1. Field of the Invention
The present invention relates to a stator for rotary electric machines.
2. Description of the Related Art
FIG. 13 of Japanese Patent Publication No. 11-206057 shows a stator for rotary electric machines comprising a stator core which includes an annular yoke and a plurality of magnetic pole sections protruding from the annular yoke toward a centerline of the yoke, a plurality of winding portions formed of a winding conductor wound around the magnetic pole sections of the stator core, and a slot insulator which is made of an insulating resin and mounted on the stator core in order to provide electrical insulation between the stator core and the winding portions. The slot insulator includes a plurality of connecting wire engaging hooks which are located at and integrally formed with one of ends thereof, and disposed at certain intervals in a circumferential direction thereof. A connecting wire, which is formed of a part of the winding conductor extending from the winding portions, is engaged with the plurality of connecting wire engaging hooks. The plurality of connecting wire engaging hooks are respectively formed to respectively protrude toward a slot between adjoining two of the plurality of magnetic pole sections. With this arrangement, when inserting a nozzle for winding a winding conductor into the slot between the adjoining two magnetic pole sections of the plurality of magnetic pole sections in order to wind the winding conductor around the plurality of magnetic pole sections, the connecting wire engaging hooks near the slot disturb the nozzle's operation, thereby restricting the movement of the nozzle. As a result, in the conventional arrangement, there is a limitation in increasing a volume occupied by the winding portions in the slot.
FIG. 1 of Japanese Patent Publication No. 11-206057 shows a slot insulator which includes a plurality of wall portions, for guiding the connecting wire along the annular yoke, disposed at intervals in the circumferential direction of the yoke. On outer wall portions of the wall portions, a plurality of protrusions protruding outwardly in a radial direction of the yoke are disposed to prevent the connecting wire from coming off.
However, in the slot insulator configured as shown in FIG. 1 of Japanese Patent Publication No. 11-206057, the connecting wire has to be arranged along an outer surface of the plurality of wall portions for guiding the connecting wire. As a result, there are some problems that when disposing the wiring wire, the movement of the nozzle becomes intricate, and the connecting wire becomes rather long.
Accordingly, an object of the present invention is to provide a stator for rotary electric machines wherein a volume occupied by winding portions may be increased and a connecting wire may readily be prevented from coming off.
Another object of the present invention is to provide a stator for rotary electric machines, wherein a circuit substrate is supported at one end of a slot insulator and a distance between the circuit substrate and a stator core may be reduced.
A stator for rotary electric machines, of which improvement is aimed in the present invention, comprises a stator core including a plurality of magnetic pole sections that are disposed integrally with an annular yoke and on an inner circumferential portion of the annular yoke at intervals in a circumferential direction of the annular yoke, and that are protruding toward a centerline of the annular yoke, a plurality of winding portions respectively formed of a winding conductor wound around the plurality of magnetic pole sections of the stator core, and a slot insulator made of an insulating resin, which is mounted on the stator core in order to provide electrical insulation between the stator core and the winding portions.
The slot insulator includes a plurality of connecting wire engaging hooks at one ends thereof located in one extending direction where the centerline of the annular yoke extends. The connecting wire engaging hook is integrally formed with the slot insulator and disposed on the one end of the slot insulator at intervals in the circumferential direction, for engaging with the connecting wire formed of a part of the winding conductor extending from the winding portion. In the present invention, the plurality of connecting wire engaging hooks are respectively disposed in the vicinity of border portions between the magnetic pole sections and the yoke, corresponding to the plurality of magnetic pole sections.
According to the present invention, the plurality of connecting wire engaging hooks are respectively disposed in the vicinity of border portions between the magnetic pole sections and the yoke, corresponding to the plurality of magnetic pole sections, and accordingly the connecting wire engaging hook is not disposed in the slot between the adjoining two magnetic pole sections unlike the conventional arrangement. Accordingly, when winding the winding conductor, the nozzle may be moved smoothly within the slot without being disturbed by the connecting wire engaging hooks, and the volume occupied by the winding portions may be increased. In addition, since the plurality of connecting wire engaging hooks are respectively disposed in the vicinity of the border portions between the plurality of magnetic pole sections and yoke, the movement of the nozzle at the time of forming the connecting wire may be simplified. As a result, the connecting wire need not to be long and the connecting wire may readily be disposed.
A circuit substrate which includes a wiring pattern electrically connected to the plurality of winding portions may be supported at the one of the ends of the slot insulator. A connector is mounted on a front surface of the circuit substrate located in the one extending direction. A plurality of terminal conductors of the connector penetrate the circuit substrate in a thickness direction, and protruding toward the winding portions. Ends of the plurality of terminal conductors protruding from the circuit substrate are soldered and connected to electrodes disposed on a rear surface of the circuit substrate, opposed to the front surface of the circuit substrate. In this case, it is preferred that a mounting location of the connector on the circuit substrate is determined so that all of the ends of the plurality of terminal conductors may be located between adjoining two of the connecting wire engaging hooks.
The winding portion formed of the winding conductor wound around the magnetic pole section is configured to protrude farthest in the one extending direction at a middle portion of the magnetic pole section. Accordingly, when all of the ends of the plurality of terminal conductors are located between the adjoining two of the connecting wire engaging hooks, all of the ends of the terminal conductors are disposed in a space formed between the adjoining two of the winding portions, and spaced from the winding portions. This arrangement makes it possible to prevent the plurality of terminal conductors from being in contact with the winding portions even if the circuit substrate is disposed in the vicinity of the stator core. As a result, a dimension of the stator for rotary electric machines supporting the circuit substrate, in the direction where the centerline extends, may be reduced. Accordingly, the motor may be compact in size by reducing the dimension between the circuit substrate and the stator core.
It is preferred that the slot insulator may include at one end thereof a cylindrical outer wall portion protruding in the direction where the centerline extends. In this case, the circuit substrate may be annular in shape so as to be disposed inside the cylindrical outer wall portion. The plurality of connecting wire engaging hooks may be respectively formed inside the cylindrical outer wall portion and spaced from the cylindrical outer wall portion. With this arrangement, the cylindrical outer wall portion is located outside the connecting wire to protect it. When arranging the connecting wire, the winding conductor is merely inserted into a space formed between the cylindrical outer wall portion and the plurality of connecting wire engaging hooks. Thus, arrangement or formation of the connecting wire becomes simplified.
An outline shape of the cylindrical outer wall portion is arbitrary. For example, when the outline of the cylindrical outer wall portion is a regular polygon in shape, it is preferred that the plurality of connecting wire engaging hooks are respectively disposed inside a plurality of corner portions of the regular polygon. Generally, the connector of the circuit substrate is formed along one side of the regular-polygonal cylindrical outer wall portion. That is, the connector is formed in the mid-position between adjoining two of the corner portions of the regular-polygonal cylindrical outer wall portion. With this arrangement, when the plurality of connecting wire engaging hooks are respectively disposed inside the plurality of corner portions of the regular-polygonal cylindrical outer wall portion, all of the ends of the plurality of terminal conductors of the connector protruding from the circuit substrate are arranged in the space formed between the adjoining two winding portions. As a result, the circuit substrate may be disposed closer to the stator core, and the distance between the circuit substrate and the stator core may be reduced.
A plurality of through holes may be formed in the circuit substrate, piercing the circuit substrate in the thickness direction and being fitted with ends of the plurality of connecting wire engaging hooks. When the ends of the plurality of connecting wire engaging hooks are respectively fitted into the plurality of through holes, the circuit substrate may be disposed closer to the winding portion even though the plurality of connecting wire engaging hooks are provided. In addition, the plurality of connecting wire engaging hooks have a function of guiding the circuit substrate at the time of assembly, and also work to prevent the movement or turning of the circuit substrate in the circumferential direction.
It is preferred that the plurality of through holes respectively have an opening which is open in a radially outward direction as viewed from the centerline. With this arrangement, the plurality of connecting wire engaging hooks may be easily fitted into the plurality of through holes.
According to the present invention, the plurality of connecting wire engaging hooks are respectively disposed in the vicinity of border portions between the magnetic pole sections and the yoke, corresponding to the plurality of magnetic pole sections. As a result, when winding the winding conductor, the nozzle may be moved smoothly within the slot without being disturbed by the connecting wire engaging hooks, and the volume occupied by the winding portions may be increased. In addition, since the plurality of connecting wire engaging hooks are respectively disposed in the vicinity of the border portions between the plurality of magnetic pole sections and the yoke, the movement of the nozzle at the time of forming the connecting wire may be simplified. As a result, the connecting wire need not to be long and the connecting wire may readily be simplified.
An embodiment of the present invention will now be described in detail with reference to the accompanying drawings.
As shown in
The regular octagonal cylindrical outer wall portion 19 is disposed so that the border portions between the yoke 9 and the eight magnetic pole sections 11 of the stator core 1 may be respectively located in the corner portions of the regular octagon.
The eight connecting wire engaging hooks 23 are an elongated rod in shape having a pentagonal cross section, and are engaged with the connecting wire formed of a part of the winding conductor extending from the winding portion 3. The eight connecting wire engaging hooks are formed at one of ends of the slot insulator 5 located in one extending direction where the centerline C of the annular yoke 9 extends, and are disposed at equidistant intervals in the circumferential direction of the inner circumferential portion of the yoke 9. Accordingly, the eight connecting wire engaging hooks are arranged so as to be respectively disposed in the corner portions of an imaginary regular octagon. The eight connecting wire engaging hooks 23 are respectively disposed in the vicinity of the border portions between the eight magnetic pole sections 11 and the yoke 9, corresponding to the eight magnetic pole sections 11. The connecting wire engaging hooks are protruding from the eight bobbin portions 21 in the one extending direction where the centerline C extends. Accordingly, the eight connecting wire engaging hooks 23 are respectively disposed inside the eight corner portions of the regular octagonal cylindrical outer wall portion 19, and spaced from the cylindrical outer wall portion 19.
As shown in
The connector 29 is formed along one side of the regular octagonal cylindrical outer wall portion 19. That is, it is formed in the mid-position between adjoining two of the corner portions of the regular octagonal cylindrical outer wall portion 19.
In the stator for rotary electric machines of the present embodiment, the eight connecting wire engaging hooks 23 are respectively disposed corresponding to the eight magnetic pole sections 11. As a result, in forming the winding portions 3 by winding the winding conductor, the nozzle may be moved smoothly within the slot without being disturbed by the connecting wire engaging hooks 23, and thereby the volume occupied by the winding portions 3 may be increased. Since the eight connecting wire engaging hooks 23 are respectively disposed in the vicinity of the border portions between the magnetic pole sections 11 and the yoke 9, they may be formed into a desired shape and dimension. Thus, the connecting wire engaging hook 23, which allows the connecting wire to be easily engaged therewith, may be obtained.
In addition, in the stator for rotary electric machines of the present embodiment, since the ends 31a of the plurality of terminal conductors 31 are disposed within a space formed between the adjoining two of the winding portions 3 as shown in
Further, the present invention is not limited to the embodiments described above. Various variations and modifications may be made without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-198157 | Jul 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4689023 | Strong et al. | Aug 1987 | A |
5008572 | Marshall et al. | Apr 1991 | A |
5243246 | Sakamoto | Sep 1993 | A |
5334897 | Ineson et al. | Aug 1994 | A |
6020661 | Trago et al. | Feb 2000 | A |
6359354 | Watanabe et al. | Mar 2002 | B1 |
6729433 | Uryu et al. | May 2004 | B2 |
6815851 | Nishikata et al. | Nov 2004 | B2 |
6822356 | Suzuki et al. | Nov 2004 | B2 |
6867518 | Kurosawa | Mar 2005 | B2 |
6924570 | De Filippis et al. | Aug 2005 | B2 |
20010048262 | Takano et al. | Dec 2001 | A1 |
20040051417 | Yamazaki et al. | Mar 2004 | A1 |
20040056552 | Miya et al. | Mar 2004 | A1 |
20040150275 | Koyama et al. | Aug 2004 | A1 |
20040256936 | Takahashi et al. | Dec 2004 | A1 |
20050052086 | Miya et al. | Mar 2005 | A1 |
20050088049 | De Filippis et al. | Apr 2005 | A1 |
20050218861 | Kimura et al. | Oct 2005 | A1 |
20060220474 | Yoshida | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
0 777 312 | Jun 1997 | EP |
1-147652 | Oct 1989 | JP |
07-250445 | Sep 1995 | JP |
8-79999 | Mar 1996 | JP |
11-206057 | Jul 1999 | JP |
2001-218409 | Aug 2001 | JP |
2002-209359 | Jul 2002 | JP |
2004-336897 | Nov 2004 | JP |
2006-191703 | Jul 2006 | JP |
2007-129800 | May 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20080018185 A1 | Jan 2008 | US |