This invention is directed generally toward down hole motors, and in particular down hole drilling motors used in oil and gas well drilling applications and the like.
Progressing cavity motors, also known as Moineau-type motors (after the inventor of U.S. Pat. No. 1,892,217), including stator devices used therein, have been used in drilling applications for many years. See, for example, the following U.S. Pat. Nos. which are incorporated herein by reference: U.S. Pat. Nos. 3,840,080; 3,912,426; 4,415,316; 4,636,151; 5,090,497; 5,171,138; 5,417,281; 5,759,109; and 6,183,226.
Conventional Moineau pump and motor art has used rubber or elastomer materials bonded to steel for the stator contact surface. Such elastomers include not only natural rubber, but also synthetics, such as G.R.S., Neoprine, Butyl and Nitrile rubbers and other types such as soft PVC. For example, U.S. Pat. No. 5,912,303, incorporated herein by reference, discloses a polyene terpolymer rubber composition that is vulcanized for applications in the automotive industry. EPDM, a terpolymer, is highly resistant to weather, ozone and heat aging but is not oil resistant. The '303 patent teaches blending nitrile rubber (NBR), which is oil resistant, with EPDM to obtain the advantages of both NBR and EPDM. The rubber is vulcanized and then used in tires, hoses, windshield wipers and the like that are subjected to weather and the like.
Rubber stators in down hole drilling motors are subjected to a harsh environment involving both higher temperatures, hydrocarbon immersion and dynamic loading. The key here in down hole motors has been to make the elastomer property soft enough for injection molding and soft enough to maintain the sealed cavity, yet be hard enough to be able to withstand the abrasive wear from the working contact between the rotor and the stator. U.S. Pat. No. 5,620,313, entitled “Worm Pump For Flowable Media,” utilizes a stator wall composed of a rubber with a Shore A hardness of 90 to 95 (tested in accordance with ASTM D2240). Such a hard elastomer property is desirable for withstanding the abrasive wear found in conventional down hole drilling motors. However, such a hard material is difficult to injection mold, resulting in expensive manufacturing costs. Thus, the prior art has not been able to achieve a satisfactory balance for use in down hole motors, regarding durability in operation but easier to manufacture.
Additionally, drilling applications generally involve high-temperature environments. U.S. Pat. No. 6,183,226 teaches that rubber used as the stator contact surface is not desirable in high-temperature environments because of its low heat conductivity. U.S. Pat. Nos. 6,183,226 and 5,417,281 disclose use of composites formed from fiberglass, resin, and elastomer. Further, as progressive cavity devices increase in diameter or length or both (as in oil and gas drilling applications), flow characteristics to maintain a successful and long-lasting bond of the rubber to steel housing becomes quite difficult. Moreover, where hydrocarbons make up the material to be pumped, such as in oil and diesel-based drilling mud used in some drilling operations, some rubber compounds are known to deteriorate.
The present invention addresses shortcomings in the field of down hole motors, particularly shortcomings associated with oil drilling applications. An embodiment of the invention comprises a down hole drilling motor comprising a tubular housing and a stator disposed in the tubular housing. The stator disposed in the tubular housing includes a central cavity. A rotor is operatively positioned in the cavity to cooperate with the lobe. The stator comprises at least one lobe, and preferably a plurality of lobes, that define at least a portion of the cavity. A lobe is formed from a compound that comprises nitrile rubber. The nitrile rubber preferably has about 35 percent by weight acrylonitrile (ACN) by Kjeldahl method and has a Mooney viscosity (tested in accordance with ASTM standard D1646) of about 50 (the nitrile rubber those characteristics is also identified herein as: 35-5 NBR). Preferably a substantial portion of the stator is formed from the compound. In one embodiment, the stator compound comprises about 100 parts by weight of the 35-5 NBR per about 231.5 total parts per weight. Conventional ingredients typically account for the remainder of the 231.5 parts.
A compound according to an embodiment of the present invention suitable for a drilling motor has a hardness (Shore A), tested in accordance with ASTM Standard D2240, less than 90, and preferably in a range of about 70-75. The compound preferably has a volume percent change less than 10 percent when subjected to a 72 hour 300 degree Fahrenheit test in accordance with ASTM Standard D471 using Versadrill™ drilling fluid. Similarly, the compound preferably has a volume percent change less than 5 percent when subjected to a test with similar test parameters except using sodium silicate.
The present invention provides an improved stator for a dynamic down hole drilling motor wherein the stator has improved thermal degradation characteristics. The invention provides a down hole motor with reduced susceptibility to stator damage from the rotor due to water swell of the stator. The preset invention provides a down hole motor with improved sealing characteristics and sufficient wear characteristics.
Additionally, the present invention reduces down hole motor manufacturing costs associated with injection-molding the rubber stator while improving rubber-to-model metal bonding characteristics. The present invention improves the wear and performance characteristics of the down hole drilling motor by providing better rubber-to-metal bonding characteristics.
In the drawings:
In operation, drilling fluid (also known in the art as drilling mud) 100 is pumped down the interior of a drill string 50 (shown broken away) attached to down hole drilling motor 10. Drilling fluid 100 enters cavity 34 having a pressure that is a combination of pressure imposed on the drilling fluid by pumps at the surface and the hydrostatic pressure of the above column of drilling fluid 100. The pressurized fluid entering cavity 34, in cooperation with the lobes of the stator and the geometry of the stator and rotor causes the lobes to the stator to deform and the rotor to turn to allow the drilling fluid 100 to pass through the motor. Drilling fluid 100 subsequently exits through ports (referred to in the art as jets) in drill bit 36 and travels up the annulus 102 between the bit, motor and drill string and is received at the surface where it is captured and pumped down the drill string again.
Down hole drilling motors fall into a general category referred to as Moineau-type motors. For a further discussion of down hole drilling motors and their operations, see U.S. Pat. Nos. 3,840,080, 5,090,497, and 6,183,226 and Canadian Patent No. 2,058,080, incorporated by reference. Down hole motors are, however, generally subjected to greater torquing loads than simple worm pumps that also fall generally into that category. This is particularly true with high power density (HPD) down hole motors used in oil and gas well drilling. Detailed description of Moineau-type motors may be found in U.S. Pat. Nos.: 3,840,080; 3,912,426; 4,415,316; 4,636,151; 5,090,497; 5,171,138; 5,417,281; 5,759,019; and 6,183,226 and Canadian Patent No. 2,058,080. The above-identified U.S. patents are incorporated herein by reference for their teachings concerning Moineau-type motors.
Conventional Moineau pump and motor art has used rubber or elastomer materials bonded to the steel housing for the stator contact surface. However, in dynamic loading conditions, such as is involved in down hole drilling applications, substantial heat is generated in the rubber parts. Since rubber is not a good heat conductor, thermal energy is accumulated in the rubber part. This thermal energy accumulation may lead to thermal degradation and, therefore, damage of the rubber parts and separation from the housing. Drilling operations using HPD down hole motors put more loads on the rubber than traditional down hole motors. Thus, HPD applications result in more heat generated in the rubber. Also, where hydrocarbons make up the material to be pumped, such as in oil-based or diesel-based drilling fluids, rubber is known to deteriorate, such deterioration is exacerbated by the accumulation of thermal energy. Thus, the prior art has taught using composites for the stator rather than rubbers or elastomers. (See U.S. Pat. No. 6,183,226 and Canadian Patent No. 2,058,080).
Even mere water is a problem in drilling applications. For optimum performance of the drilling motor, there is a certain required clearance between the rubber parts of the stator and the rotor. When the rubber swells, not only the efficiency of the motor is comprised but also the rubber is susceptible to damage because of reduced clearance between the rotor and the stator. The reduced clearance induces higher loads on the rubber.
When a rotor is loaded, the rubber lobes of the stator will be deformed. Rubber with a higher modulus, i.e., a stiffer rubber, will recover faster from the deformation, thus providing better sealing during the drilling operation. Stiffer rubber, however, has disadvantages during the manufacturing processing stages. Processibility is generally inversely related to the stiffness of the rubber. This is particularly true in injection-mold processes. The stator in down hole motors are generally formed using an injection mold process. Due to the length and volume of the down hole motor, very high power is required to injection-mold the rubber. Typically, a stiffer compound will demand much more processing power and time, thereby increasing manufacturing costs.
Down hole drilling motors typically utilize a steel metal housing. Therefore, another requirement is that the stator have a good rubber-to-metal bonding strength. If there is not enough bonding strength between the rubber and housing, the rubber will separate from the housing during the operation of the down hole motor. The loading requirements are even more stringent for HPD down hole motor applications.
U.S. Pat. Nos. 6,183,226 and 5,417,281 and Canadian Patent No. 2,058,080 teach utilizing composites rather than rubber to overcome the above-discussed disadvantages of rubber. Despite the teachings of the prior art, an embodiment of the present invention utilizes a compound comprising nitrile rubber having about 35 percent by weight acrylonitrile and a Mooney viscosity of about 50, measured in accordance with ASTM Standard D1646, typically designated 35-5 NBR. In a preferred embodiment the compound comprises about 100 parts by weight of 35-5 NBR per about 231.5 total parts by weight.
For convenience a preferred compound suitable for use in an embodiment of the present invention is designated herein as HS-40B. Tables 1 and 2 list characteristic properties of the HS-40B compound. Table 1 lists various mechanical properties and Table 2 lists various structural property. Table 2 lists the percent change in volume based on soaking the compound in various mediums. Table 3 lists one preferred formulation for the HS-40B compound.
Tables 4-7 show comparisons between HS-40B, which comprises NBR, and other NBR motor compounds, generically designated NBR 1 and NBR 2. Table 4 shows a comparison and Versadrill™ drilling mud which is a diesel based mud. Table 5 shows a comparison in sodium silicate mud. Tables 6 and 7 show the result of subjecting the NBR compounds to Xylene and water swell tests per ASTM Standard D471, respectively. The NBR 1 and NBR 2 were chosen for their comparable hardness (Shore A) characteristic per ASTM Standard D2240. Reference to Tables 4 and 5 will show that the HS-40B percent change in volume was less than half that of the NBR compounds with comparable hardness characteristics.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1892217 | Moineau | Dec 1932 | A |
3607981 | Morris | Sep 1971 | A |
3840080 | Berryman | Oct 1974 | A |
3912426 | Tschirky | Oct 1975 | A |
4008190 | Taylor et al. | Feb 1977 | A |
4185839 | Allen | Jan 1980 | A |
4259460 | Schwarz | Mar 1981 | A |
4415316 | Jürgens | Nov 1983 | A |
4546130 | Mishida et al. | Oct 1985 | A |
4588309 | Uyehara et al. | May 1986 | A |
4614779 | Watanabe et al. | Sep 1986 | A |
4631309 | Thörmer et al. | Dec 1986 | A |
4636151 | Eppink | Jan 1987 | A |
4688605 | Eisenzimmer et al. | Aug 1987 | A |
4820764 | Guzy et al. | Apr 1989 | A |
4913234 | Bodine | Apr 1990 | A |
4914160 | Aziaian | Apr 1990 | A |
5090497 | Beimgraben et al. | Feb 1992 | A |
5171138 | Forrest | Dec 1992 | A |
5171139 | Underwood et al. | Dec 1992 | A |
5417281 | Wood et al. | May 1995 | A |
5620313 | Fockenberg | Apr 1997 | A |
5759109 | Martini | Jun 1998 | A |
5912303 | Nakahama et al. | Jun 1999 | A |
6183226 | Wood et al. | Feb 2001 | B1 |
6191510 | Landin et al. | Feb 2001 | B1 |
6251493 | Johnson et al. | Jun 2001 | B1 |
Number | Date | Country |
---|---|---|
2058080 | Nov 1997 | CA |
32 26 081 | Dec 1983 | DE |
123837 | Mar 1919 | GB |
2297092 | Jul 1996 | GB |
WO 0177185 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030143094 A1 | Jul 2003 | US |