The present disclosure relates to a stator, a rotor, and an electric machine having such a stator and such a rotor.
Electrical machines have been of great importance from the earliest times and are becoming more and more important nowadays. Electrical machines usually are composed of two main components, namely a stationary part, the stator, and a rotating part, the rotor. Both components of the stator and rotor include magnetic material. A small region exists between the stator and the rotor, which is referred to as the air gap. A conventional stator structure has a number of slots or recesses distributed along the circumference in the vicinity of the air gap region, into which coil windings are inserted. The coil windings are, for example, distributed overlapping windings or tooth-concentrated windings.
In conventional electric machines or in the stators of such machines, the ends of the windings usually project beyond the iron core of the stator, so that they are outside the axial length of the stator and cannot contribute to the torque. Therefore, in such electrical machines, only the axial length of the iron core of the stator contributes to the generation of electromagnetic torque. This length is therefore usually referred to as the active length of the electrical machine.
The currents flowing through the windings generate unnecessary ohmic losses in the end region. Furthermore, especially for applications with limited space in the axial direction, the lengths of the winding ends can become relatively large in relation to the total length of the windings or the active length of the electrical machine.
The present disclosure provides an improved concept for electrical machines, with which a higher efficiency of the electrical machine can be achieved.
The improved concept is based, firstly, on the idea of designing the stator windings of an electric machine in such a way that all winding components of the coils can be located within the active length of the stator. For this purpose, at least three modules are provided, each of which carries one such coil of a multiphase tooth-concentrated winding. In addition, corresponding stator covers are provided in the axial direction on each side, which cover the coils. The modules with the coils are thereby distributed along the circumference of the stator. In particular, the stator covers ensure that all areas of the coil, i.e. both those extending along the circumference and those extending in the axial direction, including corresponding transitions, are arranged within the active length of the stator. The active length of the stator is thereby derived from the axial length of the modules as well as the axial lengths of the stator covers.
The improved concept is also based on the idea of distributing the magnets along the circumference of a rotor and selecting their polarization so that the magnetic flux closes mainly in the axial direction and to a lesser extent in the circumferential direction through a respective adjacent magnet. Thus, the magnetic flux runs adapted to a winding area of the coils extending along the circumference.
Finally, the improved concept enables the design of an efficient electrical machine in which the design of the stator with its coils can be favorably adapted to the geometry of the rotor with its magnets, and vice versa.
According to one embodiment, a stator for an electric machine comprises at least three modules distributed along the circumference of the stator. The modules each carry a coil of a multiphase tooth-concentrated winding. Thereby, the modules including the coils are each covered by a stator cover in the axial direction. For example, each module is formed by a stator tooth and a coil extending around the stator tooth.
For example, the stator covers are arranged to generate effective flux during operation of the electric machine and thus contribute to the generation of torque. For example, the stator covers can effectively guide the magnetic flux generated by the circumferentially extending sections of the coils. These sections may also be referred to as winding heads.
In various embodiments, the stator covers each have a slot opening and/or a slot between the modules. In particular, the slot openings are formed at the periphery of the stator covers, while the slots extend mainly in the radial direction.
The coils are, for example, substantially rectangular in shape. This is intended to express in particular that regions of the coils extending in the axial direction meet perpendicularly or substantially perpendicularly with the parts of the coils extending along the circumference. Necessary bending radii of the windings at the corners of the coil are to be taken into account and do not change the essential rectangular shape. This also includes, for example, that if there are exactly three modules in a stator, the coils may be arcuate in axial plan view. In the case of a higher number of modules, this course may also be rectilinear, so that the circumference is mapped in a polygonal manner by the coils.
In various embodiments, a length of the coils along the circumference of the stator is greater than a length of the coils in the axial direction. In particular, this allows stators with a short axial extent to be developed, e.g., when only exactly three modules are used. However, with a higher number of modules, this relationship can be reversed, since as the number of modules increases, the length along the circumference becomes shorter.
The modules and/or the stator covers comprise, for example, iron, steel, soft iron and/or soft magnetic composites, SMC. For example, the modules, in particular the stator teeth and/or the stator covers, are formed as a solid material with one or more of the materials mentioned. This offers advantages over conventional laminated steel cores, for example, in terms of material costs, production and three-dimensional, isotropic ferromagnetic properties.
Each module is associated with, for example, an electrical phase of a multiphase electrical system connectable to the multiphase tooth-concentrated winding.
In one embodiment, a rotor for an electric machine comprises at least two magnets distributed along the circumference of the rotor. The magnetic flux of these magnets closes mainly in the axial direction and to a smaller extent in the circumferential direction through a respective adjacent magnet. For example, the number of magnets of the rotor is a multiple of 2. In this case, the magnets are located, for example, in or on a rotor core.
In conventional electric machines, the optimum number of pole pairs usually depends on the diameter of the electric machine. Accordingly, higher numbers of pole pairs are usually more suitable for large rotor diameters. However, such machines with higher numbers of pole pairs are less suitable for high-speed applications, considering that the supply frequency or iron losses increase linearly or quadratically with the number of pole pairs. Accordingly, the rotor is designed, for example, with only two poles, thus comprising one pole pair.
As the magnetic flux mainly closes in the axial direction, this flux is distributed over the entire circumference of the rotor. Thus, the effective length of the rotor in the axial direction is of less importance for the flux, especially in comparison with conventional rotors.
For example, in the rotor, respective magnets adjacent in the circumferential direction comprise different orientations of their polarity. For example, the orientation of the magnetic dipoles of the magnets is alternating.
The closed flux in the axial direction can be achieved, for example, by the magnets being magnetized in the radial direction. For example, the magnets each comprise an outwardly directed first polarity and an inwardly directed second polarity in the radial direction. Thus, for example, a magnetic north pole is directed radially inward, while a magnetic south pole is directed radially outward, or vice versa.
In such an embodiment with radially magnetized magnets, the rotor further comprises, for example, at least two further magnets distributed along the circumference of the rotor, which are arranged adjacent to the at least two magnets in the axial direction, in particular adjacent in pairs. For example, at least four further magnets are thus provided axially adjacent to the at least two magnets. The further magnets are preferably also magnetized in the radial direction and comprise opposite polarity with respect to their neighbor in the axial direction.
With exactly two magnets and correspondingly exactly four further magnets, the two magnets are arranged centrally in the axial direction between the four further magnets. The central magnets are wider in the axial direction than the outer magnets. With such an arranging, the magnetic flux thus continues to close mainly axially with some radial components. The principle does not change with a higher number of pole pairs.
In the embodiment without further magnets, the magnetic flux closes, for example, via the rotor tooth or teeth of the rotor core, which are arranged axially adjacent to the at least two magnets.
In another embodiment, the rotor comprises at least two pairs of magnets distributed along the circumference of the rotor. In this case, the magnets are magnetized in the axial direction. Further, axially adjacent magnets comprise different orientations of their polarity. Axial magnetization is understood to mean, in particular, that the magnets each comprise a first polarity in the axial direction and a second polarity in the opposite direction thereto. For example, the pairs are each inserted into the rotor core at a distance from one another.
Due to this polarization in the axial direction, it directly results that the magnetic flux closes mainly in the axial direction.
According to the improved concept, an electric machine comprises a stator according to any of the embodiments previously described and a rotor according to any of the embodiments previously described. For example, the spatial dimensions of the rotor and the stator are adapted to each other. In this respect, particularly for example the dimensions of the coil, in particular its axial width, are adapted to the dimensions of the magnets of the rotor, in particular their width or their distance from each other.
Such an electric machine can be developed with small axial extension, so that such an electric machine is suitable in particular for applications with limited space.
On the other hand, the axially narrow design of the electric machine enables the use of two or more such electric machines with a narrow design to provide a modular arrangement with a correspondingly higher torque. Accordingly, such a machine comprises a further stator and a further rotor of the type described, which are respectively arranged in the axial direction adjacent to the stator and the rotor. The two modules formed by the rotor and the stator are thereby of identical construction, for example, but this is not mandatory.
The invention is explained in more detail below by means of exemplary embodiments with reference to the drawings. Here, similar elements or elements of the same functions are designated with the same reference signs. Therefore, a repeated explanation of individual elements may be omitted.
In the drawings:
The improved concept described herein relates, inter alia, to a stator for an electric machine comprising at least three modules distributed along the circumference of the stator. The modules each carry a coil of a multi-phase tooth-concentrated winding. Furthermore, the modules including the coils are each covered in the axial direction by a stator cover.
In the following, the individual components of such a stator as well as the complete stator are first described on the basis of the figures. Furthermore, explanations follow for rotors according to the improved concept as well as for an electric machine formed of stator and rotor.
In the embodiment shown, the length of the module along the circumference of the stator is greater than its deflection in the axial direction. This is advantageous for stators with a short axial length, but in principle the ratio can be the reverse or the same.
For example, to allow easy fabrication and to be able to conduct the magnetic flux three-dimensionally, the stator tooth 1′ is formed from a solid material comprising, for example, iron, steel, soft iron and/or soft magnetic composites, SMCs. Such materials are favorable compared to conventional laminated steel cores in terms of material cost, production cost and three-dimensional isotropic ferromagnetic behavior.
In
As can be seen from the previous figures, the winding length along the circumference a is significantly greater than the length of the coils in the axial direction z. This means that a substantial part of the magnetic field of the coil 2 is generated in the axially outer end regions of the coils 2, which can also be referred to as winding heads. In order to utilize this magnetic field, according to the improved concept, it is proposed to include this area in the magnetic flux, in which stator covers 3 are placed on both sides of the modules 1 in the axial direction.
The stator covers 3 are preferably formed of the same materials as the modules 1, i.e. iron, steel, soft iron and/or SMC. It is possible, but not required, that the materials of the modules 1 and the stator covers 3 are identical.
In
The slot openings 4 or slots 5 can be used, for example, to reduce or avoid magnetic leakage flux.
Finally,
Finally,
Compared to conventional stator arrangements, it should be noted that all components of the coil contribute to the magnetic flux and thus to the generation of torque. This is caused in particular by the stator covers 3, which enclose the parts of the coil running along the circumference and thus generate effective flux when the stator is in operation.
The improved concept further proposes a rotor arrangement for an electric machine which is designed for small axial extension and a small number of pole pairs.
In the embodiment of
The embodiments of
For example, the angle αx of the skew is between 0° and 20°, each considered as an electrical angle.
In
In the embodiments of
In the embodiment of
The stator and the rotor according to the improved concept can be assembled together to form an electric machine. Various embodiments for this are described below with reference to the drawings. In principle, it is advantageous here if the geometries of the stator and the rotor are adapted to each other, for example with respect to the dimensions of the coils 2 and the magnets 9 and, if present, 9′, respectively. For example, in
In
In
In
In
In
In
In the previously described embodiments, the stator was shown in each case with three modules or three coils. However, the described approach can also be extended to a larger number of modules. In the embodiment in
In
While
Number | Date | Country | Kind |
---|---|---|---|
102020108516.8 | Mar 2020 | DE | national |