This is a national phase application based on the PCT International Patent Application No. PCT/JP2009/066995 filed on Sep. 30, 2009, the entire contents of which are incorporated herein by reference.
The present invention relates to a distributed winding stator used for a motor or the like and a method of manufacturing the same. More particularly, the invention relates to a stator with multi-phase coils formed of conductors having a rectangular cross section, and a method of manufacturing the same.
Stators used for motors or the like have coils therein. One known stator coil is a wave winding coil, in which conductors are wound in a wave form. One such wave winding coil is disclosed, for example, in Patent Literature 1. The wave winding coil disclosed therein is a multi-phase wave winding coil for an electric rotating machine, including coil conductors of respective phases wound in a wave form, the coil conductors being made up of slot portions consisting of forward portions and backward portions alternately passed through slots of a core, and bridging portions integrally formed with the slot portions and connecting the ends on the same side of the forward portions and backward portions to form coil ends. The bridging portion includes an overlapping portion radially overlapping with other circumferentially adjoining bridging portions and a distal end portion axially protruding further than the overlapping portion. One end and the other end of the distal end portion of the bridging portion are radially displaced generally by more than a radial thickness of the bridging portion. Namely, plural wave winding coils formed by winding conductors in a wave form are prepared, and overlapped with an offset of a certain pitch, to form the coil. The coil end space and resistance power loss are thereby reduced.
Although not explicitly described in the patent literature 1 mentioned above, the plural wave winding coils cannot simply be overlapped with each other, and a process of successively interweaving two wave winding coils is essential. There was thus the problem of lowered production efficiency.
If the successive interweaving process is not to be employed, coil end connections across slots will have to be long and require a three-dimensional arrangement of long conductors as they bridge across other phases, resulting in large coil ends.
Accordingly, the present applicants have proposed a stator and a coil cage in which coils need not be interwoven at coil ends so that production efficiency can be increased (Japanese Patent Application No. 2009-016549).
However, in the above proposed technique, as shown in
The present invention was thus devised to solve the above-described problem and has an object to provide a stator including coils that protrude less in the radial direction of the stator and can be made smaller in the radial direction of the stator, and a method of manufacturing the same.
To achieve the above purpose, one aspect of the present invention provides a stator comprising a coil formed of a conductor having a rectangular cross section, wherein the conductor is formed in a continuous meandering fashion, the conductor including: a plurality of in-slot portions arranged inside a slot of the stator such as to be overlapped with one another in a circumferential direction of the stator with long sides of the rectangle being oriented along a radial direction of the stator; a plurality of circumferential portions arranged at a coil end such as to be overlapped with one another in the radial direction of the stator with short sides of the rectangle oriented along the radial direction of the stator; a bent portion connecting the in-slot portion and the circumferential portion; and a twisted portion formed in the bent portion, the bent portion including a first bend formed on a side of the circumferential portion and a second bend formed on a side of the in-slot portion.
In this stator, since the bent portion includes a first bend formed on the side of the circumferential portion and a second bend formed on the side of the in-slot portion, when the coil is overlapped with another coil, bends of conductors do not interfere with each other at coil ends so that the lane portion can be made in one layer. Thereby, the coils protrude less in the radial direction of the stator (toward the back yolk), and can be made smaller in the radial direction of the stator.
Plural in-slot portions can be overlapped in the circumferential direction such that their cross-sectional long sides are oriented in the radial direction of the stator inside the slots, which enables in-slot portions of different phases to be arranged at positions where they do not interfere with each other, meaning that the conductors be connected across slots in a shortest path. This, combined with the fact that plural circumferential portions are arranged at coil ends such that their cross-sectional short sides overlap with each other in the circumferential direction of the stator, minimizes space taken up at coil ends, and therefore the coil ends can be made small. Also, since there is no need to interweave coils at coil ends, production efficiency can be increased.
In the stator described above, preferably, the first bend is formed so that a bending angle θ1 is θ1<90°, and the bending angle θ1 and a bending angle θ2 of the second bend satisfy a relationship of θ1+θ2=90°.
Thereby, bends of conductors do not interfere with each other at coil ends, and the coil end height is reduced. Therefore, the coils can be made smaller in radial and height directions at coil ends.
The bending angle θ1 of the first bend is preferably 30°≦θ1≦60°. If the bending angle θ1 is less than 30° (θ1<30°), the minimum distance (distance d shown in
It should be noted here that in the coils installed in the stator described above, bent portions of conductors are bent in opposite directions at respective coil ends. Therefore, when coils are overlapped, while the bent portions do not intersect each other at one coil end (for example on the lead side), they intersect each other at the other coil end (for example on the non-lead side).
Accordingly, in the stator described above, preferably, the second bend at one coil end is formed by tilting down the bent portion toward the stator after the twisted portion has been formed.
At one coil end, since the bent portions do not intersect each other when coils are overlapped, the second bend can be formed by tilting down the bent portion toward the stator after the twisted portion has been formed. By tilting down the bent portion, bends of conductors can be separated from each other so as not to interfere with each other without subjecting twisted portions and the surroundings thereof to an excessive force. Thereby, the coils can be made to protrude less in the radial direction of the stator without damaging the enamel on the conductors (without deteriorating insulation performance).
In the stator described above, preferably, the second bend at the other coil end is formed by bending the conductor edgewise before the twisted portion is formed.
Since the bent portions intersect each other at the other coil end, the conductor cannot be tilted down. Therefore, the second bend is formed by bending the conductor edgewise before the twisted portion is formed. That is, the conductor is bent edgewise in two steps to form the first bend and second bend, so that bends of conductors do not interfere with each other when coils are overlapped at the other coil end. Thereby the coils can be made to protrude less in the radial direction of the stator at the other coil end, too.
Another aspect of the present invention to achieve the above purpose provides a method for manufacturing a stator comprising a coil formed of a conductor having a rectangular cross section, the method comprising the steps of: bending the conductor edgewise at an angle smaller than 90°; and twisting a portion of the conductor that has undergone the bending step and is to be positioned inside a slot of the stator, the bending step including edgewise bending a portion of the conductor that is positioned at least at one coil end in two steps.
In the stator manufacturing method described above, preferably, the bending step includes edgewise bending the portion of the conductor positioned at one coil end in one step, and the method further includes the step of tilting down an end of the twisted portion of the conductor that has undergone the twisting step and is positioned at one coil end.
With this method, the stator described above can be manufactured, wherein bends of conductors do not interfere with each other at coil ends when coils are overlapped so that the coils protrude less in the radial direction of the stator. Thus a stator with its size reduced in the radial direction can be manufactured.
In the stator manufacturing method described above, preferably, the twisting step includes twisting a plurality of the conductors having undergone the bending step, at the same time with their twisted portions aligned with each other.
Thereby, coil production efficiency can be improved as compared to twisting one conductor at a time, and also the in-slot portions of conductors can be closely overlapped with each other.
According to the stator and method of manufacturing the same, as described above, when coils are overlapped, bends of conductors do not interfere with each other at coil ends. Therefore, the coils protrude less in the radial direction of the stator, and can be made smaller in the radial direction of the stator.
Hereinafter embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Linear parts of the conductor blank UAXX form in-slot target portions SS1, SS2, . . . , with circumferential portions E1, E2, . . . coupling them successively. Each circumferential portion E1, E2, . . . is cranked (offset) by a predetermined amount relative to each in-slot target portion SS1, SS2, . . . . For example, the conductor blanks UAXX and UCXX (corresponding to the first turn) according to this embodiment are cranked as shown in
A bent portion EL is formed on the left side of each circumferential portion E, and a bent portion ER is formed on the right side of each circumferential portion E. Namely, the bent portions EL and ER are arranged such as to connect the in-slot target portions SS and circumferential portions E.
Of the bent portions EL and ER, those (E2L, E2R, . . . ) on the left and right of circumferential portions E2, E4, . . . positioned on the lead side are formed by one-step edgewise bending at 45°. Of the bent portions EL and ER, those (E1L, E1R, . . . ) on the left and right of circumferential portions E1, E3, . . . positioned on the non-lead side are formed by two-step edgewise bending at 45°.
At this point, the bending angle in regard to the bending process will be explained with reference to
Parameters used for determining the bending angle include material parameters, design parameters, performance/design parameters, and performance parameters. The material parameters include conductor width “a” and conductor thickness “b” shown in
The conductor width a and conductor thickness b are dependent on the conductor being used. In this embodiment, a=6 mm and b=1 mm.
The in-slot length Ls is dependent on stator lamination thickness. In this embodiment, Ls=50 mm. The twisted length Ln is given by Equation 1:
[Equation 1]
Ln=√{square root over (c2+h12)} (1)
where c is the twisted width and h1 is the crank amount on the lead side.
The twisted length Ln is given by Equation 2:
where a is the conductor width, θ1x is the first bending angle on the lead side, and R is the radius of curvature.
The interference avoidance length L2 for the non-lead side twisted portion is given by Equation 3:
[Equation 3]
L2=√{square root over ((R+L3 cos θ2y)2h22)}−(R+L3 cos θ2y) (3)
where R is the radius of curvature, L3 is the linear length of bent portion on the non-lead side, θ2y is the second bending angle on the non-lead side, and h2 is the crank height on the non-lead side.
The linear length of bent portion L3 on the non-lead side, radius of curvature R, and twisting width c may be set as small as possible respectively within the range satisfying necessary insulation performance requirements. In this embodiment, L3=12 mm, R=5 mm, and c=6 mm.
The coil end height z is given by Equation 4:
where a is the conductor width, b is the conductor thickness, c is the twisting width, θ1x is the first bending angle on the lead side, and R is the radius of curvature.
The distance d is given by Equation 5-1 if the interference avoidance length L1 for the lead side twisted portion is larger than 0 (L1>0), whereas it is given by Equation 5-2 if L1=0:
where a is the conductor width, b is the conductor thickness, c is the twisting width, θ1x is the first bending angle on the lead side, L1 is the interference avoidance length for the lead side twisted portion, and R is the radius of curvature.
where a is the conductor width, b is the conductor thickness, c is the twisting width, θ1x is the first bending angle on the lead side, and R is the radius of curvature.
The distance d needs to be set so that the twisted portions of adjacent slots do not interfere with each other, by adjusting the first bending angle θ1x on the lead side from Equations 5-1 and 5-2. As is clear from
In this embodiment, the first bending angle θ1x on the lead side is set θ1x=45° so as to form shape easily in consideration of production efficiency and to reduce the coil end height. For the same reasons, the first bending angle θ1y on the non-lead side is also set θ1y=45°. Since the first bending angle θ1 and second bending angle θ2 satisfy the relationship of θ1+θ2=90°, the second bending angle θ2x on the lead side is θ2x=90°−θ1x=45°, and the second bending angle θ2y on the non-lead side is θ2y=90°−θ1y=45°.
Such twisting can be performed easily by holding the in-slot target portion SS with chucking claws and turning the chucking claws while other parts are kept fixed. Thus the short sides of the in-slot portions S1, S2, . . . are visible in
The thickness of the enamel coat is set such that sufficient insulation can be maintained even though the conductor is twisted as shown in
The bent portions EL and ER for connecting the in-slot target portions SS and circumferential portions E include two bends, i.e., first bend EL1 and second bend EL2, and first bend ER1 and second bend ER2 (see also
More specifically, the bent portions EL and ER positioned on the lead side (upper side in the drawing) include first bends EL1 and ER1 formed by bending before the twisting process, and second bends EL2 and ER2 formed by tilting after the twisting process. On the other hand, the bent portions EL and ER positioned on the non-lead side (lower side in the drawing) include first bends EU and ER1 and second bends EL2 and ER2 formed by bending before the twisting process. For example, the bent portion E2L on the lead side includes a first bend E2L1 and a second bend E2L2, and the bent portion E1R on the non-lead side includes a first bend E1R1 and a second bend E1R2.
Now, the process steps of forming the conductor UAX shown in
First, as shown in
Next, upper ends of the in-slot portions S2 and S1 are tilted downwards in
Next, as shown in
After that, overlapping of the in-slot target portions, twisting, and tilting (bending at 45°) are repeatedly performed. The twisting is done alternately in opposite directions, i.e., clockwise, counterclockwise, clockwise, etc. As a result, the conductor UAX shown in
The first U-phase conductor UA is made up of three each (three turns) of the conductors UAX and UAY formed as described above, closely overlapped with each other and welded together at their ends. Unlike the conductor for the first turn shown in
The first conductor UA and third conductor UC overlapped and offset by one pitch form a rectangular coil as shown in
In this rectangular coil formed by the first conductor UA and third conductor UC, the bent portions EL and ER on the lead side include the first bends EL1 and ER1 formed by bending and second bends EL2 and ER2 formed by tilting. Therefore, as shown in
On the other hand, on the non-lead side, the bent portions EL and ER include the first bends EU and second bends EL2 formed by bending. Therefore, the circumferential portions UAE and UCE do not interfere with each other at coil ends so that the lane portion is made in one layer. On the non-lead side, the conductor is bent edgewise in two steps as described above because the bent portions EL and ER extending out from the same slot to the coil end cross each other on the non-lead side and the second bend ER2 cannot be formed by tilting as on the lead side.
In this way, any unnecessary space is eliminated at coil ends both on the lead side and non-lead side. Therefore, the coils protrude less in the radial direction of the stator (toward the back yolk), and can be made smaller in the radial direction of the stator.
Six conductor assemblies UAC, UBD, VAC, VBD, WAC, and WBD each include eight in-slot portions S in the first turn, so that there are forty eight in-slot portions S formed in the first turn. These forty eight in-slot portions S are positioned with an offset of one slot therebetween.
As shown in
Similarly, in the three-phase coil G, the circumferential portions E are overlapped in the radial direction of the stator. In the proposed technique mentioned above, bends of conductors interfere with each other at coil ends, because of which the coils protrude in the radial direction of the stator due to unnecessary space taken up at the coil ends, resulting in an increase in the coil size in the radial direction of the stator.
In contrast, in the three-phase coil G according to this embodiment, since bends of conductors do not interfere with each other at coil ends and there is no unnecessary space at coil ends, the coils protrude less in the radial direction of the stator. In this manner, the three-phase coil G is smaller in the radial direction of the stator.
The basic configuration of the three-phase coil G is the same as the coil cage in the proposed technique, the detail of which is described in Japanese Patent Application No. 2009-016549, and therefore the three-phase coil G will not be described in detail here.
The in-slot portions of various phases are arranged successively as follows: U1-phase consisting of the first U-phase conductor assembly UAC (conductors UA and UC), U2-phase consisting of the second U-phase conductor assembly UBD (conductors UB and UD), V1-phase consisting of the first V-phase conductor assembly VAC (conductors VA and VC), V2-phase consisting of the second V-phase conductor assembly VBD (conductors VB and VD), W1-phase consisting of the first W-phase conductor assembly WAC (conductors WA and WC), and W2-phase consisting of the second W-phase conductor assembly WBD (conductors WB and WD).
In each in-slot portion S, four in-slot portions S are arranged in close contact in the first turn. For example, the in-slot portion UACS6 arranged in the first turn of U1-phase includes four portions UAS6Y, UAS6X, UCS5Y, and UCS5X from the left side as shown in
The in-slot portion UAS6 (UAS6X+UAS6Y) is connected to UACS7 disposed in the next U1-phase slot by way of the circumferential portion UAE6 that is hidden underneath.
Similarly, the in-slot portion UBDS6 includes four in-slot portions UBS6Y, UBS6X, UDS5Y, and UDS5X from the left side, successively and closely overlapping in the circumferential direction such that their long sides are aligned in the diametrical direction.
The in-slot portion UDS5 (UDS5X+UDS5Y) is connected to UBDS7 disposed in the next U1-phase slot by way of the circumferential portion UDE5 depicted thereabove, as shown in
The in-slot portion UBS6 (UBS6X+UBS6Y) is connected to UBDS7 disposed in the next U1-phase slot by way of the circumferential portion UBE6 that is hidden underneath.
Although a detailed description of the shape of V1-phase, V2-phase, W1-phase, and W2-phase conductors will be omitted, twisted portions of the V1-phase, V2-phase, W1-phase, and W2-phase are adjusted such that they do not interfere with each other and that they can be easily inserted.
The three-phase coil G is complete when the third turn is taken up as shown in
The in-slot portion UBDS14 is positioned on the outside of the in-slot portion UBDS6 of the first turn of U2-phase, and further on the outside thereof is positioned the in-slot portion UBDS22. The in-slot portion UBDS15 is positioned on the outside of the in-slot portion UBDS7 of the first turn of U2-phase, and further on the outside thereof is positioned the in-slot portion UBDS23.
By taking up the conductors shown in
As described above in detail, in the stator 10 according to this embodiment, the bent portions EL and ER positioned at the coil ends of the three-phase coil G include first bends EL1 and ER1 formed on the side of the circumferential portion E and second bends EL2 and ER2 formed on the side of the in-slot portion S, so that when the coils are overlapped with each other, bends of the conductors do not interfere with each other at coil ends so that the lane portion can be made in one layer. Thereby the coils are made to protrude less in the radial direction of the stator (toward the back yolk), and can be made smaller in the radial direction of the stator.
Plural in-slot portions S can be overlapped in the circumferential direction inside the slots such that their cross-sectional long sides are oriented in the radial direction of the stator 10, which enables in-slot portions S of different phases to be arranged at positions where they do not interfere with each other, meaning that the conductors can be bridged across slots in a shortest path. This, combined with the fact that plural circumferential portions E are arranged at coil ends such that their cross-sectional short sides overlap in the circumferential direction of the stator 10, minimizes space taken up at coil ends, and therefore the coil ends can be made small.
Also, since the coils need not be interwoven at coil ends, the production efficiency can be increased.
The embodiment described above is given by way of illustration only and not intended to limit the present invention in any way. It should be understood that various improvements and variations are possible without departing from the subject matter of the invention. For example, in the embodiment described above, the bent portions EL and ER include two bends EL1, ER1, EL2, and ER2, so that the lane portion at coil ends is made in one layer. Instead of providing two bends in the bent portion, the radius of curvature R may be increased as shown in
Also in the embodiment described above, the second bends EL2 and ER2 on the lead side are formed by tilting after the twisting process so as to make the lane portion in one layer at coil ends. The lane portion can be made in one layer also by pulling the circumferential portions E to left and right as shown in
Further, while the second bends EL2 and ER2 on the lead side are formed by tilting after the twisting process, the second bends EL2 and ER2 may be formed by bending before the twisting process as with the non-lead side, i.e., the first bends EL1 and ER1 and second bends EL2 and ER2 may both be formed by edgewise bending in two steps.
In the above embodiment, in the twisting process, the in-slot target portions are twisted while the two conductor blanks are overlapped. Instead thereof, the conductor blanks may be twisted separately.
While each in-slot target portion S in the above embodiment includes four rectangular conductors (UASX, UASY, UCSX, UCSY) overlapped one after another, each portion S may be configured by overlapping two rectangular conductors (UASX, UCSX) so that the conductor UA and the conductor UC are offset by one pitch. Further, each of the conductors UA and UC may be made up of three conductors to overlap six portions (UASX, UASY, UASZ, UCSX, UCSY, UCSZ) one after another. As another alternative, each of the conductors UA and UC may be made up of four conductors to overlap eight portions (UASX, UASY, UASZ, UASZZ, UCSX, UCSY, UCSZ, UCSZZ) one after another. A single in-slot target portion (UASX) may also be arranged.
In the above embodiment, the twisting target portions HM and HN are formed as a curved surface. These may be formed in a flat surface with a stepped portion.
Further, each circumferential portion E has the shape of an original conductor but may be made thinner than the original shape by press. In this case where each circumferential portion E is pressed to be thinner, the size of the stator in a radial direction can be reduced.
Although the above embodiment omits the explanation of a process for molding the stator assembly, the stator assembly shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/066995 | 9/30/2009 | WO | 00 | 5/27/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/039850 | 4/7/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1796422 | Apple | Mar 1931 | A |
5886444 | Enomoto et al. | Mar 1999 | A |
8093777 | Stiesdal | Jan 2012 | B2 |
8174160 | Stiesdal | May 2012 | B2 |
20010019234 | Murakami et al. | Sep 2001 | A1 |
20020036439 | Ooiwa | Mar 2002 | A1 |
20040017125 | Nakamura et al. | Jan 2004 | A1 |
20050046297 | Chen et al. | Mar 2005 | A1 |
20050206263 | Cai et al. | Sep 2005 | A1 |
20060066167 | Saito et al. | Mar 2006 | A1 |
20070145852 | Schon et al. | Jun 2007 | A1 |
20080007133 | Onimaru et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
2000-069700 | Mar 2000 | JP |
2002-345216 | Nov 2002 | JP |
2003-189521 | Jul 2003 | JP |
2006-101654 | Apr 2006 | JP |
2006-158045 | Jun 2006 | JP |
2008-048488 | Feb 2008 | JP |
2008-109737 | May 2008 | JP |
2009-011152 | Jan 2009 | JP |
2009-033831 | Feb 2009 | JP |
2010-178458 | Aug 2010 | JP |
Entry |
---|
International Search Report of PCT/JP2009066995 dated Jan. 12, 2010. |
Number | Date | Country | |
---|---|---|---|
20110227443 A1 | Sep 2011 | US |