |
7516062 | Chen et al. | Apr 2009 | B2 |
7533013 | Marcu | May 2009 | B2 |
7620538 | Marcu et al. | Nov 2009 | B2 |
7620549 | Di Cristo et al. | Nov 2009 | B2 |
7624005 | Koehn et al. | Nov 2009 | B2 |
7668782 | Reistad et al. | Feb 2010 | B1 |
7680647 | Moore | Mar 2010 | B2 |
7716037 | Precoda et al. | May 2010 | B2 |
7734459 | Menezes et al. | Jun 2010 | B2 |
7739102 | Bender | Jun 2010 | B2 |
7739286 | Sethy et al. | Jun 2010 | B2 |
7788087 | Corston-Oliver et al. | Aug 2010 | B2 |
7813918 | Muslea et al. | Oct 2010 | B2 |
7817251 | Kimura | Oct 2010 | B2 |
7865358 | Green et al. | Jan 2011 | B2 |
7877251 | Kumaran | Jan 2011 | B2 |
7925493 | Watanabe et al. | Apr 2011 | B2 |
7945437 | Mount et al. | May 2011 | B2 |
7983896 | Ross et al. | Jul 2011 | B2 |
7983897 | Chin et al. | Jul 2011 | B2 |
8078450 | Anisimovich et al. | Dec 2011 | B2 |
8135575 | Dean | Mar 2012 | B1 |
8195447 | Anismovich et al. | Jun 2012 | B2 |
8214196 | Yamada et al. | Jul 2012 | B2 |
8239186 | Chin et al. | Aug 2012 | B2 |
8239207 | Seligman et al. | Aug 2012 | B2 |
8286185 | Ellis et al. | Oct 2012 | B2 |
8296127 | Marcu et al. | Oct 2012 | B2 |
8352244 | Gao et al. | Jan 2013 | B2 |
8364463 | Miyamoto et al. | Jan 2013 | B2 |
8386234 | Uchimoto et al. | Feb 2013 | B2 |
8423346 | Seo et al. | Apr 2013 | B2 |
8442812 | Ehsani et al. | May 2013 | B2 |
8521506 | Lancaster et al. | Aug 2013 | B2 |
8527260 | Best et al. | Sep 2013 | B2 |
8548794 | Koehn | Oct 2013 | B2 |
8548995 | Curtiss | Oct 2013 | B1 |
8554591 | Reistad et al. | Oct 2013 | B2 |
8594992 | Kuhn et al. | Nov 2013 | B2 |
8600728 | Knight et al. | Dec 2013 | B2 |
8606900 | Levergood et al. | Dec 2013 | B1 |
8612203 | Foster et al. | Dec 2013 | B2 |
8615388 | Li et al. | Dec 2013 | B2 |
8635327 | Levergood et al. | Jan 2014 | B1 |
8635539 | Young et al. | Jan 2014 | B2 |
8666725 | Och | Mar 2014 | B2 |
8676563 | Soricut et al. | Mar 2014 | B2 |
8688454 | Zheng | Apr 2014 | B2 |
8725496 | Zhao et al. | May 2014 | B2 |
8768686 | Sarikaya et al. | Jul 2014 | B2 |
8775154 | Clinchant et al. | Jul 2014 | B2 |
8818790 | He et al. | Aug 2014 | B2 |
8843359 | Lauder | Sep 2014 | B2 |
8843482 | Buriano et al. | Sep 2014 | B2 |
8862456 | Krack et al. | Oct 2014 | B2 |
8886517 | Soricut et al. | Nov 2014 | B2 |
8898052 | Waibel et al. | Nov 2014 | B2 |
8903707 | Zhao et al. | Dec 2014 | B2 |
8930176 | Li et al. | Jan 2015 | B2 |
8935148 | Christ | Jan 2015 | B2 |
8935149 | Zhang | Jan 2015 | B2 |
8935150 | Christ | Jan 2015 | B2 |
8935706 | Ellis et al. | Jan 2015 | B2 |
8972268 | Waibel et al. | Mar 2015 | B2 |
9026425 | Nikoulina | May 2015 | B2 |
9053202 | Viswanadha et al. | Jun 2015 | B2 |
9081762 | Wu et al. | Jul 2015 | B2 |
9141606 | Marciano et al. | Sep 2015 | B2 |
9176952 | Aikawa et al. | Nov 2015 | B2 |
9183192 | Ruby, Jr. et al. | Nov 2015 | B1 |
9183198 | Shen et al. | Nov 2015 | B2 |
9201870 | Jurach, Jr. et al. | Dec 2015 | B2 |
9208144 | Abdulnasyrov et al. | Dec 2015 | B1 |
9208509 | Curran et al. | Dec 2015 | B1 |
9396184 | Roy et al. | Jul 2016 | B2 |
9465797 | Ji | Oct 2016 | B2 |
9471563 | Trese | Oct 2016 | B2 |
9519640 | Perez | Dec 2016 | B2 |
9552355 | Dymetman et al. | Jan 2017 | B2 |
9600473 | Leydon et al. | Mar 2017 | B2 |
9613026 | Hodson | Apr 2017 | B2 |
20010027460 | Yamamoto et al. | Oct 2001 | A1 |
20010029455 | Chin et al. | Oct 2001 | A1 |
20020042790 | Nagahara | Apr 2002 | A1 |
20020046018 | Marcu et al. | Apr 2002 | A1 |
20020083103 | Ballance et al. | Jun 2002 | A1 |
20020124109 | Brown | Sep 2002 | A1 |
20020165724 | Blankesteijn | Nov 2002 | A1 |
20030009320 | Furuta | Jan 2003 | A1 |
20030040899 | Ogilvie | Feb 2003 | A1 |
20030046056 | Godoy et al. | Mar 2003 | A1 |
20030200094 | Gupta et al. | Oct 2003 | A1 |
20040006585 | Paulus et al. | Jan 2004 | A1 |
20040006744 | Jones et al. | Jan 2004 | A1 |
20040034520 | Langkilde-Geary et al. | Feb 2004 | A1 |
20040044517 | Palmquist | Mar 2004 | A1 |
20040064552 | Chong et al. | Apr 2004 | A1 |
20040085354 | Massand | May 2004 | A1 |
20040088647 | Miller et al. | May 2004 | A1 |
20040167768 | Travieso et al. | Aug 2004 | A1 |
20040205656 | Reulein et al. | Oct 2004 | A1 |
20040255281 | Imamura et al. | Dec 2004 | A1 |
20050055630 | Scanlan | Mar 2005 | A1 |
20050171944 | Palmquist | Aug 2005 | A1 |
20050177358 | Melomed et al. | Aug 2005 | A1 |
20060031225 | Palmeri et al. | Feb 2006 | A1 |
20060095526 | Levergood et al. | May 2006 | A1 |
20060155716 | Vasishth et al. | Jul 2006 | A1 |
20060184410 | Ramamurthy et al. | Aug 2006 | A1 |
20060248084 | Sack et al. | Nov 2006 | A1 |
20060282255 | Lu et al. | Dec 2006 | A1 |
20070043553 | Dolan | Feb 2007 | A1 |
20070073544 | Millett et al. | Mar 2007 | A1 |
20070106633 | Reiner | May 2007 | A1 |
20070112553 | Jacobson | May 2007 | A1 |
20070112851 | Tomic et al. | May 2007 | A1 |
20070136065 | Chiu et al. | Jun 2007 | A1 |
20070136284 | Cobb et al. | Jun 2007 | A1 |
20070188657 | Basson et al. | Aug 2007 | A1 |
20070198245 | Kamatani et al. | Aug 2007 | A1 |
20070211071 | Slotznick et al. | Sep 2007 | A1 |
20070294076 | Shore | Dec 2007 | A1 |
20070294080 | Bangalore | Dec 2007 | A1 |
20080005670 | Pravetz et al. | Jan 2008 | A1 |
20080040635 | Larcheveque et al. | Feb 2008 | A1 |
20080077391 | Chino et al. | Mar 2008 | A1 |
20080077392 | Kamatani et al. | Mar 2008 | A1 |
20080086298 | Anismovich et al. | Apr 2008 | A1 |
20080088437 | Aninye et al. | Apr 2008 | A1 |
20080102433 | Rogers et al. | May 2008 | A1 |
20080109374 | Levergood et al. | May 2008 | A1 |
20080133245 | Proulx et al. | Jun 2008 | A1 |
20080134018 | Kembel et al. | Jun 2008 | A1 |
20080154577 | Kim et al. | Jun 2008 | A1 |
20080159495 | Dahan | Jul 2008 | A1 |
20080183758 | Kennedy | Jul 2008 | A1 |
20080195372 | Chin et al. | Aug 2008 | A1 |
20080201344 | Levergood et al. | Aug 2008 | A1 |
20080254430 | Woolf et al. | Oct 2008 | A1 |
20080254433 | Woolf et al. | Oct 2008 | A1 |
20080270142 | Srinivasan et al. | Oct 2008 | A1 |
20080288240 | DAgostini | Nov 2008 | A1 |
20090013162 | Nandan et al. | Jan 2009 | A1 |
20090024595 | Chen | Jan 2009 | A1 |
20090048821 | Yam et al. | Feb 2009 | A1 |
20090094017 | Chen et al. | Apr 2009 | A1 |
20090217196 | Neff et al. | Aug 2009 | A1 |
20090222257 | Sumita et al. | Sep 2009 | A1 |
20090240539 | Slawson et al. | Sep 2009 | A1 |
20090271283 | Fosnacht et al. | Oct 2009 | A1 |
20090313005 | Jaquinta | Dec 2009 | A1 |
20090327294 | Bailor et al. | Dec 2009 | A1 |
20100057439 | Ideuchi et al. | Mar 2010 | A1 |
20100057561 | Gifford | Mar 2010 | A1 |
20100115284 | Hahn et al. | May 2010 | A1 |
20100121630 | Mende et al. | May 2010 | A1 |
20100161643 | Gionis et al. | Jun 2010 | A1 |
20100179803 | Sawaf et al. | Jul 2010 | A1 |
20100185648 | Chauhan et al. | Jul 2010 | A1 |
20100257457 | De Goes | Oct 2010 | A1 |
20110029300 | Marcu et al. | Feb 2011 | A1 |
20110066469 | Kadosh | Mar 2011 | A1 |
20110077933 | Miyamoto et al. | Mar 2011 | A1 |
20110082683 | Soricut et al. | Apr 2011 | A1 |
20110082684 | Soricut et al. | Apr 2011 | A1 |
20110087680 | Murdock et al. | Apr 2011 | A1 |
20110097693 | Crawford | Apr 2011 | A1 |
20110137636 | Srihari et al. | Jun 2011 | A1 |
20110184722 | Sneddon | Jul 2011 | A1 |
20110209047 | Olsen et al. | Aug 2011 | A1 |
20110225104 | Soricut et al. | Sep 2011 | A1 |
20110282648 | Sarikaya et al. | Nov 2011 | A1 |
20120005156 | Grant et al. | Jan 2012 | A1 |
20120022852 | Tregaskis et al. | Jan 2012 | A1 |
20120078609 | Chaturvedi et al. | Mar 2012 | A1 |
20120221319 | Trese | Aug 2012 | A1 |
20120221593 | Trese et al. | Aug 2012 | A1 |
20120271828 | Raghunath | Oct 2012 | A1 |
20120296914 | Romanov et al. | Nov 2012 | A1 |
20120330990 | Chen et al. | Dec 2012 | A1 |
20130055074 | Trese et al. | Feb 2013 | A1 |
20130144605 | Brager | Jun 2013 | A1 |
20130173247 | Hodson | Jul 2013 | A1 |
20130325442 | Dahlmeier et al. | Dec 2013 | A1 |
20130325833 | Guan et al. | Dec 2013 | A1 |
20140058718 | Kunchukuttan et al. | Feb 2014 | A1 |
20140142917 | DPenha | May 2014 | A1 |
20140142918 | Dotterer et al. | May 2014 | A1 |
20140229257 | Reistad et al. | Aug 2014 | A1 |
20140289702 | McMahon et al. | Sep 2014 | A1 |
20140297252 | Prasad et al. | Oct 2014 | A1 |
20140358519 | Mirkin et al. | Dec 2014 | A1 |
20140358524 | Papula et al. | Dec 2014 | A1 |
20140365201 | Gao et al. | Dec 2014 | A1 |
20150051896 | Simard et al. | Feb 2015 | A1 |
20150154180 | Trese | Jun 2015 | A1 |
20150186362 | Li et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
5240198 | May 1998 | AU |
694367 | Jul 1998 | AU |
5202299 | Oct 1999 | AU |
2221506 | Dec 1996 | CA |
102193914 | Sep 2011 | CN |
102662935 | Sep 2012 | CN |
102902667 | Jan 2013 | CN |
69525374 | Mar 1995 | DE |
69431306 | Oct 2002 | DE |
69633564 | Nov 2004 | DE |
0734556 | Oct 1996 | EP |
0803103 | Oct 1997 | EP |
0830774 | Mar 1998 | EP |
1128301 | Aug 2001 | EP |
1128302 | Aug 2001 | EP |
1128303 | Aug 2001 | EP |
1235177 | Aug 2002 | EP |
0830774 | Oct 2004 | EP |
1489523 | Dec 2004 | EP |
2299369 | Mar 2011 | EP |
2909742 | Aug 2015 | EP |
2241359 | Aug 1991 | GB |
H10509543 | Sep 1998 | JP |
H11507752 | Jul 1999 | JP |
3190881 | Jul 2001 | JP |
3190882 | Jul 2001 | JP |
3260693 | Feb 2002 | JP |
3367675 | Jan 2003 | JP |
2003157402 | May 2003 | JP |
3762882 | Apr 2006 | JP |
2006216073 | Aug 2006 | JP |
2007042127 | Feb 2007 | JP |
2008026971 | Feb 2008 | JP |
4485548 | Jun 2010 | JP |
4669373 | Apr 2011 | JP |
4669430 | Apr 2011 | JP |
WO9516971 | Jun 1995 | WO |
WO9613013 | May 1996 | WO |
WO9642041 | Dec 1996 | WO |
WO9715885 | May 1997 | WO |
WO9819224 | May 1998 | WO |
WO9952626 | Oct 1999 | WO |
WO2002039318 | May 2002 | WO |
WO2007068123 | Jun 2007 | WO |
WO2010062540 | Jun 2010 | WO |
WO2010062542 | Jun 2010 | WO |
WO2012118764 | Sep 2012 | WO |
WO2012118765 | Sep 2012 | WO |
WO2013028322 | Feb 2013 | WO |
WO2014060549 | Apr 2014 | WO |
Entry |
---|
Invitation to Pay Additional Fees dated Mar. 26, 2014, re International Application No. PCT/EP2013/071781 filed Oct. 17, 2013. |
Bernth et al., “The Effect of Source Analysis on Translation Confidence”, In: “Envisioning Machine Translation in the Information Future”, Jan. 1, 2000, p. 89-99. |
Uchimoto et al., “Automatic Rating of Machine Translatability”, 10th Machine Translation Summit (MT Summit X), Sep. 12, 2005, p. 235-242. |
Underwood et al., “Translatability Checker: A Tool to Help Decide Whether to Use MT”, Proceedings of MT Summit VIII: Machine Translation in the Information Age., Jul. 18, 2001, p. 1-4. |
Choumane et al., “Integrating translation services within a structured editor”, Proceedings of the 2005 ACM Symposium on Document Engineering, DOCENG '05, Nov. 2, 2005, p. 165-167. |
Venkatapathy et al., “An SMT-driven Authoring Tool”, Proceedings of Coling 2012: Demonstration Papers Coling 2012, Dec. 8, 2012, p. 459-466. |
International Search Report and Written Opinion dated Jul. 2, 2014 in Application No. PCT/EP2013/071781 filed Oct. 17, 2013. |
International Search Report and Written Opinion dated May 31, 2012, re International Application No. PCT/US2012/026815 filed Feb. 27, 2012. |
International Search Report and Written Opinion dated Jun. 22, 2012, re International Application No. PCT/US2012/026814 filed Feb. 27, 2012. |
Dunlap et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Dec. 11, 2002, USENIX Association. |
Pun et al., “Audit Trail Analysis for Traffic Intensive Web Application”, 2009, IEEE. |
Akkus et al., “Non-Tracking Web Analytics”, Oct. 18, 2012, ACM. |
Pusara, M., “An Examination of User Behavior for Re-Authentication”, Aug. 2007, Center for Education and Research in Information Assurance and Security, Purdue University. |
International Search Report and Written Opinion dated Oct. 16, 2012 in Application No. PCT/US2012/049063 filed Jul. 31, 2012. |
Non-Final Office Action, dated Sep. 2, 2015, U.S. Appl. No. 14/325,198, filed Jul. 7, 2014. |
Final Office Action, dated Sep. 3, 2015, U.S. Appl. No. 13/037,273, filed Feb. 28, 2011. |
Final Office Action, dated Aug. 5, 2015, U.S. Appl. No. 13/217,122, filed Aug. 24, 2011. |
Final Office Action, dated Apr. 4, 2016, U.S. Appl. No. 14/325,198, filed Jul. 7, 2014. |
Non-Final Office Action, dated Jun. 28, 2016, U.S. Appl. No. 13/037,273, filed Feb. 28, 2011. |
Notice of Allowance, dated Jul. 29, 2016, U.S. Appl. No. 14/325,198, filed Jul. 7, 2014. |
Ishida, “W3C I18n Tutorial: Declaring Language in XHTML and HTML,” Oct. 27, 2010, www.w3.org/International/tutorials/language-decl, pp. 1-7. |
Jones, Rosie et al., “Beyond the Session Timeout: Automatic Hierarchical Segmentation of Search Topics in Query Logs,” CIKM '08, Oct. 26-30, 2008, pp. 699-708. |
Ceylan, Hakan et al., “Language Identification of Search Engine Queries,” Proceedings of the 47th Annual Meeting fo the ACL and the 4th IJCNLP of the AFNLP, Aug. 2-7, 2009, pp. 1066-1074. |
Nepveu et al. “Adaptive Language and Translation Models for Interactive Machine Translation” Conference on Empirical Methods in Natural Language Processing, Jul. 25, 2004, 8 pages. Retrieved from: http://www.cs.jhu.edu/˜yarowsky/sigdat.html. |
Ortiz-Martinez et al. “Online Learning for Interactive Statistical Machine Translation” Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, Jun. 10, 2010, pp. 546-554. Retrieved from: https://www.researchgate.net/publication/220817231—Online—Learning—for—Interactive—Statistical—Machine—Translation. |
“Callison-Burch et al. “Proceedings of the Seventh Workshop on Statistical Machine Translation” [W12-3100] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 1-51. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Lopez, Adam. “Putting Human Assessments of Machine Translation Systems in Order” [W12-3101] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 1-9. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Avramidis, Eleftherios. “Quality estimation for Machine Translation output using linguisticanalysis and decoding features” [W12-3108] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 84-90. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-tanslation”. |
“Buck, Christian. “Black Box Features for the WMT 2012 Quality Estimation Shared Task” [W12-3109] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 91-95. Retrieved from:Proceedings of the Seventh Workshop on Statistical Machine Translation. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Felice et al. “Linguistic Features for Quality Estimation” [W12-3110] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 96-103. Retrieved at:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Gonzalez-Rubio et al. “PRHLT Submission to the WMT12 Quality Estimation Task” [W12-3111] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 104-108. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Hardmeier et al. “Tree Kernels for Machine Translation Quality Estimation” [W12-3112] Proceedings of the Seventh Workshop on Statistical Machine Translation,Jun. 7, 2012, pp. 109-113. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Langlois et al. “LORIA System for the WMT12 Quality Estimation Shared Task” [W12-3113] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 114-119. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Moreau et al. “Quality Estimation: an experimental study using unsupervised similarity measures” [W12-3114] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 120-126. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Gonzalez et al. “The UPC Submission to the WMT 2012 Shared Task on QualityEstimation” [W12-3115] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 127-132. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Popovic, Maja. “Morpheme- and POS-based IBM1 and language model scores fortranslation quality estimation” Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 133-137. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Rubino et al. “DCU-Symantec Submission for the WMT 2012 Quality EstimationTask” [W12-3117] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 138-144. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Soricut et al. “The SDL Language Weaver Systems in the WMT12 Quality Estimation Shared Task” [W12-3118] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 145-151. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
“Wu et al. “Regression with Phrase Indicators for Estimating MT Quality” [W12-3119] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 152-156. Retrieved from:http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation”. |
Wuebker et al. “Hierarchical Incremental Adaptation for Statistical Machine Translation” Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1059-1065, Lisbon, Portugal, Sep. 17-21, 2015. |
“Best Practices—Knowledge Base,” Lilt website [online], Mar. 6, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/best-practices>, 2 pages. |
“Data Security—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/security>, 1 pages. |
“Data Security and Confidentiality,” Lilt website [online], 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet: <https://lilt.com/security>, 7 pages. |
“Memories—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/project-managers/memory>, 4 pages. |
“Memories (API)—Knowledge Base,” Lilt website [online], Jun. 2, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/api/memories>, 1 page. |
“Quoting—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet: <https://lilt.com/kb/project-managers/quoting>, 4 pages. |
“The Editor—Knowledge Base,” Lilt website [online], Aug. 15, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/editor>, 5 pages. |
“Training Lilt—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/troubleshooting/training-lilt>, 1 page. |
“What is Lilt——Knowledge Base,” Lilt website [online],Dec. 15, 2016 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/what-is-lilt, 1 page. |
“Getting Started—Knowledge Base,” Lilt website [online], Apr. 11, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/getting-started, 2 pages. |
“The Lexicon—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/lexicon>, 4 pages. |
“Simple Translation—Knowledge Base,” Lilt website [online], Aug. 17, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/api/simple-translation>, 3 pages. |
“Split and Merge—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/split-merge>, 4 pages. |
“Lilt API—API Reference,” Lilt website [online], retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/docs/api>, 53 pages. |
“Automatic Translation Quality—Knowledge Base”, Lilt website [online], Dec. 1, 2016, retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/kb/evaluation/evaluate-mt>, 4 pages. |
“Projects—Knowledge Base,” Lilt website [online], Jun. 7, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet: <https://lilt.com/kb/project-managers/projects>, 3 pages. |
“Getting Started with lilt,” Lilt website [online], May 30, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet: <https://lilt.com/kb/api/lilt-js>, 6 pages. |
“Interactive Translation—Knowledge Base,” Lilt website [online], Aug. 17, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet<https://lilt.com/kb/api/interactive-translation>, 2 pages. |
“Hildebrand et al., ““Adaptation of the Translation Model for StatisticalMachine Translation based on InformationRetrieval,”” EAMT 2005 Conference Proceedings, May 2005, pp. 133-142. Retrieved from https://www.researchgate.net/publication/228634956—Adaptation—of—the—translation—model—for—statistical—machine—translation—based—on—information—retrieval.” |
Och et al., “The Alignment Template Approach to Statistical Machine Translation Machine Translation,” Computational Linguistics, vol. 30. No. 4, Dec. 1, 2004, pp. 417-442 (39 pages with citations). Retrieved from http://dl.acm.org/citation.cfm?id=1105589. |
“Sethy et al., ““Building Topic Specific Language Models Fromwebdata Usingcompetitive Models,”” Interspeech 2005—Eurospeech, 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, Sep. 4-8, 2005, 4 pages. Retrieved from https://www.researchgate.net/publication/221490916—Building—topic—specific—language—models—from—webdata—using—competitive—models.” |
Dobrinkat, “Domain Adaptation in Statistical Machine Translation Systems via User Feedback,” Master's Thesis, University of Helsinki, Nov. 25, 2008, 103 pages. Retrieved from http://users.ics.aalto.fi/mdobrink/online-papers/dobrinkat08mt.pdf. |
Business Wire, “Language Weaver Introduces User-Managed Customization Tool,” Oct. 25, 2005, 3 pages. Retrieved from http: ProQuest. |
Winiwarter, W., “Learning Transfer Rules for Machine Translation from Parallel Corpora,” Journal of Digital Information Management, vol. 6 No. 4, Aug. 2008, pp. 285-293. Retrieved from https://www.researchgate.net/publication/220608987—Learning—Transfer—Rules—for—Machine—Translation—from—Parallel—Corpora. |
“Potet et al., ““Preliminary Experiments on Using Users' Post-Editions to Enhance a SMT System,”” Proceedings of the European Association forMachine Translation (EAMT), May 2011, pp. 161-168. Retreived from Retrieved at http://www.mt-archive.info/EAMT-2011-Potet.pdf.” |
Ortiz-Martinez et al., “An Interactive Machine Translation System with Online Learning” Proceedings of the ACL-HLT 2011 System Demonstrations, Jun. 21, 2011, pp. 68-73. Retrieved from http://www.aclweb.org/anthology/P11-4012. |
“Lopez-Salcedo et al.,““Online Learning of Log-Linear Weights in Interactive Machine Translation,”” Communications in Computer and InformationScience, vol. 328, 2011, pp. 1-10. Retrieved from http://www.casmacat.eu/uploads/Main/iberspeech2.pdf.” |
Blanchon et al., “A Web Service Enabling Gradable Post-edition of Pre-translations Pro duced by Existing Translation Tools: Practical Use to Provide High quality Translation of an Online Encyclopedia” Jan. 2009, 9 pages. Retrieved from http://www.mt-archive.info/MTS-2009-Blanchon.pdf. |
“Levenberg et al.““Stream-based Translation Models for Statistical Machine Translation”” Human Language Technologies: The 2010 Annual Conference of the North AmericanChapter of the ACL, Dec. 31, 2010, pp. 394-402.”. |
Lagarda et al. “Statistical Post-Editing of a Rule Based Machine Translation System” Proceedings of NAACL HLT 2009: Short Papers, Jun. 2009, pp. 217-220. |
Ehara, “Rule Based Machine Translation Combined with Statistical Post Editor for Japanese to English Patent Translation,” MT Summit XI, 2007, pp. 13-18. |
Trese, Andrew, “Systems, Methods and Media for Translating Informational Content”, U.S. Appl. No. 13/037,262, filed Feb. 28, 2011, 34 pages. |
Bechara et al. “Statistical Post-Editing for a Statistical MT System” Proceedings of the 13th Machine Translation Summit, 2011, pp. 308-315. |
Non-Final Office Action, dated Aug. 28, 2017, U.S. Appl. No. 13/037,273, filing date Feb. 28, 2011. |
Non-Final Office Action, dated Sep. 21, 2017, U.S. Appl. No. 13/217,122, filing date Aug. 24, 2011. |
Number | Date | Country | |
---|---|---|---|
20140114642 A1 | Apr 2014 | US |