This application is based on and claims priority under 35 U.S.C. ยง 119 to Japanese Patent Application 2004-249136, filed on Aug. 27, 2004, the entire content of which is incorporated herein by reference.
This invention generally relates to a stator and a motor.
Known stators are disclosed in JP2004-23929A, and page 7 of a document distributed at 22nd Motor Technology Forum, No. 7, held on Jun. 16, 2003 under the sponsorship of Japan Management Association. According to each stator for a motor disclosed, wire connections among three-phase coils (3-phase connection, and neutral point connection) wound around a teeth portion of a stator core (including a segmented type core) are conducted by electrically connecting a bus ring (or conductive wiring) of each phase coil formed on an inner peripheral side or an outer peripheral side of the stator, and each wire pulled-out portion pulled out from the coil by means of a terminal clamp (i.e. conductive holding member). A connection between the bus ring and the terminal clamp is conducted by means of fusing or soldering while a connection between the wire pulled-out portion and the terminal clamp is performed by means of fusing or soldering (with removing coating on the wire pulled-out portion).
When the wire pulled-out portion is electrically connected to the bus ring by means of the terminal clamp according to the aforementioned stator for a motor, a connecting operation is required at 4 portions per coil, thereby causing a long connecting operation time.
Thus, a need exists for a stator and a motor which can improve a workability of connection between a coil and a bus ring.
According to an aspect of the present invention, a stator includes a cylindrical-shaped stator core including multiple teeth projecting in a radial direction of the stator core, multiple coils wound around each of the multiple teeth, multiple bus rings arranged at an axially end portion of the stator core and each electrically connected to each of the multiple coils, multiple wire pulled-out portions formed on both ends of the coil and pulled out towards the bus ring, and multiple connection terminal portions integrally formed on the respective bus rings in such a manner that the connection terminal portions are arranged at respective predetermined intervals in a peripheral direction of the stator core and each extending towards each wire pulled-out portion. A tip end portion of the connection terminal portion is bent so as to form a substantially U-shape for pinching the wire pulled-out portion.
According to another aspect of the present invention, a stator core includes a cylindrical-shaped stator core including multiple teeth projecting in a radial direction of the stator core, multiple coils wound around each of the multiple teeth, a first bus ring including a first connection terminal portion electrically connected to a first wire pulled-out portion on a winding start side of the coil, a second bus ring including a second connection terminal portion electrically connected to a second wire pulled-out portion on a winding end side of the coil, and an insulating member disposed between the coil and the stator core and including a turning portion that includes a turning point by means of which the first wire pulled-out portion and the second wire pulled-out portion are guided in a peripheral direction of the stator core, a first holding portion for holding the first wire pulled-out portion guided in the peripheral direction of the stator core in an opposite direction to a winding direction of the coil by means of the turning portion, a second holding portion for holding the second wire pulled-out portion guided in an opposite direction to a direction in which the first wire pulled-out portion is guided by means of the turning portion. The first connection terminal portion extends towards the first wire pulled-out portion from a main body of the first bus ring while a tip end portion of the first connection terminal portion forms into a substantially U-shape opening towards the stator core. The U-shaped portion engages with a portion of the first wire pulled-out portion arranged between the turning portion and the first holding portion. The second connection terminal portion extends towards the second wire pulled-out portion from a main body of the second bus ring while a tip end portion of the second connection terminal portion forms into a substantially U-shape opening towards the stator core. The U-shaped portion engages with a portion of the second wire pulled-out portion arranged between the turning portion and the second holding portion.
The foregoing and additional features and characteristics of the present invention will become more apparent from the following detailed description considered with reference to the accompanying drawings, wherein:
An embodiment of the present invention is explained with reference to the attached drawings.
A motor according to the present embodiment is a 3-phase Y-connection type motor and includes a stator 1. As shown in
As shown in
The insulating member 20 is of a bobbin shape for electrically insulating the coil 30 from the stator core 10 and provided at each of the multiple teeth 10a of the stator core 10. As shown in
The first insulating member 21 includes a first holding portion 21a, a second holding portion 21b, a turning portion 21c, a guide portion 21d, a stepped portion 21e, and a bus ring receiving portion 21f all of them which are constituted as a unit as shown in
The first holding portion 21a is formed on an outer peripheral side of the outer peripheral flange portion 21h and is of a column shape extending in an axial direction of the motor. The first holding portion 21a includes a groove at a tip end in an axially outward direction for pinching to hold a first wire pulled-out portion 31 of the coil 30 as shown in
The second holding portion 21b is formed on the outer peripheral side of the outer peripheral flange portion 21h in such a manner that the second holding portion 21b is arranged on an opposite side to the first holding portion 21a in the peripheral direction of the motor, and is of a column shape extending in the axial direction of the motor. The second holding portion 21b includes a groove at a tip end in the axially outward direction for pinching to hold a second wire pulled-out portion 32 of the coil 30 as shown in
The turning portion 21c is formed, on the outer peripheral side of the outer peripheral flange portion 21h, between the first and second holding portions 21a and 21b such that predetermined intervals are formed therewith respectively. The turning portion 21c is of a column shape extending in the axial direction of the motor. Further, as shown in
The guide portion 21d is of a stepped or groove shape for guiding the first wire pulled-out portion 31 pulled out from the coil 30 to the first holding portion 21a via an outer periphery of the turning portion 21c as shown in
The bus ring receiving portion 21f is provided for receiving the bus ring 40, and formed on an outer peripheral side of the first and second holding portions 21a and 21b, and the turning portion 21c as shown in
The coil 30 is formed by a wire rod on which an insulation coating is provided and constituted by winding the wire rod on an outer periphery of the insulating member 20 that is assembled to the stator core 10 as shown in
As shown in
The first bus ring 41 includes the connection terminal portions 41a for a direct electrical connection with the second wire pulled-out portion 32 for the coil 30, precisely, coils 30U, 30V, and 30W (i.e. end portions of neutral point). Each connection terminal portion 41a is constituted as a unit with a ring-shaped portion (i.e. main body) of the first bus ring 41. The connection terminal portion 41a extends from an end face of the main body of the first bus ring 41 in the axial direction of the motor towards the second wire pulled-out portion 32, precisely, second wire rod pull-put portions 32U, 32V, and 32W as shown in
The second bus ring 42 includes the connection terminal portion 42a for a direct electrical connection with a first wire pulled-out portion 31U for the U-phase coil 30U as shown in
The third bus ring 43 includes the connection terminal portion 43a for a direct electrical connection with a first wire pulled-out portion 31V for the V-phase coil 30V as shown in
The fourth bus ring 44 includes the connection terminal portion 44a for a direct electrical connection with a first wire pulled-out portion 31W for the W-phase coil 30W as shown in
The core holder 50 supports the stator core 10, which is constituted by the multiple core segments 11 arranged in an annular form, from an outer peripheral side and one side of the axial direction of the motor as shown in
Next, a manufacturing method of the stator 1 for a motor according to the present embodiment is explained below.
First, the insulating member 20 (i.e. first insulating member 21 and the second insulating member 22) is assembled to each core segment 11. Next, the coil 30 is wound on the coil receiving portions 21g and 22a of the first and second insulating members 21 and 22 respectively. Then, the first wire pulled-out portion 31 of the coil 30 is guided along the guide portion 21d and pulled in a direction opposite to the coil winding direction by means of the turning portion 21c. The first wire pulled-out portion 31 is held by the first holding portion 21a. The second wire pulled-out portion 32 of the coil 30 is made contact with the stepped portion 21e so as to be pulled in an opposite direction to the coil winding direction with reference to the turning portion 21c. The second wire pulled-out portion 32 is held by the second holding portion 21b. Accordingly, a winding tension of the coil 30 may be received or maintained by the turning portion 21c.
Next, the stator core 10 formed by the multiple core segments 11 (equipped with the insulating member 20 and the coil 30) which are combined to be arranged in the peripheral direction are assembled to the core holder 50 as shown in
Then, the bus ring 40 is assembled to the bus ring receiving portion 21f of the first insulating member 21. At this time, the first bus ring 41, the second bus ring 42, the third bus ring 43, and the fourth bus ring 44 are assembled in order from the inner peripheral side for preventing contact among the connection terminal portions 41a, 42a, 43a, and 44a. In case of assembling the first bus ring 41, the connection terminal portion 41a and the second wire pulled-out portion 32 are connected to each other as each portion of the second wire pulled-out portion 32 for the coils 30U, 30V and 30W arranged between the turning portion 21c and the second holding portion 21b engages with each connection terminal portion 41a. In case of assembling the second bus ring 42, the connection terminal portion 42a and the first wire pulled-out portion 31U are connected to each other as a portion of the first wire pulled-out portion 31U of the coil 30U arranged between the turning portion 21c and the first holding portion 21a engages with the connection terminal portion 42a. In case of assembling the third bus ring 43, the connection terminal portion 43a and the first wire pulled-out portion 31V are connected to each other as a portion of the first wire pulled-out portion 31V of the coil 30V arranged between the turning portion 21c and the first holding portion 21a engages with the connection terminal portion 43a. In case of assembling the fourth bus ring 44, the connection terminal portion 44a and the first wire pulled-out portion 31W are connected to each other as a portion of the first wire pulled-out portion 31W of the coil 30W arranged between the turning portion 21c and the first holding portion 21a engages with the connection terminal portion 44a.
Next, the connection terminal portions 41a, 42a, 43a, and 44a, and corresponding wire pulled-out portions 31U, 31V, 31W, and 32 are electrically connected, i.e. fusing is performed. In this case, two fusing electrodes (not shown) are shifted in a radial direction of the motor and then stopped when the connection terminal portions 41a, 42a, 43a, and 44a are positioned between the fusing electrodes. Then, the connection terminal portions 41a, 42a, 43a, and 44a are pinched by the fusing electrodes, to which a high voltage is applied so as to remove, i.e. fuse, the insulation coating provided on the wire pulled-out portions 31U, 31V, 31W and 32. Accordingly, the connection terminal portions 41a, 42a, 43a, and 44a and corresponding wire pulled-out portions 31U, 31V, 31W, and 32 are electrically connected (i.e. fusing). The fusing process may be simplified and time may be reduced.
According to the aforementioned embodiment, the wire pulled-out portions 31 and 32 are guided or pulled in an opposite direction to the coil winding direction by means of the turning portion 21c. Thus, a winding tension of the coil 30 may be received by the turning portion 21c. The wire pulled-out portions 31 and 32 may be surely secured without dropping off, thereby simplifying the winding operation. Further, the first wire pulled-out portion 31 and the second wire pulled-out portion 32 are pulled in such a manner that positions thereof in the axial direction of the motor are different from each other by means of the stepped portion 21e, thereby assuring space for receiving the fusing electrodes in the peripheral direction. Furthermore, a moving distance of the fusing electrodes at a time of fusing performed is reduced and thus workability may be enhanced. Furthermore, the number of connection operations per coil is reduced from 4 (according to the conventional invention) to 2, the workability may be further enhanced. Since no members contact with the fusing electrodes at a time of electrical connection, excellent workability and work time may be achieved. Furthermore, the motor with excellent space efficiency may help reduction of cost and size.
Further, according to the aforementioned embodiment, the wire pulled-out portions 31 and 32 pulled out are arranged in the peripheral direction of the motor, thereby achieving a high space efficiency.
The principles, preferred embodiment and mode of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the sprit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims, be embraced thereby.
Number | Date | Country | Kind |
---|---|---|---|
2004-249136 | Aug 2004 | JP | national |