The subject matter disclosed herein relates to blades within turbine engines, and more specifically, to attachment assemblies for nozzles or stator blades within turbine engines.
As part of maintaining gas or steam turbine engines (collectively, “turbine engines”), it is often necessary to replace a row of nozzles or stator blades (hereinafter “stator blades”), for example, within the turbine section of a gas or steam turbine engine and/or compressor section in a gas turbine engine. It also may be beneficial to change stator blade count (i.e., the number of stator blades circumferentially spaced about the annular flowpath of the engine), as the modified count may improve some aspect of performance. However, changing stator blade count within the row generally modifies the positioning of connectors or interfaces used to secure the stator blades to the surrounding structural casing. For example, the count of stator blades may affect the location and number of bore holes needed in the surrounding casing for the locking pins that are used to circumferentially secure each stator blade. In most cases, changing stator blade count results in new bore locations being interfered with by one or more of the existing bores, for example, via a partial overlap between a new and existing bore hole location.
To correct this issue, significant rework is required, which leads to issues in machining, damages to the existing structure, and results in more machine down time to complete the installation. Accordingly, there remains a need for further advances in this area of technology.
The present application thus describes a method of modifying a casing of a turbine engine for attaching stator blades within a row of stator blades to the casing. The method may include the steps of: forming a circumferentially extending groove in an inboard face of the casing; providing a segmented ring insert that includes bore holes spaced in accordance with a bore hole pattern that corresponds to the row of stator blades; inserting the segmented ring insert into the groove; and securing the segmented ring insert to the casing.
These and other features of this invention will be more completely understood and appreciated by careful study of the following more detailed description of exemplary embodiments of the invention taken in conjunction with the accompanying drawings, in which:
Aspects and advantages of the present application are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention. Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical designations to refer to features in the drawings. Like or similar designations in the drawings and description may be used to refer to like or similar parts of embodiments of the invention. As will be appreciated, each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. It is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents. It is to be understood that the ranges and limits mentioned herein include all sub-ranges located within the prescribed limits, inclusive of the limits themselves unless otherwise stated. Additionally, certain terms have been selected to describe the present invention and its component subsystems and parts. To the extent possible, these terms have been chosen based on terminology common to the technology field. Still, it will be appreciated that such terms often are subject to differing interpretations. For example, what may be referred to herein as a single component, may be referenced elsewhere as consisting of multiple components, or, what may be referenced herein as including multiple components, may be referred to elsewhere as being a single component. Thus, in understanding the scope of the present invention, attention should not only be paid to the particular terminology used, but also to the accompanying description and context, as well as the structure, configuration, function, and/or usage of the component being referenced and described, including the manner in which the term relates to the several figures, as well as, of course, the usage of the terminology in the appended claims.
The following examples are presented in relation to particular types of turbine engines. However, it should be understood that the technology of the present application may be applicable to other categories of turbine engines, without limitation, as would be appreciated by a person of ordinary skill in the relevant technological arts. Accordingly, unless otherwise stated, the usage herein of the term “turbine engine” is intended broadly and without limiting the usage of the claimed invention with different types of turbine engines, including various types of combustion or gas turbine engines as well as steam turbine engines.
Given the nature of how turbine engines operate, several terms may prove particularly useful in describing certain aspects of their function. For example, the terms “downstream” and “upstream” are used herein to indicate position within a specified conduit or flowpath relative to the direction of flow or “flow direction” of a fluid moving through it. Thus, the term “downstream” refers to the direction in which a fluid is flowing through the specified conduit, while “upstream” refers to the direction opposite that. These terms should be construed as referring to the flow direction through the conduit given normal or anticipated operation. Given the configuration of turbine engines, particularly the arrangement of the components about a common or central shaft or axis, terms describing position relative to an axis may be used regularly. In this regard, it will be appreciated that the term “radial” refers to movement or position perpendicular to an axis. Related to this, it may be required to describe relative distance from the central axis. In such cases, for example, if a first component resides closer to the central axis than a second component, the first component will be described as being either “radially inward” or “inboard” of the second component. If, on the other hand, the first component resides further from the central axis than the second, the first component will be described as being either “radially outward” or “outboard” of the second component. As used herein, the term “axial” refers to movement or position parallel to an axis, while the term “circumferential” refers to movement or position around an axis. Unless otherwise stated or made plainly apparent by context, these terms should be construed as relating to the central axis of the turbine as defined by the shaft extending therethrough, even when these terms are describing or claiming attributes of non-integral components—such as rotor or stator blades—that function therein. Finally, the term “rotor blade” is a reference to the blades that rotate about the central axis of the turbine engine during operation, while the term “stator blade” is a reference to the blades that remain stationary.
By way of background, referring now with specificity to the figures,
In one example of operation for the gas turbine 10, the rotation of compressor rotor blades 14 within the axial compressor 11 may compress a flow of air. In the combustor 13, energy may be released when the compressed air is mixed with a fuel and ignited. The resulting flow of hot gases or working fluid from the combustor 13 is then directed over the turbine rotor blades 16, which induces the rotation of the turbine rotor blades 16 about the shaft. In this way, the energy of the flow of working fluid is transformed into the mechanical energy of the rotating blades and, given the connection between the rotor blades and the shaft, the rotating shaft. The mechanical energy of the shaft may then be used to drive the rotation of the compressor rotor blades 14, such that the necessary supply of compressed air is produced, and, for example, a generator to produce electricity.
As further illustrated in
Turbine engine maintenance may periodically include the replacement of stator blades, for example, replacing a row of stator blades within the turbine section of a gas or steam turbine engine or the compressor section in a gas turbine engine. As part of replacing such blade rows, it is occasionally desirable to change stator blade count within the row (i.e., the number of stator blades circumferentially spaced in the row), as the modified count may improve some aspect of performance. However, changing stator blade count generally modifies the positioning of connectors or interfaces used to secure the stator blades to the surrounding carrier or casing. For example, stator blade count affects the location and number of bore holes needed in the surrounding casing for circumferentially securing each stator blade with locking pins. In most cases, a change to stator blade count results in the location of new bore holes being interfered with by one or more of the locations of existing bore holes, for example, via a partial overlap between a new location and an existing one. To correct this issue, significant rework is generally required, which leads to issues in machining, damage to the existing structure, and longer down time for the engine to complete the installation. A conventional solution is to adapt the existing locking features to accommodate the new ones by fitting bushings and/or closing or patching existing bore holes by welding. After closing the existing ones, new bore holes are then machined or drilled into the casing to fit the new bore hole pattern. As will be appreciated, to complete this type of work generally requires a major outage for the engine, as specially trained personnel and specialized tools must be brought to the site.
With reference now to
As depicted, the cross-sectional shape of the groove 50 may be one that widens, at least initially, as the groove 50 extends from the mouth 53 toward the back wall 54. This initial widening, for example, may include a lip portion 55 at which the width of the groove 50 is wider than width of the groove at the mouth 53. As also shown, the groove 50 may have an end opening 56 at a longitudinal end of the groove 50 that occurs at the split-line 49 of the casing 30. A recessed portion 57 may be formed about the end opening 56 of the groove 50, the use of which will be discussed more below. The groove 50 may be formed in the casing 30 using any conventional manufacturing processes. For example, the groove 50 may be machined therein using any conventional machining process, including traditional mechanical processes as well as other methods, such as laser or water cutting, electrical discharge machining, and electro-chemical erosion. As will be discussed more below, the groove 50 also may be cast into the casing 30 during the manufacture of the casing 30.
Once it is installed within the groove 50, the segmented ring insert 60 may be constrained or secured therewithin via one or more of the following ways. First, the segmented ring insert 60 may be configured to fit snugly within the groove 50 such that the cross-sectional shape of the groove 50 functions to restrains relative radial movement therebetween. For example, radial movement of the segmented ring insert 60 in the outboard direction may be restrained by abutting contact between the segmented ring insert 60 and the backwall 55 of the groove 50. Radial movement of the segmented ring insert 60 in the inboard direction may be restrained by abutting contact between the segmented ring insert 60 and the lip portion 55 of the groove 50, i.e., the widening of the cross-sectional shape of the groove 50 from the mouth 53 of the groove 50.
Second, the segmented ring insert 60 may be pinned or bolted to the backwall 54 of the groove 50 by pins 71. In this case, the pins 71 may extend through the segmented ring insert 60 and into the backwall 55 of the groove 50. As will be appreciated, the pins 71 may circumferentially secure the segmented ring segment 60 at a desired circumferential location.
Third, a cover plate 73 may be installed within the recessed portion 57 of the end opening 56. Specifically, a cover plate 73 may be provided that corresponds in shape to the recessed portion 57. Then, the segmented ring insert 60 may be circumferentially secured by closing the end opening 56 with the cover plate 73 once the segmented ring insert 60 has been fully inserted and positioned within the groove 50. For example, the cover plate 73 may be secured to the casing 30 by mechanical fasteners, such as, for example, one or more bolts 74. As shown, the cover plate 73 may be configured so that it resides flush to the surrounding surface of the casing 30.
The disclosure of the present application provides several advantages over the conventional approach of modifying stator blade count. These advantages, for example, include saving time and manpower by simplifying the adaptions needed for installing a row of stator blades having a changed bore hole pattern. Such time savings would improve overall engine availability and, generally, result in the less operational interruptions. Further, once the groove is installed, it will be appreciated that later modifications to the stator blade count may be achieved by simply inserting a modified segmented ring insert into the established groove. Aspects of the present disclosure may offer benefits during the design and manufacture of new turbine engines also. For example, the groove may be formed within the casing for use in installing the initial set of stator blades via a segmented ring insert. Such upfront usage of the groove/segmented ring insert assembly may provide greater flexibility in the design schedule because the selection of the bore hole pattern could occur at a later point in the development process. Further, upfront installation of the groove allows for convenient reconditioning and blade count modification throughout the operational life of the engine.
As one of ordinary skill in the art will appreciate, the many varying features and configurations described above in relation to the several exemplary embodiments may be further selectively applied to form the other possible embodiments of the present invention. For the sake of brevity and taking into account the abilities of one of ordinary skill in the art, each of the possible iterations is not provided or discussed in detail, though all combinations and possible embodiments embraced by the several claims below or otherwise are intended to be part of the instant application. In addition, from the above description of several exemplary embodiments of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are also intended to be covered by the appended claims. Further, it should be apparent that the foregoing relates only to the described embodiments of the present application and that numerous changes and modifications may be made herein without departing from the spirit and scope of the application as defined by the following claims and the equivalents thereof.