Stator vane device for guiding the flow of a fluid flowing out of an outlet opening of a ventricular assist device, ventricular assist device with stator vane device, method for operating a stator vane device and manufacturing method

Information

  • Patent Grant
  • 12263333
  • Patent Number
    12,263,333
  • Date Filed
    Friday, June 21, 2019
    6 years ago
  • Date Issued
    Tuesday, April 1, 2025
    3 months ago
  • CPC
  • Field of Search
    • CPC
    • A61M60/221
    • A61M60/178
    • A61M60/237
    • A61M60/403
    • A61M60/812
    • A61M2005/0266
    • A61M60/139
  • International Classifications
    • A61M60/812
    • A61M60/178
    • A61M60/221
    • A61M60/237
    • A61M60/403
    • Term Extension
      914
Abstract
The invention relates to a stator vane device (105) for guiding the flow of a fluid flowing out of an outlet opening (110) of a heart support system (100). The stator vane device (105) has at least one stator vane (115), which can be connected to the heart support system (100) and arranged in the region of the outlet opening (110). The at least one stator vane (115) is formed such that it can be folded together to take an insertion state of the heart support system (100) and can be unfolded to take a flow guiding state. The at least one stator vane (115) is designed to project radially or obliquely from the heart support system (100) in the flow guiding state.
Description
BACKGROUND
Field

The invention relates to a stator vane device for guiding the flow of a fluid flowing out of an outlet opening of a heart support system. The invention also relates to a heart support system with a stator vane device, to a method for operating a stator vane device, and to a manufacturing method for manufacturing a stator vane device. The invention moreover relates to a computer program and to a machine-readable storage medium on which the computer program is stored.


Description of the Related Art

For cardiovascular support of patients having heart failure, systems, so-called ventricular assist devices (VADs), which take over part or all of the pumping function of the heart can be used. These systems can be subdivided into temporary systems for short-term heart support, e.g., to bridge the time until a suitable donor heart is available and can be implanted, and permanent systems for long-term retention on or in the patient. One component of such a system can be a pump for pumping a blood stream, typically a centrifugal pump (turbo pump), which can be driven by an integrated electric motor and can produce the required blood flow by means of an impeller. In this case, the pump can be implanted at different locations: The pump can be sutured to the heart from the outside by means of an invasive surgery, a sternotomy, or the pump can be placed transfemorally or transaortally into the aorta and completely or partially into the ventricle in a minimally invasive manner by means of a catheter. In the case of a pump that can be introduced in a minimally invasive manner, the maximum possible outer diameter of the pump may be limited to allow transfemoral or transaortic insertion of the pump, which is why the pump may have an axial design. The pump can pump the blood stream from the ventricle into the aorta and deliver it there. This can lead to total pressure losses and thus to a reduced pump efficiency due to a cross-sectional jump of the pump in relation to the aorta. Furthermore, a velocity component can be applied to the blood flow by the impeller in the circumferential direction, i.e., an angular momentum or a swirl component, wherein the energy contained in this swirl component is without effect and thus not usable for pressure build-up.


SUMMARY

The object of the invention is to influence the flow of a fluid in which a heart support system is located. It is in particular an object of the invention to influence the flow of the blood in a blood vessel in which a heart support system is arranged. The object of the invention is also to optimize the efficiency of a pump in a heart support system.


These objects are achieved by the stator vane device specified herein for guiding the flow of a fluid flowing out of an outlet opening of a heart support system and the heart support system specified herein with a stator vane device. Advantageous embodiments and further developments described herein also relate to a method for operating a stator vane device and to a manufacturing method for manufacturing a stator vane device.


The invention is based on the knowledge that it is possible by means of a suitable stator vane device to change the flow behavior of a fluid flowing out of an outlet opening of a heart support system. By means of the stator vane device, an angular momentum in the flow of the fluid applied by an impeller of a pump of the heart support system can advantageously be reduced. In addition, the angular momentum can be partially converted into pressure energy, which can advantageously increase the efficiency of the pump.


Presented is a stator vane device for guiding the flow of a fluid flowing out of an outlet opening of a heart support system. The stator vane device has at least one stator vane. The at least one stator vane can be connected to the heart support system and arranged in the region of the outlet opening. In addition, the at least one stator vane is formed such that it can be folded together to take an insertion state of the heart support system and can be unfolded to take a flow guiding state. The at least one stator vane is designed to project radially or obliquely from the heart support system in the flow guiding state.


The stator vane device can, for example, have a fixing device for fixing the stator vane device to the heart support system, or the stator vane device can, for example, be formed as part of a pump housing section of the heart support system. The at least one stator vane can, for example, have a blade-shaped guide surface. The term “guiding the flow” can be understood to mean, for example, adjusting a flow behavior, e.g., by steering the fluid along a surface, e.g., in the form of the at least one stator vane. The heart support system can, for example, be a heart pump, such as a right ventricular support system, a left ventricular support system, a biventricular support system, or a vascular or valve prosthesis. For minimally invasive transfemoral or transaortic insertion, the heart support system can, for example, have an elongated, cylindrical shape with an outer diameter of 5 to 8 millimeters. The outlet opening can, for example, be arranged in the region of an impeller of a blood pump of the heart support system. The outlet opening can, for example, be arranged in a section of a pump housing of the heart support system and be cut or punched out of said section. The fluid can, for example, be blood that can be pumped by means of the heart support system. The insertion state of the heart support system can, for example, describe a state into which the heart support system can be transferred for insertion into a blood vessel; for this purpose, the heart support system can, for example, have a cylindrical shape with an outer diameter that is below the diameter of a human aorta. In the insertion state, the stator vane device can, for example, be foldable together axially of a longitudinal axis of the heart support system. By unfolding the at least one stator vane, the stator vane device can, for example, be transferred from the insertion state into the flow guiding state when the heart support system is implanted at the destination and ready for operation. For this purpose, the stator vane can, for example, open to project radially or obliquely from the heart support system in the flow guiding state. In the flow guiding state, the stator vane can also open to project obliquely, e.g., at a certain spatially variable angle to the radius. In this case, the inclination angle of the stator vane can have a radial and a tangential component.


According to one embodiment, the stator vane device can be formed at least partially from a shape memory material. For this purpose, the at least one stator vane can, for example, be made of a shape memory material or the stator vane can have a support structure which is formed from the shape memory material and dilapidated with another material, such as silicone or polyurethane. The shape memory material can, for example, be a shape memory polymer or a shape memory alloy, such as nitinol. It is furthermore also possible for the entire stator vane device to be made of a shape memory alloy, e.g., nitinol. Due to its shape memory properties, the use of a shape memory material, such as nitinol, allows particularly simple realization of the insertion state and the unfolding during the transition into the flow guiding state. The use of nitinol as a shape memory material is advantageous since the nitinol material is a proven material in medicine, in particular in the field of cardiovascular medicine, e.g., for heart valve prostheses, stents, and vascular prostheses, because due to its shape memory property, it is possible to deliver even complex structures in a small installation space to the destination and to place them there.


The stator vane device according to one embodiment can furthermore be formed at least partially from a biocompatible material. The biocompatible material can be a material in which components of human or animal tissue remain unchanged, in particular non-degenerated, when in contact with this biocompatible material. For example, the biocompatible material can be nitinol or a biocompatible silicone or polyurethane. The forming of at least a part of the stator vane device from a biocompatible material is advantageous with regard to the use of the stator vane device as a device that can, for example, be implanted into a human body in connection with the heart support system.


According to one embodiment, the at least one stator vane can be formed such that it abuts laminarly on the heart support system in the insertion state. For this purpose, the stator vane can be foldable in the direction of the heart support system in the insertion state, for example. In the insertion state, the stator vane can, for example, abut on a pump housing section. This allows a compact design and is also advantageous in order to be able to, for example, introduce the stator vane device with the heart support system into an insertion device, such as a catheter, in order to allow the minimally invasive insertion of the stator vane device or of the heart support system connected to the stator vane device.


In addition, the at least one stator vane can be formed in order to be partially insertable into the outlet opening in the insertion state. For this purpose, the stator vane can, for example, be formed to correspond to the outlet opening at least in sections. If the stator vane device is formed, for example, as a part of a housing section of a heart support system, the housing section can also be cut from a tube, wherein the shape of the at least one stator vane for forming the outlet opening can also be cut into the tube, wherein the stator vane can be folded away from the housing section to open the outlet opening. This embodiment advantageously allows a compact design, which is particularly advantageous with regard to a design suitable for minimally invasive introduction.


According to one embodiment, the stator vane device can also have at least one further stator vane, which can be connected to the heart support system and arranged in the region of the outlet opening. The at least one further stator vane can be formed such that it can be folded together to take an insertion state of the heart support system and can be unfolded to take a flow guiding state. The at least one further stator vane can be designed to project radially or obliquely from the heart support system in the flow guiding state. The at least one further stator vane can be arranged opposite the stator vane, for example. The stator vane device can also have a plurality of stator vanes, which can be equidistantly arranged circumferentially around the heart support system. Depending on the shape of the stator vane and of the outlet opening, the design of the at least one further stator vane can be advantageous with regard to guiding the flow of the outflowing fluid, as a result of which the efficiency of the pump of the heart support system can be increased.


According to one embodiment, the stator vane device can also have a sleeve that is movable with respect to the stator vane and is formed to enclose the stator vane in the insertion state and release the stator vane in order to initiate the transition into the flow guiding state. The sleeve can be a mounting device for maintaining the insertion state, e.g., a tube that encloses the stator vane in the insertion state and thereby presses it against the heart support system. The sleeve can, for example, be formed to be cylindrical and designed such that the stator vane device with the sleeve in the insertion state can be inserted into a commercially available catheter. The sleeve can, for example, be used to hold down the stator vane in the folded-together state and to thereby additionally stabilize it in the insertion state even if the stator vane device is, for example, completely or partially made of a shape memory material.


According to one embodiment, the stator vane device can be detachably connectable or connected to a pump housing section of the heart support system. For this purpose, the stator vane device can have, for example, a fixing device or connecting device for connecting the stator vane device or the at least one stator vane to the pump housing section of the heart support system in a form-fitting manner, which fixing device or connecting device can be detached mechanically or as a result of the forming from a shape memory material. This embodiment is cost-saving in order to be able to replace the stator vane device independently of the pump housing, for example, or to be able to change a position of the stator vane with respect to the pump housing section.


A heart support system with an embodiment of the aforementioned stator vane device is also presented. In particular, the stator vane device can be designed as part of a pump housing of the heart support system, which is advantageous with respect to the design.


With this approach, a method for operating an embodiment of the aforementioned stator vane device is also presented. The method has a step of unfolding the at least one stator vane during the transition from the insertion state into the flow guiding state, wherein the at least one stator vane projects radially or obliquely from the heart support system in the flow guiding state.


A manufacturing method for manufacturing an embodiment of the aforementioned stator vane device comprises a step of providing the stator vane device with at least one stator vane. The at least one stator vane can be connected to a heart support system and arranged in the region of an outlet opening of the heart support system. The at least one stator vane is formed such that it can be folded together to take an insertion state of the heart support system and can be unfolded to take a flow guiding state. The at least one stator vane can project radially or obliquely from the heart support system in the flow guiding state, wherein the stator vane device is in particular designed as part of a pump housing of the heart support system.


This method can, for example, be implemented in software or hardware or in a mixed form of software and hardware in a control device, for example.


A computer program product or computer program having program code which can be stored on a machine-readable carrier or storage medium, such as a semiconductor memory, a hard drive memory, or optical memory, and is used to carry out, implement, and/or control the steps of the methods according to one of the embodiments described above is also advantageous, in particular if the program product or program is executed on a computer or a device.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the approach presented here are shown in the drawings and explained in more detail in the following description. The drawings show:



FIG. 1 a schematic illustration of a heart support system with a stator vane device for guiding the flow of a fluid flowing out of an outlet opening of the heart support system according to an exemplary embodiment;



FIG. 2 a schematic illustration of a stator vane device for guiding the flow of a fluid flowing out of an outlet opening of a heart support system in the flow guiding state according to an exemplary embodiment;



FIG. 3 a schematic illustration of a stator vane device for guiding the flow of a fluid flowing out of an outlet opening of a heart support system in the insertion state according to an exemplary embodiment;



FIG. 4 a flow diagram of a method for operating a stator vane device according to an exemplary embodiment; and



FIG. 5 a flow diagram of a manufacturing method for operating a stator vane device according to an exemplary embodiment.





DETAILED DESCRIPTION

In the following description of favorable exemplary embodiments of the present invention, the same or similar reference signs are used for the elements that are shown in the various figures and have a similar effect, wherein a repeated description of these elements is omitted.



FIG. 1 shows a schematic illustration of a heart support system 100 with a stator vane device 105 for guiding the flow of a fluid flowing out of an outlet opening 110 of the heart support system 100 according to an exemplary embodiment. A perspective view of the heart support system 100 is shown. As a heart support system 100, a left ventricular heart support system for an aortic valve position is shown by way of example.


The stator vane device 105 has at least one stator vane 115. The at least one stator vane 115 can be connected to the heart support system 100. In addition, the at least one stator vane 115 can be arranged in the region of the outlet opening 110 of the heart support system 100. The at least one stator vane 115 is formed such that it can be folded together to take an insertion state of the heart support system 100 and can be unfolded to take a flow guiding state. In the flow guiding state, the at least one stator vane 115 projects radially or obliquely from the heart support system 100. The stator vane device 105 is shown here by way of example in the flow guiding state; accordingly, the stator vane 115 is unfolded and projects radially from the heart support system 100. Shown here by way of example are two stator vanes 115 which are arranged opposite one another in the unfolded state. Alternatively, the stator vane 115 can also project obliquely from the heart support system 100 at an acute or obtuse angle to the radius of the heart support system 100. In this case, an inclination angle of the stator vane 115 can have a radial and a tangential component. According to the exemplary embodiment shown here, a plane of the stator vane 115 extends in the direction of a longitudinal extension axis of the heart support system 100.


The heart support system 100 has a cylindrical, elongated structure with a substantially constant outer diameter and rounded, tapered ends for easy positioning by means of a catheter in a blood vessel, e.g., the aorta. The elongated axial design shown here allows transfemoral implantation of the heart support system 100, wherein the outer diameter of the heart support system 100 is limited in the inserted state by the diameter of the femoral artery in the region of the implantation site. In the following, the heart support system 100 is also referred to as pump 100 in short.


The pump 100 has an impeller 120, which is formed as an axial-flow impeller with respect to a longitudinal axis of the pump 100. The impeller 120 is arranged in a pump housing section 135 of the heart support system 100 between an inlet tube 125 with an inlet opening 126 for introducing the fluid to be conveyed and a section, comprising a drive device 130, of the heart support system 100. The impeller 120 can be rotated about an axis of rotation 122 parallel to the longitudinal direction of the pump housing section 135. The impeller 120 is enclosed by the pump housing section 135, which has a lateral surface, arranged coaxially to the axis of rotation 122 of the impeller 120, with the outlet opening 110, which lateral surface is interrupted by the outlet opening 110. The fluid, e.g., blood, to be conveyed by the heart support system 100 can be introduced through the inlet opening 126 of the inlet tube 125 and discharged through the outlet opening 110 installed on the circumference of the pump housing section 135 in order to be returned to the aorta in the implanted state of the heart support system 100. The pump housing section 135 has here, by way of example, two window-like outlet openings 110.


According to one exemplary embodiment, the stator vane device 105 is formed at least partially from a shape memory material and, additionally or alternatively, at least partially from a biocompatible material. In addition, according to one exemplary embodiment, the stator vane device 105 can be detachably connectable or connected to the pump housing section 135 of the heart support system.


According to one exemplary embodiment, the heart support system 100 has the stator vane device 105 as part of a pump housing of the heart support system 100, e.g., as part of the pump housing section 135.


For minimally invasive insertion, the pump 100 has a significantly smaller outer diameter than the aorta, into which the blood flows out in the implanted state during operation of the heart support system 100, as shown schematically with reference to the following FIG. 2. Without the stator vane device 105, due to the large, abrupt cross-sectional jump, this results in permanent total pressure losses and thus in reduced pump efficiency. Furthermore, a velocity component is applied to the fluid by the impeller 120 in the circumferential direction, i.e., a swirl component. The energy contained in this swirl component is without effect and thus lost. By means of an exemplary embodiment of the stator vane device 105 shown here, the aforementioned swirl in the flow is reduced by the at least one stator vane 115 and at least partially converted into pressure energy in order to increase the efficiency of the pump 100.


The at least one stator vane 115 projects in a flow guiding state from the lateral surface of the pump housing section 135. In the flow guiding state, the at least one stator vane 115 can project from the lateral surface of the pump housing section 135 in a direction which has a direction component parallel and a direction component perpendicular to a radial direction with respect to the axis of rotation 122 of the impeller 120. The at least one stator vane 115 can be parallel to the axis of rotation 122 of the impeller 120. However, the at least one stator vane 115 can in principle also extend obliquely to the axis of rotation 122 of the impeller 120.


The guiding of the flow achieved by means of the unfolded stator vane 115 in the flow guiding state of the stator vane device 105 allows the increased efficiency of the pump 100. In this case, the blood is fed from the ventricle through the inlet tube 125 to the active pump part, inter alia to the impeller 120. The impeller 120 is partially enclosed on the outside by the pump housing section 135, which has the outlet opening 110 and is, by way of example, cylindrical here. According to the exemplary embodiment shown here, the pump housing section 135 also has the bars 140, also called struts. The at least one stator vane 115 is arranged in the region of the outlet opening 110 or the bars 140. The at least one stator vane 115 is flexible, foldable, and unfoldable. The stator vane 115 can be folded together to take the insertion state, and the stator vane 115 can be unfolded to take the flow guiding state, as shown with reference to the following FIGS. 2 and 3.


For taking the insertion state and the flow guiding state, the stator vane device 105 and, additionally or alternatively, the entire pump housing section 135 with the stator vane device 105 is, according to one exemplary embodiment, formed from nitinol, a biocompatible shape memory alloy, in order to fold the at least one stator vane 115 to a small diameter.


According to one exemplary embodiment, the stator vane device 105 comprises a sleeve as a mounting device in order to be maintained in this folded state at this small diameter by an additional mounting device, e.g., by a tube. The sleeve is movable with respect to the stator vane 115 and is formed in order to enclose the stator vane 115 in the insertion state and to release the stator vane 115 in order to initiate the transition into the flow guiding state. If the stator vane is formed from nitinol according to one exemplary embodiment, the at least one stator vane 115 unfolds to the desired unfolded state, i.e., to the flow guiding state, by the influence of body heat after implantation of the heart support system 100 and removal of the additional mounting device. Optionally, the entire stator vane 115 is in this case not formed from nitinol but consists only partially of nitinol in the form of a support structure which is made of nitinol and filled with another material, such as a silicone or polyurethane.



FIG. 2 shows a schematic illustration of a stator vane device 105 for guiding the flow of a fluid flowing out of an outlet opening of a heart support system 100 in the flow guiding state according to an exemplary embodiment. In accordance with the flow guiding state, the stator vane 115 is shown in the unfolded state and projects radially from the heart support system 100, i.e., it projects radially from the lateral surface of the pump housing section 135 with respect to the axis of rotation 122 of the impeller 120 that is parallel to the longitudinal direction of the pump housing section 135. The heart support system 100 shown here and the stator vane device 105 shown here resemble or correspond to the heart support system and the stator vane device from FIG. 1 described above. By way of example, the heart support system 100 with the stator vane device 105 is arranged here in the aorta 205.


According to the exemplary embodiment shown here, the stator vane device 105 comprises the stator vane 115 and at least one further stator vane 115′, which can be connected to the heart support system 100 and arranged in the region of the outlet opening and is formed such that it can be folded together to take the insertion state of the heart support system 100 and can be unfolded to take the flow guiding state. In the flow guiding state shown here, the at least one further stator vane 115′, like the stator vane 115, projects radially from the heart support system 100, i.e., it projects radially from the lateral surface of the pump housing section 135 that is coaxial to the axis of rotation 122 of the impeller 120.


The heart support system 100 has a significantly smaller outer diameter than the blood vessel in which it can be arranged, i.e., the aorta 205. This is shown here by the marking 210, which marks the outer diameter of the heart support system, and the marking 215, which marks the diameter of the aorta. When blood flows out of the outlet opening of the heart support system 100 into the aorta 205, permanent total pressure losses, and thus reduced pump efficiency, occur without the stator vane device 105 due to the large, abrupt cross-sectional jump; furthermore, a velocity component in the circumferential direction, i.e., a swirl component, is applied to the fluid, the blood, by the impeller. The energy contained in this swirl component is without effect and thus lost. By means of the stator vane 115 and optionally the further stator vane 115′ in the flow guiding state shown here, the described swirl is reduced and converted into pressure energy, which increases the efficiency of the pump.



FIG. 3 shows a schematic illustration of a stator vane device 105 for guiding the flow of a fluid flowing out of an outlet opening of a heart support system 100 in the insertion state according to an exemplary embodiment. The insertion state is shown as a further situation of the stator vane device 105 and the heart support system 100 described with reference to the previous figures.


In the insertion state, the heart support system 100 and the stator vane device 105 have a significantly smaller outer diameter than the diameter of the aorta 205, as shown by the markings 210 and 215. This is advantageous for the minimally invasive insertion of the heart support system 100 and the stator vane device 105.


Optionally, the at least one stator vane 115 is formed such that it abuts laminarly in the insertion state, as shown here by way of example by the further stator vane 115′. The stator vane 115′ abuts on the pump housing of the heart support system 100 and does not significantly increase the outer diameter 210 of the heart support system 100 in the folded-together state. According to the exemplary embodiment shown here, the at least one stator vane 115 is additionally formed such that it can be partially inserted into the outlet opening in the insertion state, as shown by way of example by the stator vane 115. The described shapes of the stator vane 115 and of the further stator vane 115′ offer the advantage that they nestle closely against the pump housing of the heart support system 100 in the folded state or, additionally or alternatively, at least partially lay in the outlet opening and thus allow minimally invasive implantation. The stator vane 115 and the further stator vane 115′ are optionally designed as part of the pump housing of the heart support system 100.



FIG. 4 shows a flow diagram of a method 400 for operating a stator vane device according to an exemplary embodiment. With this method 400, an exemplary embodiment of the aforementioned stator vane device is operated. The method 400 has at least one step 405 of unfolding. In step 405 of unfolding, the at least one stator vane is unfolded during the transition from the insertion state into the flow guiding state. In the flow guiding state, the at least one stator vane projects radially or obliquely from the heart support system.



FIG. 5 shows a flow diagram of a manufacturing method 500 for manufacturing a stator vane device according to an exemplary embodiment. With this manufacturing method 500, an exemplary embodiment of the aforementioned stator vane device is manufactured. The method 500 has at least one step 505 of providing. Provided in step 505 of providing is a stator vane device with at least one stator vane, which can be connected to a heart support system and arranged in the region of an outlet opening of the heart support system and is formed such that it can be folded together to take an insertion state of the heart support system and can be unfolded to take a flow guiding state, wherein the at least one stator vane projects radially or obliquely from the heart support system in the flow guiding state. The stator vane device is in particular provided as part of a pump housing of the heart support system.


If an exemplary embodiment includes an “and/or” conjunction between a first feature and a second feature, this should be read to mean that the exemplary embodiment according to one embodiment has both the first feature and the second feature and according to another embodiment has either only the first feature or only the second feature.


In summary, the following preferred features of the invention should in particular be noted:


The invention relates to a stator vane device 105 for guiding the flow of a fluid flowing out of an outlet opening 110 of a heart support system (100). The stator vane device 105 has at least one stator vane 115, which can be connected to the heart support system 100 and arranged in the region of the outlet opening 110. The at least one stator vane 115 is formed such that it can be folded together to take an insertion state of the heart support system 100 and can be unfolded to take a flow guiding state. The at least one stator vane 115 is designed to project radially or obliquely from the heart support system 100 in the flow guiding state.


In particular, the invention can have the following aspects:


1. Stator vane device (105) for guiding the flow of a fluid flowing out of an outlet opening (110) of a heart support system (100), wherein the stator vane device (105) has the following features:


at least one stator vane (115), which can be connected to the heart support system (100) and arranged in the region of the outlet opening (110) and is formed such that it can be folded together to take an insertion state of the heart support system (100) and can be unfolded to take a flow guiding state, wherein the at least one stator vane (115) is designed to project radially or obliquely from the heart support system (100) in the flow guiding state.


2. Stator vane device (105) according to Aspect 1, wherein the stator vane device (105) is formed at least partially from a shape memory material.


3. Stator vane device (105) according to one of the preceding aspects, wherein the stator vane device (105) is formed at least partially from a biocompatible material.


4. Stator vane device (105) according to one of the preceding aspects, wherein the at least one stator vane (115) is formed such that it abuts laminarly on the heart support system (100) in the insertion state.


5. Stator vane device (105) according to one of the preceding aspects, wherein the at least one stator vane (115) is formed such that it can be partially inserted into the outlet opening (110) in the insertion state.


6. Stator vane device (105) according to one of the preceding aspects, with at least one further stator vane (115′), which can be connected to the heart support system (100) and arranged in the region of the outlet opening (110) and is formed such that it can be folded together to take the insertion state of the heart support system (100) and can be unfolded to take the flow guiding state, wherein the at least one further stator vane (115′) is designed to project radially from the heart support system (100) in the flow guiding state.


7. Stator vane device (105) according to one of the preceding aspects, with a sleeve that is movable with respect to the stator vane (115) and is formed to enclose the stator vane (115) in the insertion state and release the stator vane (115) in order to initiate the transition into the flow guiding state.


8. Stator vane device (105) according to one of the preceding aspects, wherein the stator vane device (105) is detachably connectable or connected to a pump housing section (135) of the heart support system (100).


9. Heart support system (100) with a stator vane device (105) according to one of the preceding Aspects 1 to 8, wherein the stator vane device (105) is in particular designed as part of a pump housing of the heart support system (100).


10. Method (400) for operating a stator vane device (105) according to one of the preceding Aspects 1 to 8, wherein the method (400) has at least the following step:


unfolding (405) the at least one stator vane (115) during the transition from the insertion state into the flow guiding state, wherein the at least one stator vane (115) projects radially or obliquely from the heart support system (100) in the flow guiding state.


11. Manufacturing method (500) for manufacturing a stator vane device (105) according to one of the preceding Aspects 1 to 8, wherein the manufacturing method (500) has at least the following step:


providing (505) a stator vane device (105) with at least one stator vane (115), which can be connected to a heart support system (100) and arranged in the region of an outlet opening (110) of the heart support system (100) and is formed such that it can be folded together to take an insertion state of the heart support system (100) and can be unfolded to take a flow guiding state, wherein the at least one stator vane (115) is designed to project radially or obliquely from the heart support system (100) in the flow guiding state, wherein the stator vane device (105) is in particular designed as part of a pump housing of the heart support system (100).


12. Computer program configured to execute and/or control the method (400) according to Aspect 10 and/or the manufacturing method (500) according to Aspect 11.


13. Machine-readable storage medium on which the computer program according to Aspect 12 is stored.

Claims
  • 1. A heart support system, comprising: an inlet tube extending in a longitudinal direction, the inlet tube comprising an inlet opening positioned in a distal portion of the inlet tube and configured to receive blood into the heart support system;a pump housing connected to a proximal end of the inlet tube and extending proximally in the longitudinal direction and downstream from the inlet tube, the pump housing comprising: a lateral surface comprising at least one outlet opening configured to receive discharged blood therethrough from the pump housing; anda stator vane device arranged in the region of the at least one outlet opening, the stator vane device comprising at least one stator vane configured to unfold from a folded-in state to a flow guiding state after the inlet tube and pump housing section are inserted into a blood vessel using a catheter, wherein the at least one stator vane is configured to project radially or obliquely from the lateral surface of the pump housing in the flow guiding state;an impeller positioned at least partially lateral to the at least one outlet opening within the pump housing and having an axis of rotation parallel to the longitudinal direction of the pump housing; anda drive device positioned on a side of the impeller opposite the inlet tube and configured to drive the impeller.
  • 2. The heart support system according to claim 1, further comprising a sleeve configured to be movable with respect to the at least one stator vane, wherein the sleeve is configured to enclose the at least one stator vane in the folded-in state and release the at least one stator vane to initiate the unfolding of the at least one stator vane from the folded-in state to the flow guiding state.
  • 3. The heart support system according to claim 1, wherein the inlet tube comprises a rounded, tapered end configured to be received in a blood vessel.
  • 4. The heart support system according to claim 1, wherein the at least one stator vane comprises an edge extending parallel to the axis of rotation of the impeller.
  • 5. The heart support system according to claim 1, wherein the at least one stator vane extends obliquely to the axis of rotation of the impeller.
  • 6. The heart support system according to claim 1, wherein the at least one stator vane is configured to project in the flow guiding state from the lateral surface of the pump housing section in a direction that has a directional component parallel and a directional component perpendicular to a radial direction with respect to the axis of rotation of the impeller.
  • 7. The heart support system according to claim 1, wherein the stator vane device is formed at least partially from a shape memory material.
  • 8. The heart support system according to claim 1, wherein the stator vane device is formed at least partially from a biocompatible material.
  • 9. The heart support system according to claim 1, wherein the at least one stator vane is configured to abut the lateral surface of the pump housing in the folded-in state.
  • 10. The heart support system according to claim 1, wherein the at least one stator vane is partially inserted into the at least one outlet opening in the folded-in state.
  • 11. The heart support system according to claim 1, wherein the at least one stator vane comprises a plurality of stator vanes.
  • 12. The heart support system according to claim 11, wherein the plurality of stator vanes are positioned equidistantly around the circumference of the pump housing.
  • 13. The heart support system according to claim 1, wherein the at least one outlet opening comprises an outlet window defined by one or more bars.
  • 14. The heart support system according to claim 1, wherein the at least one outlet opening comprises a plurality of outlet openings, each of the plurality of outlet openings comprising an outlet window, wherein each outlet window is separated from at least one adjacent outlet window by a bar.
  • 15. The heart support system according to claim 1, wherein the at least one stator vane is partially inserted into the at least one outlet opening in the folded-in state.
  • 16. A method comprising: providing a heart pump system comprising: an inlet tube, wherein the inlet tube extends in a longitudinal direction, wherein the inlet tube comprises an inlet opening positioned in a distal portion of the inlet tube and configured to receive blood into the heart support system;a pump housing, wherein the pump housing is connected to a proximal end of the inlet tube and extends proximally in the longitudinal direction and downstream from the inlet tube, wherein the pump housing comprises: a lateral surface comprising at least one outlet opening configured to receive discharged blood therethrough from the pump housing; anda stator vane device arranged in the region of the at least one outlet opening, the stator vane device comprising at least one stator vane;an impeller positioned at least partially lateral to the at least one outlet opening within the pump housing and having an axis of rotation parallel to the longitudinal direction of the pump housing; anda drive device positioned on a side of the impeller opposite the inlet tube and configured to drive the impeller;inserting the inlet tube and the pump housing of the heart pump system into a blood vessel using a catheter; andunfolding the at least one stator vane from a folded-in state to a flow guiding state, wherein the at least one stator vane is configured to project radially or obliquely from the lateral surface of the pump housing in the flow guiding state.
  • 17. The method according to claim 16, further comprising moving a sleeve relative to the at least one stator vane to uncover the at least one stator vane and initiate the unfolding of the at least one stator vane from the folded-in state to the flow guiding state.
  • 18. The method according to claim 16, wherein the inlet tube comprises a rounded, tapered end configured to be received in a blood vessel.
  • 19. The method according to claim 16, wherein the stator vane device is formed at least partially from a shape memory material.
  • 20. The method according to claim 16, wherein the stator vane device is formed at least partially from a biocompatible material.
Priority Claims (1)
Number Date Country Kind
10 2018 210 058.6 Jun 2018 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/066499 6/21/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/243588 12/26/2019 WO A
US Referenced Citations (856)
Number Name Date Kind
2254698 Hansen, Jr. Sep 1941 A
2310923 Bean Feb 1943 A
3085407 Tomlinson Apr 1963 A
3505987 Heilman Apr 1970 A
3568659 Karnegis Mar 1971 A
3614181 Meeks Oct 1971 A
3747998 Klein et al. Jul 1973 A
3807813 Milligan Apr 1974 A
3995617 Watkins et al. Dec 1976 A
4115040 Knorr Sep 1978 A
4245622 Hutchins, IV Jan 1981 A
4471252 West Sep 1984 A
4522194 Normann Jun 1985 A
4625712 Wampler Dec 1986 A
4643641 Clausen et al. Feb 1987 A
4753221 Kensey et al. Jun 1988 A
4779614 Moise Oct 1988 A
4785795 Singh et al. Nov 1988 A
4817586 Wampler Apr 1989 A
4846152 Wampler et al. Jul 1989 A
4888011 Kung et al. Dec 1989 A
4889131 Salem et al. Dec 1989 A
4895557 Moise et al. Jan 1990 A
4896754 Carlson et al. Jan 1990 A
4902272 Milder et al. Feb 1990 A
4908012 Moise et al. Mar 1990 A
4927407 Dorman May 1990 A
4943275 Stricker Jul 1990 A
4944722 Carriker et al. Jul 1990 A
4968300 Moutafis et al. Nov 1990 A
4971768 Ealba Nov 1990 A
4985014 Orejola Jan 1991 A
5044897 Dorman Sep 1991 A
5061256 Wampler Oct 1991 A
5089016 Millner et al. Feb 1992 A
5090957 Moutafis et al. Feb 1992 A
5112292 Hwang et al. May 1992 A
5112349 Summers et al. May 1992 A
5116305 Milder et al. May 1992 A
5195877 Kletschka Mar 1993 A
5297940 Buse Mar 1994 A
5313765 Martin May 1994 A
5344443 Palma et al. Sep 1994 A
5354271 Voda Oct 1994 A
5376114 Jarvik Dec 1994 A
5399145 Ito et al. Mar 1995 A
5405383 Barr Apr 1995 A
5443503 Yamane Aug 1995 A
5456715 Liotta Oct 1995 A
5527159 Bozeman, Jr. et al. Jun 1996 A
5599173 Chen et al. Feb 1997 A
5613935 Jarvik Mar 1997 A
5695471 Wampler Dec 1997 A
5702430 Larson, Jr. et al. Dec 1997 A
5720771 Snell Feb 1998 A
5746709 Rom et al. May 1998 A
5749855 Reitan May 1998 A
5752976 Duffin et al. May 1998 A
5766207 Potter et al. Jun 1998 A
5831365 Keim et al. Nov 1998 A
5888241 Jarvik Mar 1999 A
5888242 Antaki et al. Mar 1999 A
5904646 Jarvik May 1999 A
5911685 Siess et al. Jun 1999 A
5921913 Siess Jul 1999 A
5964694 Siess et al. Oct 1999 A
6001056 Jassawalla et al. Dec 1999 A
6007478 Siess et al. Dec 1999 A
6018208 Maher et al. Jan 2000 A
6050975 Poirier Apr 2000 A
6071093 Hart Jun 2000 A
6116862 Rau et al. Sep 2000 A
6123659 le Blanc et al. Sep 2000 A
6135710 Araki et al. Oct 2000 A
6149405 Abe et al. Nov 2000 A
6155969 Schima et al. Dec 2000 A
6158984 Cao et al. Dec 2000 A
6161838 Balsells Dec 2000 A
6176848 Rau et al. Jan 2001 B1
6186665 Maher et al. Feb 2001 B1
6210318 Lederman Apr 2001 B1
6217541 Yu Apr 2001 B1
6220832 Schob Apr 2001 B1
6227820 Jarvik May 2001 B1
6245007 Bedingham et al. Jun 2001 B1
6254359 Aber Jul 2001 B1
6264205 Balsells Jul 2001 B1
6264601 Jassawalla et al. Jul 2001 B1
6264645 Jonkman Jul 2001 B1
6293752 Clague et al. Sep 2001 B1
6351048 Schob et al. Feb 2002 B1
6361292 Chang et al. Mar 2002 B1
6432136 Weiss et al. Aug 2002 B1
6445956 Laird et al. Sep 2002 B1
6447266 Antaki et al. Sep 2002 B2
6527698 Kung et al. Mar 2003 B1
6530876 Spence Mar 2003 B1
6533716 Schmitz-Rode et al. Mar 2003 B1
6540658 Fasciano et al. Apr 2003 B1
6544216 Sammler et al. Apr 2003 B1
6579257 Elgas et al. Jun 2003 B1
6592620 Lancisi et al. Jul 2003 B1
6595743 Kazatchkov et al. Jul 2003 B1
6607368 Ross et al. Aug 2003 B1
6623475 Siess Sep 2003 B1
6719791 Nüsser et al. Apr 2004 B1
6794789 Siess et al. Sep 2004 B2
6841910 Gery Jan 2005 B2
6879126 Paden et al. Apr 2005 B2
6912423 Ley et al. Jun 2005 B2
6942611 Siess Sep 2005 B2
6949066 Bearnson et al. Sep 2005 B2
6969345 Jassawalla et al. Nov 2005 B2
7014620 Kim Mar 2006 B2
7022100 Aboul-Hosn et al. Apr 2006 B1
7027875 Siess et al. Apr 2006 B2
7011620 Siess May 2006 B1
7070398 Olsen et al. Jul 2006 B2
7070555 Siess Jul 2006 B2
7083588 Shmulewitz et al. Aug 2006 B1
7144364 Barbut et al. Dec 2006 B2
7160243 Medvedev Jan 2007 B2
7238151 Frazier Jul 2007 B2
7241257 Ainsworth et al. Jul 2007 B1
7264606 Jarvik et al. Sep 2007 B2
7393181 McBride et al. Jul 2008 B2
7462019 Allarie et al. Dec 2008 B1
7479102 Jarvik Jan 2009 B2
7502648 Okubo et al. Mar 2009 B2
7736296 Siess et al. Jun 2010 B2
7762941 Jarvik Jul 2010 B2
7798952 Tansley et al. Sep 2010 B2
7841976 McBride et al. Nov 2010 B2
7850593 Vincent et al. Dec 2010 B2
7878967 Khanal Feb 2011 B1
7934909 Jenson Feb 2011 B2
7914436 Kung Mar 2011 B1
7959551 Jarvik Jun 2011 B2
7963905 Salmonsen et al. Jun 2011 B2
7998190 Gharib et al. Aug 2011 B2
8012079 Delgado, III Sep 2011 B2
8075472 Zilbershlag et al. Dec 2011 B2
8088059 Jarvik Jan 2012 B2
8114008 Hidaka et al. Feb 2012 B2
8123669 Siess et al. Feb 2012 B2
RE43299 Siess Apr 2012 E
8152845 Bourque Apr 2012 B2
8177703 Smith et al. May 2012 B2
8216122 Kung Jul 2012 B2
8371997 Shifflette Feb 2013 B2
8376926 Benkowsi et al. Feb 2013 B2
8382695 Patel Feb 2013 B1
8388565 Shifflette Mar 2013 B2
8419609 Shambaugh, Jr. et al. Apr 2013 B2
8449443 Rodefeld et al. May 2013 B2
8480555 Kung Jul 2013 B2
8485961 Campbell et al. Jul 2013 B2
8512012 Akdis et al. Aug 2013 B2
8535211 Campbell et al. Sep 2013 B2
8545380 Farnan et al. Oct 2013 B2
8562508 Dague et al. Oct 2013 B2
8585572 Mehmanesh Nov 2013 B2
8591393 Walters et al. Nov 2013 B2
8591538 Gellman Nov 2013 B2
8591539 Gellman Nov 2013 B2
8597170 Walters et al. Dec 2013 B2
8617239 Reitan Dec 2013 B2
8622949 Zafirelis et al. Jan 2014 B2
8641594 LaRose et al. Feb 2014 B2
8657875 Kung et al. Feb 2014 B2
8684362 Balsells et al. Apr 2014 B2
8684904 Campbell et al. Apr 2014 B2
8690749 Nunez Apr 2014 B1
8721517 Zeng et al. May 2014 B2
8727959 Reitan et al. May 2014 B2
8731664 Foster et al. May 2014 B2
8734331 Evans et al. May 2014 B2
8814933 Siess Aug 2014 B2
8849398 Evans Sep 2014 B2
8864642 Scheckel Oct 2014 B2
8864643 Reichenbach et al. Oct 2014 B2
8864644 Yomtov Oct 2014 B2
8882477 Fritz, IV et al. Nov 2014 B2
8888728 Aboul-Hosn et al. Nov 2014 B2
8894387 White Nov 2014 B2
8897873 Schima et al. Nov 2014 B2
8900060 Liebing Dec 2014 B2
8900115 Bolling et al. Dec 2014 B2
8932246 Ferrari Jan 2015 B2
8992406 Corbett Mar 2015 B2
8992407 Smith et al. Mar 2015 B2
9028216 Schumacher et al. May 2015 B2
9028392 Shifflette May 2015 B2
9033863 Jarvik May 2015 B2
9091271 Bourque Jul 2015 B2
9138518 Campbell et al. Sep 2015 B2
9144638 Zimmermann et al. Sep 2015 B2
9162017 Evans et al. Oct 2015 B2
9192705 Yanai et al. Nov 2015 B2
9199020 Siess Dec 2015 B2
9265870 Reichenbach et al. Feb 2016 B2
9297735 Graichen et al. Mar 2016 B2
9314556 Tuseth Apr 2016 B2
9327067 Zeng et al. May 2016 B2
9327068 Aboul-Hosn et al. May 2016 B2
9345824 Mohl et al. May 2016 B2
9370613 Hsu et al. Jun 2016 B2
9371826 Yanai et al. Jun 2016 B2
9381286 Spence et al. Jul 2016 B2
9421311 Tanner et al. Aug 2016 B2
9433713 Corbett et al. Sep 2016 B2
9440013 Dowling et al. Sep 2016 B2
9486566 Siess Nov 2016 B2
9492601 Casas et al. Nov 2016 B2
9533084 Siess et al. Jan 2017 B2
9539378 Tuseth Jan 2017 B2
9550017 Spanier et al. Jan 2017 B2
9555173 Spanier Jan 2017 B2
9555175 Bulent et al. Jan 2017 B2
9556873 Yanai et al. Jan 2017 B2
9561313 Taskin Feb 2017 B2
9561314 Aboul-Hosn et al. Feb 2017 B2
9579433 LaRose et al. Feb 2017 B2
9585991 Spence Mar 2017 B2
9592397 Hansen et al. Mar 2017 B2
9616157 Akdis Apr 2017 B2
9623162 Graham et al. Apr 2017 B2
9623163 Fischi Apr 2017 B1
9636442 Karmon et al. May 2017 B2
9669144 Spanier et al. Jun 2017 B2
9675738 Tanner et al. Jun 2017 B2
9675739 Tanner et al. Jun 2017 B2
9675740 Zeng et al. Jun 2017 B2
9682180 Hoarau et al. Jun 2017 B2
9717833 McBride et al. Aug 2017 B2
9731058 Siebenhaar et al. Aug 2017 B2
9759222 Zimmermann et al. Sep 2017 B2
9770543 Tanner et al. Sep 2017 B2
9789238 Aboul-Hosn et al. Oct 2017 B2
9801990 Lynch Oct 2017 B2
9814813 Corbett Nov 2017 B2
9821100 Corbett et al. Nov 2017 B2
9833550 Siess Dec 2017 B2
9849223 LaRose Dec 2017 B2
9872948 Siess Jan 2018 B2
9878087 Richardson et al. Jan 2018 B2
9907890 Muller Mar 2018 B2
9919087 Pfeffer et al. Mar 2018 B2
9950101 Smith et al. Apr 2018 B2
9968719 Colella May 2018 B2
9999714 Spanier et al. Jun 2018 B2
10029037 Muller et al. Jul 2018 B2
10123875 Wildhirt et al. Nov 2018 B2
10124102 Bulent et al. Nov 2018 B2
10130742 Tuseth Nov 2018 B2
10149932 McBride et al. Dec 2018 B2
10179197 Kaiser et al. Jan 2019 B2
10201645 Muller Feb 2019 B2
10207038 Neumann Feb 2019 B2
10220129 Ayre et al. Mar 2019 B2
10232099 Peters et al. Mar 2019 B2
10238782 Barry Mar 2019 B2
10238783 Aboul-Hosn et al. Mar 2019 B2
10251986 Larose et al. Apr 2019 B2
10279093 Reichenbach et al. May 2019 B2
10293090 Bonde et al. May 2019 B2
10300185 Aboul-Hosn et al. May 2019 B2
10300249 Tao et al. May 2019 B2
10322217 Spence Jun 2019 B2
10342906 D'Ambrosio et al. Jul 2019 B2
10357598 Aboul-Hosn et al. Jul 2019 B2
10361617 Mueller et al. Jul 2019 B2
10371150 Wu et al. Aug 2019 B2
10376162 Edelman et al. Aug 2019 B2
10420869 Cornen Sep 2019 B2
10434232 Wu et al. Oct 2019 B2
10449275 Corbett Oct 2019 B2
10449279 Muller Oct 2019 B2
10478538 Scheckel et al. Nov 2019 B2
10478539 Pfeffer et al. Nov 2019 B2
10478542 Jahangir Nov 2019 B2
10500323 Heuring et al. Dec 2019 B2
10512537 Corbett et al. Dec 2019 B2
10525178 Zeng Jan 2020 B2
10537670 Tuseth et al. Jan 2020 B2
10537672 Tuseth et al. Jan 2020 B2
10557475 Roehn Feb 2020 B2
10561771 Heilman et al. Feb 2020 B2
10561772 Schumacher Feb 2020 B2
10576191 LaRose Mar 2020 B2
10584589 Schumacher et al. Mar 2020 B2
10589012 Toellner et al. Mar 2020 B2
10589013 Bourque Mar 2020 B2
10610626 Spanier et al. Apr 2020 B2
10617808 Hastie et al. Apr 2020 B2
10632241 Schenck et al. Apr 2020 B2
10660998 Hodges May 2020 B2
10662967 Scheckel May 2020 B2
10668195 Flores Jun 2020 B2
10669855 Toellner et al. Jun 2020 B2
10722631 Salahieh et al. Jul 2020 B2
10773002 Siess et al. Sep 2020 B2
10814053 Throckmorton et al. Oct 2020 B2
10857273 Hodges et al. Dec 2020 B2
10864308 Muller et al. Dec 2020 B2
11027114 D'Ambrosio et al. Jun 2021 B2
11033729 Scheckel et al. Jun 2021 B2
11045638 Keenan et al. Jun 2021 B2
11058863 Demou Jul 2021 B2
11058865 Fitzgerald et al. Jul 2021 B2
11065434 Egler et al. Jul 2021 B2
11092158 Siess et al. Aug 2021 B2
11097092 Siess et al. Aug 2021 B2
11103689 Siess et al. Aug 2021 B2
11103690 Epple Aug 2021 B2
11107626 Siess et al. Aug 2021 B2
11123538 Epple et al. Sep 2021 B2
11123539 Pfeffer et al. Sep 2021 B2
11123541 Corbett et al. Sep 2021 B2
11129978 Pfeffer et al. Sep 2021 B2
11141579 Steingräber Oct 2021 B2
11160970 Muller et al. Nov 2021 B2
11167124 Pfeffer et al. Nov 2021 B2
11173297 Muller Nov 2021 B2
11179557 Georges et al. Nov 2021 B2
11185678 Smith et al. Nov 2021 B2
11185680 Tuval et al. Nov 2021 B2
11191944 Tuval et al. Dec 2021 B2
11197989 Arslan et al. Dec 2021 B2
11202901 Barry Dec 2021 B2
11219756 Tanner et al. Jan 2022 B2
11229786 Zeng et al. Jan 2022 B2
11235138 Gross-Hardt et al. Feb 2022 B2
11235140 Siess et al. Feb 2022 B2
11241568 Keenan et al. Feb 2022 B2
11241569 Delgado, III Feb 2022 B2
11253693 Pfeffer et al. Feb 2022 B2
11260212 Tuval et al. Mar 2022 B2
11260213 Zeng et al. Mar 2022 B2
11260215 Scheckel et al. Mar 2022 B2
11273300 Schafir Mar 2022 B2
11273301 Pfeffer et al. Mar 2022 B2
11278711 Liebing Mar 2022 B2
11280345 Bredenbreuker et al. Mar 2022 B2
11285309 Tuval et al. Mar 2022 B2
11291824 Schwammenthal et al. Apr 2022 B2
11291825 Tuval et al. Apr 2022 B2
11291826 Tuval et al. Apr 2022 B2
11298519 Josephy et al. Apr 2022 B2
11298520 Schwammenthal et al. Apr 2022 B2
11298521 Schwammenthal et al. Apr 2022 B2
11298523 Tuval et al. Apr 2022 B2
11298524 El Katerji et al. Apr 2022 B2
11298525 Jahangir Apr 2022 B2
11305103 Larose et al. Apr 2022 B2
11305105 Corbett et al. Apr 2022 B2
11311711 Casas et al. Apr 2022 B2
11311712 Zeng et al. Apr 2022 B2
11313228 Schumacher et al. Apr 2022 B2
D951435 Motomura et al. May 2022 S
11318295 Reyes et al. May 2022 B2
11324940 Earles et al. May 2022 B2
11324941 Xu et al. May 2022 B2
11331465 Epple May 2022 B2
11331466 Keen et al. May 2022 B2
11331467 King et al. May 2022 B2
11331470 Muller et al. May 2022 B2
11338124 Pfeffer et al. May 2022 B2
11338125 Liu et al. May 2022 B2
11344716 Taskin May 2022 B2
11344717 Kallenbach et al. May 2022 B2
11351356 Mohl Jun 2022 B2
11351357 Mohl Jun 2022 B2
11351359 Clifton et al. Jun 2022 B2
11357967 Zeng et al. Jun 2022 B2
11364373 Corbett et al. Jun 2022 B2
11368081 Vogt et al. Jun 2022 B2
11369785 Callaway et al. Jun 2022 B2
11369786 Menon et al. Jun 2022 B2
11376415 Mohl Jul 2022 B2
11389639 Casas Jul 2022 B2
11389641 Nguyen et al. Jul 2022 B2
11413443 Hodges et al. Aug 2022 B2
11413446 Siess et al. Aug 2022 B2
11415150 Richert et al. Aug 2022 B2
11421701 Schumacher et al. Aug 2022 B2
11428236 McBride et al. Aug 2022 B2
11433168 Wu et al. Sep 2022 B2
11434921 McBride et al. Sep 2022 B2
11434922 Roehn Sep 2022 B2
11446481 Wolman et al. Sep 2022 B2
11446482 Kirchhoff et al. Sep 2022 B2
11452859 Earles et al. Sep 2022 B2
11460030 Shambaugh et al. Oct 2022 B2
11471662 Akkerman et al. Oct 2022 B2
11471663 Tuval et al. Oct 2022 B2
11471665 Clifton et al. Oct 2022 B2
11478627 Siess et al. Oct 2022 B2
11478628 Muller et al. Oct 2022 B2
11478629 Harjes et al. Oct 2022 B2
11484698 Radman Nov 2022 B2
11484699 Tuval et al. Nov 2022 B2
11486400 Schumacher Nov 2022 B2
11491320 Siess Nov 2022 B2
11491322 Muller et al. Nov 2022 B2
11497896 Tanner et al. Nov 2022 B2
11497906 Grace et al. Nov 2022 B2
11511101 Hastie et al. Nov 2022 B2
11511103 Salahieh et al. Nov 2022 B2
11511104 Dur et al. Nov 2022 B2
11517726 Siess et al. Dec 2022 B2
11517736 Earles et al. Dec 2022 B2
11517737 Struthers et al. Dec 2022 B2
11517738 Wisniewski Dec 2022 B2
11517739 Toellner Dec 2022 B2
11517740 Agarwa et al. Dec 2022 B2
11524137 Jahangir Dec 2022 B2
11524165 Tan et al. Dec 2022 B2
11529062 Moyer et al. Dec 2022 B2
11534596 Schafir et al. Dec 2022 B2
11565103 Farago et al. Jan 2023 B2
11569015 Mourran et al. Jan 2023 B2
11572879 Mohl Feb 2023 B2
11577067 Breidall et al. Feb 2023 B2
11577068 Spence et al. Feb 2023 B2
11583659 Pfeffer et al. Feb 2023 B2
11583670 Pfeifer et al. Feb 2023 B2
11583671 Nguyen et al. Feb 2023 B2
11583672 Weber et al. Feb 2023 B2
11590336 Harjes et al. Feb 2023 B2
11590337 Granegger et al. Feb 2023 B2
11590338 Barry Feb 2023 B2
11592028 Schumacher et al. Feb 2023 B2
11596727 Siess et al. Mar 2023 B2
11602627 Leonhardt Mar 2023 B2
11617876 Scheckel et al. Apr 2023 B2
11628293 Gandhi et al. Apr 2023 B2
11632015 Sconzert et al. Apr 2023 B2
11633586 Tanner et al. Apr 2023 B2
11638813 West May 2023 B2
11639722 Medvedev et al. May 2023 B2
11642511 Delgado, III May 2023 B2
11648387 Schwammenthal et al. May 2023 B2
11648388 Siess et al. May 2023 B2
11648389 Wang et al. May 2023 B2
11648390 Spanier et al. May 2023 B2
11648391 Schwammenthal et al. May 2023 B2
11648392 Tuval et al. May 2023 B2
11648393 Taskin et al. May 2023 B2
11654273 Granegger et al. May 2023 B2
11654275 Brandt May 2023 B2
11654276 Fitzgerald et al. May 2023 B2
11660441 Fitzgerald et al. May 2023 B2
11666747 Tuval et al. Jun 2023 B2
11666748 Kronstedt et al. Jun 2023 B2
11668321 Richert et al. Jun 2023 B2
11674517 Mohl Jun 2023 B2
11679234 King et al. Jun 2023 B2
11679249 Scheckel et al. Jun 2023 B2
11684275 Tuval et al. Jun 2023 B2
11684769 Harjes et al. Jun 2023 B2
11690521 Tuval et al. Jul 2023 B2
11690996 Siess et al. Jul 2023 B2
11697016 Epple Jul 2023 B2
11701510 Demou Jul 2023 B2
11702938 Schumacher et al. Jul 2023 B2
11703064 Bredenbreuker et al. Jul 2023 B2
11708833 McBride et al. Jul 2023 B2
11744987 Siess et al. Sep 2023 B2
11745005 Delgado, III Sep 2023 B2
11746906 Balta et al. Sep 2023 B1
11752322 Aboulhosn et al. Sep 2023 B2
11752323 Edwards et al. Sep 2023 B2
11754075 Schuelke et al. Sep 2023 B2
11754077 Mohl Sep 2023 B1
11759612 Tanner et al. Sep 2023 B2
11759622 Siess et al. Sep 2023 B2
11766555 Matthes et al. Sep 2023 B2
11771884 Siess et al. Oct 2023 B2
11771885 Liu et al. Oct 2023 B2
11779234 Harjes et al. Oct 2023 B2
11779751 Earles et al. Oct 2023 B2
11781551 Yanai et al. Oct 2023 B2
11786386 Brady et al. Oct 2023 B2
11786700 Pfeffer et al. Oct 2023 B2
11786720 Muller Oct 2023 B2
11793994 Josephy et al. Oct 2023 B2
11804767 Vogt et al. Oct 2023 B2
11806116 Tuval et al. Nov 2023 B2
11806117 Tuval et al. Nov 2023 B2
11806517 Petersen Nov 2023 B2
11806518 Michelena et al. Nov 2023 B2
11813443 Hanson et al. Nov 2023 B2
11813444 Siess et al. Nov 2023 B2
11819678 Siess et al. Nov 2023 B2
11826127 Casas Nov 2023 B2
11833278 Siess et al. Dec 2023 B2
11833342 Tanner et al. Dec 2023 B2
11839754 Tuval et al. Dec 2023 B2
11844592 Tuval et al. Dec 2023 B2
11844940 D'Ambrosio et al. Dec 2023 B2
11850412 Grauwinkel et al. Dec 2023 B2
11850413 Zeng et al. Dec 2023 B2
11850414 Schenck et al. Dec 2023 B2
11850415 Schwammenthal et al. Dec 2023 B2
11857743 Fantuzzi et al. Jan 2024 B2
11857777 Earles et al. Jan 2024 B2
11865238 Siess et al. Jan 2024 B2
11872384 Cotter Jan 2024 B2
11883005 Golden et al. Jan 2024 B2
11883207 El Katerji et al. Jan 2024 B2
11883310 Nolan et al. Jan 2024 B2
11883641 Dur et al. Jan 2024 B2
11890212 Gilmartin et al. Feb 2024 B2
11896482 Delaloye et al. Feb 2024 B2
11898642 Stanton et al. Feb 2024 B2
11904104 Jahangir Feb 2024 B2
11911579 Tanner et al. Feb 2024 B2
11918470 Jarral et al. Mar 2024 B2
11918496 Folan Mar 2024 B2
11918726 Siess et al. Mar 2024 B2
11918800 Muller et al. Mar 2024 B2
11925356 Anderson et al. Mar 2024 B2
11925570 Lydecker et al. Mar 2024 B2
11925794 Malkin et al. Mar 2024 B2
11925795 Muller et al. Mar 2024 B2
11925796 Tanner et al. Mar 2024 B2
11925797 Tanner et al. Mar 2024 B2
11938311 Corbett et al. Mar 2024 B2
11944805 Stotz Apr 2024 B2
11980385 Haselman May 2024 B2
11986604 Siess May 2024 B2
12005248 Vogt et al. Jun 2024 B2
12011583 Wang Jun 2024 B2
12017058 Kerkhoffs et al. Jun 2024 B2
12023476 Tuval et al. Jul 2024 B2
12023477 Siess Jul 2024 B2
12059559 Muller et al. Aug 2024 B2
12064120 Hajjar et al. Aug 2024 B2
12064611 D'Ambrosio et al. Aug 2024 B2
12064614 Agah et al. Aug 2024 B2
12064615 Stotz et al. Aug 2024 B2
12064616 Spanier et al. Aug 2024 B2
12076544 Siess et al. Sep 2024 B2
12076549 Stotz et al. Sep 2024 B2
12090314 Tuval et al. Sep 2024 B2
12092114 Siess Sep 2024 B2
12097016 Goldvasser Sep 2024 B2
12102815 Dhaliwal et al. Oct 2024 B2
12107474 Vollmer Oct 2024 B2
12121713 Calomeni et al. Oct 2024 B2
12144936 Tao et al. Nov 2024 B2
12144976 Baumbach et al. Nov 2024 B2
20010009645 Noda Jul 2001 A1
20010041934 Yamazaki et al. Nov 2001 A1
20020076322 Maeda et al. Jun 2002 A1
20020082585 Carroll et al. Jun 2002 A1
20020147495 Petroff Oct 2002 A1
20020153664 Schroeder Oct 2002 A1
20030060685 Houser Mar 2003 A1
20030091450 Davis et al. May 2003 A1
20030100816 Siess May 2003 A1
20030111800 Kreutzer Jun 2003 A1
20030139643 Smith et al. Jul 2003 A1
20030191357 Frazier Oct 2003 A1
20030199727 Burke Oct 2003 A1
20040044266 Siess et al. Mar 2004 A1
20040066107 Gery Apr 2004 A1
20040102674 Zadini et al. May 2004 A1
20040115038 Nuesser et al. Jun 2004 A1
20040167376 Peters et al. Aug 2004 A1
20040234391 Izraelev Nov 2004 A1
20040241019 Goldowsky Dec 2004 A1
20040260346 Overall et al. Dec 2004 A1
20050006083 Chen et al. Jan 2005 A1
20050008509 Chang Jan 2005 A1
20050019167 Nusser et al. Jan 2005 A1
20050085683 Bolling et al. Apr 2005 A1
20050220636 Henein et al. Oct 2005 A1
20050254976 Carrier et al. Nov 2005 A1
20060030809 Barzilay et al. Feb 2006 A1
20060062672 McBride et al. Mar 2006 A1
20060155158 Aboul-Hosn Jul 2006 A1
20060224110 Scott et al. Oct 2006 A1
20060276682 Bolling et al. Dec 2006 A1
20070004959 Carrier et al. Jan 2007 A1
20070142696 Crosby et al. Jun 2007 A1
20070156006 Smith et al. Jul 2007 A1
20080015517 Geistert et al. Jan 2008 A1
20080058925 Cohen Mar 2008 A1
20080086027 Siess et al. Apr 2008 A1
20080114339 McBride et al. May 2008 A1
20080262289 Goldowsky Oct 2008 A1
20080292478 Baykut et al. Nov 2008 A1
20080306328 Ercolani Dec 2008 A1
20090004037 Ito Jan 2009 A1
20090112312 Larose et al. Apr 2009 A1
20090138080 Siess et al. May 2009 A1
20090203957 LaRose et al. Aug 2009 A1
20090204205 Larose et al. Aug 2009 A1
20100041939 Siess Feb 2010 A1
20100082099 Vodermayer et al. Apr 2010 A1
20100191035 Kang et al. Jul 2010 A1
20100268017 Siess Oct 2010 A1
20100298625 Reichenbach et al. Nov 2010 A1
20110172505 Kim Jul 2011 A1
20110184224 Garrigue Jul 2011 A1
20110230821 Babic Sep 2011 A1
20110237863 Ricci et al. Sep 2011 A1
20110238172 Akdis Sep 2011 A1
20120029265 LaRose Feb 2012 A1
20120035645 Gross Feb 2012 A1
20120088954 Foster Apr 2012 A1
20120093628 Liebing Apr 2012 A1
20120134793 Wu et al. May 2012 A1
20120172655 Campbell et al. Jul 2012 A1
20120178986 Campbell et al. Jul 2012 A1
20120245404 Smith Sep 2012 A1
20120247200 Ahonen et al. Oct 2012 A1
20120283506 Meister et al. Nov 2012 A1
20120310036 Peters et al. Dec 2012 A1
20130053623 Evans Feb 2013 A1
20130085318 Toellner Apr 2013 A1
20130209292 Baykut et al. Aug 2013 A1
20130281761 Kapur Oct 2013 A1
20130289376 Lang Oct 2013 A1
20130303830 Zeng et al. Nov 2013 A1
20130303831 Evans Nov 2013 A1
20130303832 Wampler Nov 2013 A1
20130330219 LaRose et al. Dec 2013 A1
20140005467 Farnan et al. Jan 2014 A1
20140030122 Ozaki Jan 2014 A1
20140051908 Khanal et al. Feb 2014 A1
20140079557 LaRose et al. Mar 2014 A1
20140107399 Spence Apr 2014 A1
20140167545 Bremner et al. Jun 2014 A1
20140194717 Wildhirt et al. Jul 2014 A1
20140200389 Yanai et al. Jul 2014 A1
20140207232 Garrigue Jul 2014 A1
20140275721 Yanai et al. Sep 2014 A1
20140330069 Hastings et al. Nov 2014 A1
20140341726 Wu et al. Nov 2014 A1
20150031936 LaRose et al. Jan 2015 A1
20150051435 Siess et al. Feb 2015 A1
20150051438 Taskin Feb 2015 A1
20150099923 Magovern et al. Apr 2015 A1
20150141842 Spanier et al. May 2015 A1
20150171694 Dallas Jun 2015 A1
20150190092 Mori Jul 2015 A1
20150273184 Scott et al. Oct 2015 A1
20150290372 Muller et al. Oct 2015 A1
20150290373 Rudser et al. Oct 2015 A1
20150306291 Bonde et al. Oct 2015 A1
20150343179 Schumacher et al. Dec 2015 A1
20150365738 Purvis et al. Dec 2015 A1
20160008531 Wang et al. Jan 2016 A1
20160030649 Zeng Feb 2016 A1
20160038663 Taskin et al. Feb 2016 A1
20160045654 Connor Feb 2016 A1
20160067395 Jimenez et al. Mar 2016 A1
20160144089 Woo et al. May 2016 A1
20160144166 Decréet al. May 2016 A1
20160166747 Frazier et al. Jun 2016 A1
20160213828 Sievers Jul 2016 A1
20160223086 Balsells et al. Aug 2016 A1
20160256620 Scheckel et al. Sep 2016 A1
20160279311 Cecere et al. Sep 2016 A1
20160367739 Wiesener et al. Dec 2016 A1
20160375187 Lee et al. Dec 2016 A1
20170021069 Hodges Jan 2017 A1
20170021074 Opfermann et al. Jan 2017 A1
20170035952 Muller Feb 2017 A1
20170043074 Siess Feb 2017 A1
20170049947 Corbett et al. Feb 2017 A1
20170080136 Janeczek et al. Mar 2017 A1
20170087286 Spanier et al. Mar 2017 A1
20170087288 Groß-Hardt et al. Mar 2017 A1
20170128644 Foster May 2017 A1
20170136225 Siess et al. May 2017 A1
20170143952 Siess et al. May 2017 A1
20170157309 Begg et al. Jun 2017 A1
20170209633 Cohen Jul 2017 A1
20170232169 Muller Aug 2017 A1
20170274128 Tamburino et al. Sep 2017 A1
20170333607 Zarins Nov 2017 A1
20170333608 Zeng Nov 2017 A1
20170340787 Corbett et al. Nov 2017 A1
20170340788 Korakianitis et al. Nov 2017 A1
20170340789 Bonde et al. Nov 2017 A1
20170343043 Walsh et al. Nov 2017 A1
20180015214 Lynch Jan 2018 A1
20180021494 Muller et al. Jan 2018 A1
20180021495 Muller et al. Jan 2018 A1
20180050141 Corbett et al. Feb 2018 A1
20180055979 Corbett et al. Mar 2018 A1
20180064860 Nunez et al. Mar 2018 A1
20180093070 Cottone Apr 2018 A1
20180099076 LaRose Apr 2018 A1
20180110907 Keenan et al. Apr 2018 A1
20180133379 Farnan et al. May 2018 A1
20180154058 Menon et al. Jun 2018 A1
20180169312 Barry Jun 2018 A1
20180169313 Schwammenthal et al. Jun 2018 A1
20180207336 Solem Jul 2018 A1
20180219452 Boisclair Aug 2018 A1
20180221551 Tanner et al. Aug 2018 A1
20180221553 Taskin Aug 2018 A1
20180228950 Janeczek et al. Aug 2018 A1
20180228953 Siess et al. Aug 2018 A1
20180243004 von Segesser et al. Aug 2018 A1
20180243489 Haddadi Aug 2018 A1
20180250456 Nitzan et al. Sep 2018 A1
20180256797 Schenck et al. Sep 2018 A1
20180280598 Curran et al. Oct 2018 A1
20180289877 Schumacher et al. Oct 2018 A1
20180303990 Siess et al. Oct 2018 A1
20180311421 Tuseth Nov 2018 A1
20180311423 Zeng et al. Nov 2018 A1
20180318483 Dague et al. Nov 2018 A1
20180318547 Yokoyama Nov 2018 A1
20180326132 Maimon et al. Nov 2018 A1
20180333059 Casas Nov 2018 A1
20180335037 Shambaugh et al. Nov 2018 A1
20180345028 Aboud et al. Dec 2018 A1
20180361042 Fitzgerald et al. Dec 2018 A1
20180369469 Le Duc De Lillers et al. Dec 2018 A1
20190001034 Taskin et al. Jan 2019 A1
20190004037 Zhang et al. Jan 2019 A1
20190030228 Keenan et al. Jan 2019 A1
20190046702 Siess et al. Feb 2019 A1
20190046703 Shambaugh et al. Feb 2019 A1
20190054223 Frazier et al. Feb 2019 A1
20190060539 Siess et al. Feb 2019 A1
20190060543 Khanal et al. Feb 2019 A1
20190076167 Fantuzzi et al. Mar 2019 A1
20190083690 Siess et al. Mar 2019 A1
20190099532 Er Apr 2019 A1
20190101130 Bredenbreuker et al. Apr 2019 A1
20190105437 Siess et al. Apr 2019 A1
20190117865 Walters et al. Apr 2019 A1
20190125948 Stanfield et al. May 2019 A1
20190143016 Corbett et al. May 2019 A1
20190143018 Salahieh et al. May 2019 A1
20190154053 McBride et al. May 2019 A1
20190167122 Obermiller et al. Jun 2019 A1
20190167875 Simon et al. Jun 2019 A1
20190167878 Rowe Jun 2019 A1
20190170153 Scheckel Jun 2019 A1
20190175806 Tuval et al. Jun 2019 A1
20190184078 Zilbershlag et al. Jun 2019 A1
20190184080 Mohl Jun 2019 A1
20190192752 Tiller et al. Jun 2019 A1
20190201603 Siess et al. Jul 2019 A1
20190209755 Nix et al. Jul 2019 A1
20190209758 Tuval et al. Jul 2019 A1
20190211836 Schumacher et al. Jul 2019 A1
20190211846 Liebing Jul 2019 A1
20190211847 Walsh et al. Jul 2019 A1
20190223877 Nitzen et al. Jul 2019 A1
20190269840 Tuval et al. Sep 2019 A1
20190275224 Hanson et al. Sep 2019 A1
20190282741 Franano et al. Sep 2019 A1
20190282744 D'Ambrosio et al. Sep 2019 A1
20190282746 Judisch Sep 2019 A1
20190290817 Guo et al. Sep 2019 A1
20190298902 Siess et al. Oct 2019 A1
20190316591 Toellner Oct 2019 A1
20190321527 King et al. Oct 2019 A1
20190321529 Korakianitis et al. Oct 2019 A1
20190321531 Cambronne et al. Oct 2019 A1
20190336664 Liebing Nov 2019 A1
20190344000 Kushwaha et al. Nov 2019 A1
20190344001 Salahieh et al. Nov 2019 A1
20190351117 Cambronne et al. Nov 2019 A1
20190351119 Cambronne et al. Nov 2019 A1
20190351120 Kushwaha et al. Nov 2019 A1
20190358378 Schumacher Nov 2019 A1
20190358379 Wiessler et al. Nov 2019 A1
20190358384 Epple Nov 2019 A1
20190365975 Muller et al. Dec 2019 A1
20190383298 Toellner Dec 2019 A1
20200016309 Kallenbach et al. Jan 2020 A1
20200023109 Epple Jan 2020 A1
20200030507 Higgins et al. Jan 2020 A1
20200030509 Siess et al. Jan 2020 A1
20200030510 Higgins Jan 2020 A1
20200030511 Higgins Jan 2020 A1
20200030512 Higgins et al. Jan 2020 A1
20200038567 Siess et al. Feb 2020 A1
20200038568 Higgins et al. Feb 2020 A1
20200038571 Jahangir Feb 2020 A1
20200069857 Schwammenthal et al. Mar 2020 A1
20200088207 Schumacher et al. Mar 2020 A1
20200114053 Salahieh et al. Apr 2020 A1
20200129684 Pfeffer et al. Apr 2020 A1
20200139028 Scheckel et al. May 2020 A1
20200139029 Scheckel et al. May 2020 A1
20200147283 Tanner et al. May 2020 A1
20200164125 Muller et al. May 2020 A1
20200164126 Muller May 2020 A1
20200261633 Spanier Aug 2020 A1
20200345337 Muller et al. Nov 2020 A1
20200350812 Vogt et al. Nov 2020 A1
20210052793 Struthers et al. Feb 2021 A1
20210236803 Stotz Aug 2021 A1
20210268264 Stotz Sep 2021 A1
20210290929 Stotz Sep 2021 A1
20210290930 Kasel Sep 2021 A1
20210290932 Stotz Sep 2021 A1
20210290937 Baumbach Sep 2021 A1
20210313869 Strasswiemer et al. Oct 2021 A1
20210316133 Kassel et al. Oct 2021 A1
20210322756 Vollmer et al. Oct 2021 A1
20210330958 Stotz et al. Oct 2021 A1
20210338999 Stotz et al. Nov 2021 A1
20210339004 Schlebusch et al. Nov 2021 A1
20210339005 Stotz et al. Nov 2021 A1
20210346678 Baumbach et al. Nov 2021 A1
20210346680 Vogt et al. Nov 2021 A1
20210379352 Schlebusch et al. Dec 2021 A1
20210379355 Schuelke et al. Dec 2021 A1
20210379358 Schuelke et al. Dec 2021 A1
20210384812 Vollmer et al. Dec 2021 A1
20220008714 Stotz Jan 2022 A1
20220016411 Winterwerber Jan 2022 A1
20220072296 Mori Mar 2022 A1
20220072297 Tuval et al. Mar 2022 A1
20220080178 Salahieh et al. Mar 2022 A1
20220080180 Siess et al. Mar 2022 A1
20220080182 Earles et al. Mar 2022 A1
20220080183 Earles et al. Mar 2022 A1
20220080184 Clifton et al. Mar 2022 A1
20220080185 Clifton et al. Mar 2022 A1
20220105337 Salahieh et al. Apr 2022 A1
20220105339 Nix et al. Apr 2022 A1
20220126083 Grauwinkel et al. Apr 2022 A1
20220161018 Mitze et al. May 2022 A1
20220161019 Mitze et al. May 2022 A1
20220161021 Mitze et al. May 2022 A1
20220241580 Stotz et al. Aug 2022 A1
20220323742 Grauwinkel et al. Oct 2022 A1
20220407403 Vogt et al. Dec 2022 A1
20230001178 Corbett et al. Jan 2023 A1
20230277833 Sharma et al. Sep 2023 A1
20230277836 Schellenberg et al. Sep 2023 A1
20230293878 Christof et al. Sep 2023 A1
20230364411 Bette Nov 2023 A1
20240075277 Schellenberg Mar 2024 A1
20240102475 Schuelke et al. Mar 2024 A1
20240198084 Stotz Jun 2024 A1
20240245902 Schlebusch et al. Jul 2024 A1
20240269459 Schellenberg et al. Aug 2024 A1
20240277998 Vogt et al. Aug 2024 A1
20240285935 Popov et al. Aug 2024 A1
20240335651 Mitze et al. Oct 2024 A1
20240399135 Stotz et al. Dec 2024 A1
Foreign Referenced Citations (517)
Number Date Country
7993698 Feb 1999 AU
2002308409 Dec 2005 AU
2012261669 Jan 2013 AU
2013203301 May 2013 AU
2013273663 Jan 2014 AU
PI0904483-3 Jul 2011 BR
2 026 692 Apr 1992 CA
2 026 693 Apr 1992 CA
2 292 432 May 1998 CA
2 664 835 Feb 2008 CA
2 796 357 Oct 2011 CA
2 947 984 Nov 2022 CA
1222862 Jul 1999 CN
1254598 May 2000 CN
1376523 Oct 2002 CN
2535055 Feb 2003 CN
1118304 Aug 2003 CN
2616217 May 2004 CN
1202871 May 2005 CN
1833736 Sep 2006 CN
200977306 Nov 2007 CN
101112628 Jan 2008 CN
101128168 Feb 2008 CN
201150675 Nov 2008 CN
101677812 Mar 2010 CN
201437016 Apr 2010 CN
201618200 Nov 2010 CN
201658687 Dec 2010 CN
201710717 Jan 2011 CN
201894758 Jul 2011 CN
102475923 May 2012 CN
102545538 Jul 2012 CN
202314596 Jul 2012 CN
102743801 Oct 2012 CN
103143072 Jun 2013 CN
103845766 Jun 2014 CN
103861162 Jun 2014 CN
203842087 Sep 2014 CN
104208763 Dec 2014 CN
104208764 Dec 2014 CN
203971004 Dec 2014 CN
104274873 Jan 2015 CN
204106671 Jan 2015 CN
204219479 Mar 2015 CN
103877630 Feb 2016 CN
205215814 May 2016 CN
103977464 Aug 2016 CN
104162192 Sep 2016 CN
104888293 Mar 2017 CN
106512117 Mar 2017 CN
104225696 Jun 2017 CN
107019824 Aug 2017 CN
206443963 Aug 2017 CN
107281567 Oct 2017 CN
104707194 Nov 2017 CN
107921187 Apr 2018 CN
105498002 Jun 2018 CN
106310410 Jul 2018 CN
106902404 Aug 2019 CN
209790495 Dec 2019 CN
110665079 Jan 2020 CN
210020563 Feb 2020 CN
111166948 May 2020 CN
111166949 May 2020 CN
1 001 642 Jan 1957 DE
1 165 144 Mar 1964 DE
27 07 951 Sep 1977 DE
26 24 058 Dec 1977 DE
3 545 214 Jul 1986 DE
41 05 278 Aug 1992 DE
195 46 336 May 1997 DE
695 01 834 Oct 1998 DE
198 54 724 May 1999 DE
198 21 307 Oct 1999 DE
199 10 872 Oct 1999 DE
199 56 380 Nov 1999 DE
100 59 714 May 2002 DE
103 45 694 Apr 2005 DE
697 31 709 Apr 2005 DE
101 55 011 Nov 2005 DE
601 19 592 Sep 2006 DE
11 2004 001 809 Nov 2006 DE
20 2005 020 288 Jun 2007 DE
10 2006 019 206 Oct 2007 DE
10 2006 036 948 Feb 2008 DE
10 2008 060 357 Jun 2010 DE
10 2009 039 658 Mar 2011 DE
20 2009 018 416 Aug 2011 DE
10 2010 041 995 Apr 2012 DE
10 2012 022 456 May 2014 DE
10 2013 007 562 Nov 2014 DE
10 2014 210 299 Dec 2015 DE
10 2014 212 323 Dec 2015 DE
11 2014 001 418 Dec 2015 DE
10 2014 224 151 Jun 2016 DE
10 2015 216 050 Feb 2017 DE
10 2015 219 263 Apr 2017 DE
10 2015 222 199 May 2017 DE
20 2015 009 422 Jul 2017 DE
10 2012 207 042 Sep 2017 DE
10 2016 013 334 Apr 2018 DE
10 2017 209 917 Dec 2018 DE
10 2017 212 193 Jan 2019 DE
10 2018 207 564 Nov 2019 DE
10 2018 207 578 Nov 2019 DE
10 2018 207 585 Nov 2019 DE
10 2018 207 591 Nov 2019 DE
10 2018 207 594 Nov 2019 DE
10 2018 207 611 Nov 2019 DE
10 2018 207 622 Nov 2019 DE
10 2018 208 536 Dec 2019 DE
10 2018 208 540 Dec 2019 DE
10 2018 208 541 Dec 2019 DE
10 2018 208 550 Dec 2019 DE
10 2018 208 945 Dec 2019 DE
10 2018 210 076 Dec 2019 DE
10 2018 207 624 Jan 2020 DE
10 2018 211 327 Jan 2020 DE
10 2018 211 328 Jan 2020 DE
10 2018 212 153 Jan 2020 DE
10 2018 213 350 Feb 2020 DE
10 2018 220 658 Jun 2020 DE
10 2020 102 473 Aug 2021 DE
11 2020 003 063 Mar 2022 DE
11 2020 004 148 Jun 2022 DE
0 050 814 May 1982 EP
0 629 412 Dec 1994 EP
0 764 448 Mar 1997 EP
0 855 515 Jul 1998 EP
0 890 179 Jan 1999 EP
0 916 359 May 1999 EP
1 013 294 Jun 2000 EP
1 186 873 Mar 2002 EP
1 475 880 Nov 2004 EP
1 169 072 May 2005 EP
1 176 999 Jul 2005 EP
1 801 420 Jun 2007 EP
2 009 233 Dec 2008 EP
2 098 746 Sep 2009 EP
2 403 109 Jan 2012 EP
2 187 807 Jun 2012 EP
3 326 567 Oct 2014 EP
1 898 971 Mar 2015 EP
2 519 273 Aug 2015 EP
2 217 302 Sep 2015 EP
2 438 936 Oct 2015 EP
2 438 937 Oct 2015 EP
2 960 515 Dec 2015 EP
2 968 718 Jan 2016 EP
1 996 252 May 2016 EP
2 475 415 Jun 2016 EP
2 906 265 Jul 2016 EP
3 069 739 Sep 2016 EP
1 931 403 Jan 2017 EP
3 127 562 Feb 2017 EP
2 585 129 Mar 2017 EP
3 187 210 Jul 2017 EP
3 222 301 Sep 2017 EP
3 222 302 Sep 2017 EP
3 020 426 Dec 2017 EP
3 038 669 Jan 2018 EP
3 062 730 Jan 2018 EP
3 180 050 Feb 2018 EP
3 287 154 Feb 2018 EP
1 789 129 Jun 2018 EP
2 366 412 Aug 2018 EP
3 205 359 Aug 2018 EP
3 205 360 Aug 2018 EP
3 131 599 Feb 2019 EP
3 456 367 Mar 2019 EP
3 119 451 Jun 2019 EP
3 528 865 Aug 2019 EP
3 536 360 Sep 2019 EP
3 542 835 Sep 2019 EP
3 542 836 Sep 2019 EP
3 062 877 Dec 2019 EP
3 668 560 Jun 2020 EP
3 687 625 Aug 2020 EP
3 711 785 Sep 2020 EP
3 711 786 Sep 2020 EP
3 711 787 Sep 2020 EP
3 720 520 Oct 2020 EP
3 069 740 Dec 2020 EP
3 142 722 Dec 2020 EP
3 579 894 Dec 2020 EP
3 188 769 Jan 2021 EP
3 490 122 Jan 2021 EP
2 869 866 Feb 2021 EP
3 398 626 Feb 2021 EP
3 487 549 Feb 2021 EP
3 113 806 Mar 2021 EP
3 615 103 Mar 2021 EP
3 794 720 Mar 2021 EP
2 344 218 Apr 2021 EP
3 436 104 Apr 2021 EP
3 749 383 Apr 2021 EP
3 821 938 May 2021 EP
3 131 615 Jun 2021 EP
3 338 825 Jun 2021 EP
3 432 944 Jun 2021 EP
3 684 439 Jul 2021 EP
2 582 414 Aug 2021 EP
3 407 930 Aug 2021 EP
3 782 665 Aug 2021 EP
3 782 666 Aug 2021 EP
3 782 668 Aug 2021 EP
3 858 397 Aug 2021 EP
3 216 467 Sep 2021 EP
3 463 505 Sep 2021 EP
3 884 968 Sep 2021 EP
3 884 969 Sep 2021 EP
3 027 241 Oct 2021 EP
3 579 904 Nov 2021 EP
2 628 493 Dec 2021 EP
3 556 409 Jan 2022 EP
3 624 868 Jan 2022 EP
3 930 785 Jan 2022 EP
3 955 985 Feb 2022 EP
3 624 867 Mar 2022 EP
3 689 389 Mar 2022 EP
3 697 464 Mar 2022 EP
3 737 436 Mar 2022 EP
3 972 661 Mar 2022 EP
2 967 630 Apr 2022 EP
3 142 721 Apr 2022 EP
3 520 834 Apr 2022 EP
3 586 887 Apr 2022 EP
3 638 336 Apr 2022 EP
3 689 388 Apr 2022 EP
3 765 110 Apr 2022 EP
3 782 667 Apr 2022 EP
3 829 673 Apr 2022 EP
3 976 129 Apr 2022 EP
3 984 589 Apr 2022 EP
3 986 528 Apr 2022 EP
3 649 926 May 2022 EP
3 653 113 May 2022 EP
3 654 006 May 2022 EP
3 735 280 May 2022 EP
3 897 814 May 2022 EP
3 219 339 Jun 2022 EP
3 737 310 Jul 2022 EP
3 899 994 Aug 2022 EP
3 487 550 Sep 2022 EP
3 606 575 Sep 2022 EP
3 834 876 Sep 2022 EP
3 000 492 Oct 2022 EP
3 600 477 Oct 2022 EP
3 897 768 Oct 2022 EP
3 914 310 Oct 2022 EP
3 914 311 Oct 2022 EP
3 000 493 Nov 2022 EP
3 858 422 Nov 2022 EP
3 866 876 Nov 2022 EP
3 941 546 Nov 2022 EP
2 892 583 Jan 2023 EP
3 393 542 Jan 2023 EP
3 597 231 Jan 2023 EP
3 656 292 Jan 2023 EP
3 768 345 Jan 2023 EP
2 868 332 Feb 2023 EP
3 003 420 Feb 2023 EP
3 539 585 Feb 2023 EP
3 956 010 Feb 2023 EP
3 046 594 Mar 2023 EP
3 127 563 Mar 2023 EP
3 256 186 Mar 2023 EP
3 288 609 Mar 2023 EP
3 538 173 Mar 2023 EP
3 606 576 Mar 2023 EP
3 927 390 Mar 2023 EP
3 384 940 Apr 2023 EP
3 441 616 Apr 2023 EP
3 938 005 Apr 2023 EP
3 946 511 Apr 2023 EP
3 544 649 Jun 2023 EP
3 634 528 Jun 2023 EP
3 809 959 Jul 2023 EP
3 912 673 Jul 2023 EP
2 961 984 Sep 2023 EP
3 352 808 Sep 2023 EP
3 554 576 Oct 2023 EP
3 737 435 Oct 2023 EP
3 795 208 Oct 2023 EP
4 052 754 Oct 2023 EP
4 149 606 Oct 2023 EP
3 157 596 Nov 2023 EP
3 515 525 Nov 2023 EP
3 621 669 Nov 2023 EP
3 744 362 Nov 2023 EP
3 766 428 Nov 2023 EP
3 808 390 Nov 2023 EP
4 061 470 Nov 2023 EP
3 449 958 Dec 2023 EP
3 687 596 Dec 2023 EP
3 710 076 Dec 2023 EP
3 768 340 Dec 2023 EP
3 787 707 Dec 2023 EP
3 926 194 Dec 2023 EP
3 784 305 Jan 2024 EP
3 801 675 Jan 2024 EP
3 925 659 Jan 2024 EP
4 115 919 Jan 2024 EP
3 634 526 Feb 2024 EP
3 768 342 Feb 2024 EP
3 768 347 Feb 2024 EP
3 769 799 Feb 2024 EP
3 790 606 Feb 2024 EP
3 930 780 Feb 2024 EP
3 782 695 Mar 2024 EP
3 854 448 Mar 2024 EP
4 271 461 Mar 2024 EP
4 140 532 May 2024 EP
3 693 038 Jun 2024 EP
3 768 344 Jul 2024 EP
3 970 765 Jul 2024 EP
3 854 444 Sep 2024 EP
3 534 985 Oct 2024 EP
3 793 674 Oct 2024 EP
3 893 957 Oct 2024 EP
3 914 334 Oct 2024 EP
4 034 221 Nov 2024 EP
4 087 641 Nov 2024 EP
1458525 Mar 1966 FR
2 768 056 Mar 1999 FR
0 648 739 Jan 1951 GB
2 213 541 Aug 1989 GB
2 345 387 Jul 2000 GB
2 451 161 Dec 2011 GB
2 545 062 Jun 2017 GB
2 545 750 Jun 2017 GB
59-119788 Aug 1984 JP
S61-500059 Jan 1986 JP
S62-113555 Jul 1987 JP
S64-68236 Mar 1989 JP
H02-055886 Feb 1990 JP
2-79738 Mar 1990 JP
H04-176471 Jun 1992 JP
H04-108384 Sep 1992 JP
H08-057042 Mar 1996 JP
H10-052489 Feb 1998 JP
2888609 May 1999 JP
2889384 May 1999 JP
H11-239617 Sep 1999 JP
2001-037728 Feb 2001 JP
2001-515374 Sep 2001 JP
2001-515375 Sep 2001 JP
2003-019197 Jan 2003 JP
2003-525438 Aug 2003 JP
2004-019468 Jan 2004 JP
2004-278375 Oct 2004 JP
2005-028137 Feb 2005 JP
2005-507039 Mar 2005 JP
2008-511414 Apr 2008 JP
2008-516654 May 2008 JP
2010-518907 Jun 2010 JP
2010-258181 Nov 2010 JP
2010-534080 Nov 2010 JP
2013-013216 Jan 2013 JP
2013-519497 May 2013 JP
2014-004303 Jan 2014 JP
2014-524274 Sep 2014 JP
2015-514529 May 2015 JP
2015-514531 May 2015 JP
2015-122448 Jul 2015 JP
2016-002466 Jan 2016 JP
2016-532500 Oct 2016 JP
6063151 Jan 2017 JP
6267625 Jan 2018 JP
2018-057878 Apr 2018 JP
6572056 Sep 2019 JP
2020-072985 May 2020 JP
2018-510708 Mar 2021 JP
10-2011-0098192 Sep 2011 KR
131676 Feb 2017 RO
2 051 695 Jan 1996 RU
374317 Nov 1999 TW
97202 Jan 2012 UA
WO 94009835 May 1994 WO
WO 97037696 Oct 1997 WO
WO 97039785 Oct 1997 WO
WO 99049912 Oct 1999 WO
WO 00033446 Jun 2000 WO
WO 02022200 Mar 2002 WO
WO 02041935 May 2002 WO
WO 02070039 Sep 2002 WO
WO 03075981 Sep 2003 WO
WO 03103745 Dec 2003 WO
WO 2005020848 Mar 2005 WO
WO 2005028014 Mar 2005 WO
WO 2005037345 Apr 2005 WO
WO 2007033933 Mar 2007 WO
WO 2007105842 Sep 2007 WO
WO 2008017289 Feb 2008 WO
WO 2008081783 Jul 2008 WO
WO 2009010888 Jan 2009 WO
WO 2009046789 Apr 2009 WO
WO 2009046790 Apr 2009 WO
WO 2009073037 Jun 2009 WO
WO 2010119267 Oct 2010 WO
WO 2011003043 Jan 2011 WO
WO 2011081626 Jul 2011 WO
WO 2011160858 Dec 2011 WO
WO 2012018917 Feb 2012 WO
WO 2012047540 Apr 2012 WO
WO 2012112129 Aug 2012 WO
WO 2013037380 Mar 2013 WO
WO 2013120957 Aug 2013 WO
WO 2013167432 Nov 2013 WO
WO 2013173239 Nov 2013 WO
WO 2015039605 Mar 2015 WO
WO 2015063281 May 2015 WO
WO 2015085076 Jun 2015 WO
WO 2015109028 Jul 2015 WO
WO 2015172173 Nov 2015 WO
WO 2015175718 Nov 2015 WO
WO 2016028644 Feb 2016 WO
WO 2016137743 Sep 2016 WO
WO 2016146661 Sep 2016 WO
WO 2016146663 Sep 2016 WO
WO 2017004175 Jan 2017 WO
WO 2017015764 Feb 2017 WO
WO 2017021465 Feb 2017 WO
WO 2017053988 Mar 2017 WO
WO 2017060257 Apr 2017 WO
WO 2017112695 Jun 2017 WO
WO 2017112698 Jun 2017 WO
WO 2017147291 Aug 2017 WO
WO 2017159849 Sep 2017 WO
WO 2017162619 Sep 2017 WO
WO 2017205909 Dec 2017 WO
WO 2018007120 Jan 2018 WO
WO 2018036927 Mar 2018 WO
WO 2018088939 Mar 2018 WO
WO 2018081040 May 2018 WO
WO 2018089970 May 2018 WO
WO 2018109038 Jun 2018 WO
WO 2018139508 Aug 2018 WO
WO 2018197306 Nov 2018 WO
WO 2019034670 Feb 2019 WO
WO 2019035804 Feb 2019 WO
WO 2019038343 Feb 2019 WO
WO 2019057636 Mar 2019 WO
WO 2019067233 Apr 2019 WO
WO 2019078723 Apr 2019 WO
WO 2019135767 Jul 2019 WO
WO 2019137911 Jul 2019 WO
WO 2019138350 Jul 2019 WO
WO 2019145253 Aug 2019 WO
WO 2019158996 Aug 2019 WO
WO 2019161245 Aug 2019 WO
WO 2019180104 Sep 2019 WO
WO 2019180179 Sep 2019 WO
WO 2019180181 Sep 2019 WO
WO 2018135477 Nov 2019 WO
WO 2018135478 Nov 2019 WO
WO 2019211410 Nov 2019 WO
WO 2019219868 Nov 2019 WO
WO 2019219871 Nov 2019 WO
WO 2019219872 Nov 2019 WO
WO 2019219874 Nov 2019 WO
WO 2019219876 Nov 2019 WO
WO 2019219881 Nov 2019 WO
WO 2019219882 Nov 2019 WO
WO 2019219883 Nov 2019 WO
WO 2019219884 Nov 2019 WO
WO 2019219885 Nov 2019 WO
WO 2019229210 Dec 2019 WO
WO 2019229211 Dec 2019 WO
WO 2019229214 Dec 2019 WO
WO 2019229220 Dec 2019 WO
WO 2019229221 Dec 2019 WO
WO 2019229222 Dec 2019 WO
WO 2019229223 Dec 2019 WO
WO 2019234146 Dec 2019 WO
WO 2019239259 Dec 2019 WO
WO 2019241556 Dec 2019 WO
WO 2019243582 Dec 2019 WO
WO 2019243588 Dec 2019 WO
WO 2020003110 Jan 2020 WO
WO 2020011760 Jan 2020 WO
WO 2020011795 Jan 2020 WO
WO 2020011797 Jan 2020 WO
WO 2020016438 Jan 2020 WO
WO 2020028312 Feb 2020 WO
WO 2020028537 Feb 2020 WO
WO 2020030700 Feb 2020 WO
WO 2020064911 Apr 2020 WO
WO 2020073047 Apr 2020 WO
WO 2020132211 Jun 2020 WO
WO 2020176236 Sep 2020 WO
WO 2020187797 Sep 2020 WO
WO 2020219430 Oct 2020 WO
WO 2020234785 Nov 2020 WO
WO 2020242881 Dec 2020 WO
WO 2021046275 Mar 2021 WO
WO 2021062265 Apr 2021 WO
WO 2021067691 Apr 2021 WO
WO 2021119478 Jun 2021 WO
WO 2021150777 Jul 2021 WO
WO 2021152013 Aug 2021 WO
WO 2022056542 Mar 2022 WO
WO 2022063650 Mar 2022 WO
WO 2022072944 Apr 2022 WO
WO 2022076862 Apr 2022 WO
WO 2022076948 Apr 2022 WO
WO 2022109589 May 2022 WO
WO 2022109590 May 2022 WO
WO 2022109591 May 2022 WO
WO 2022173970 Aug 2022 WO
WO 2022174249 Aug 2022 WO
WO 2023278599 Jan 2023 WO
WO 2023014742 Feb 2023 WO
WO 2023049813 Mar 2023 WO
WO 2023076869 May 2023 WO
WO 2023230157 Nov 2023 WO
WO 2024243154 Nov 2024 WO
Non-Patent Literature Citations (20)
Entry
International Search Report and Written Opinion received in PCT Application No. PCT/EP2019/066499, dated Sep. 25, 2019 in 18 pages.
International Preliminary Report on Patentability received in PCT Application No. PCT/EP2019/066499, dated Apr. 2, 2020 in 6 pages.
“ABMD—Taking a Closer Look at Impella ECP as the Pivotal Trial Gets Underway”, Guggenheim, Press Release, Mar. 29, 2022, pp. 4.
Vollkron et al., “Advanced Suction Detection for an Axial Flow Pump”, Artificial Organs, 2006, vol. 30, No. 9, pp. 665-670.
Vollkron et al., “Development of a Suction Detection System for Axial Blood Pumps”, Artificial Organs, 2004, vol. 28, No. 8, pp. 709-716.
Escudeiro et al., “Tribological behavior of uncoated and DLC-coated CoCr and Ti-alloys in contact with UHMWPE and PEEK counterbodies;” Tribology International, vol. 89, 2015, pp. 97-104.
Hinkel et al., “Pump Reliability and Efficiency Increase Maintenance Program—Utilizing High Performance Thermoplastics;” Proceedings of the 16th International Pump Users Symposium, Texas A&M University. Turbomachinery Laboratories; 1999, pp. 115-120.
Neale, Michael J., “The Tribology Handbook;” 1999, Butterworth-Heinemann, Second Edition, pp. 582.
Park et al., “A Novel Electrical Potential Sensing Method for in Vitro Stent Fracture Monitoring and Detection”, Jan. 1, 2011, vol. 21, No. 4, pp. 213-222.
Sak et al., “Influence of polyetheretherketone coatings on the Ti—13Nb—13Zr titanium alloy's bio-tribological properties and corrosion resistance;” Materials Science and Engineering: C, vol. 63, 2016, pp. 52-61.
Ai, X. (2013). Radial Bearings. In: Wang, Q.J., Chung, YW. (eds) Encyclopedia of Tribology. Springer, Boston, MA https://doi.org/10.1007/978-0-387-92897-5_334, accessed Oct. 18, 2024, pp. 4.
“Edwards SAPIEN 3 Kit—Transapical and Transaortic”, Edwards Lifesciences, Released Nov. 8, 2016, pp. 11. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://edwardsprod.blob.core.windows.net/media/De/sapien 3/doc-0045537b%20-%20certitude.pdf.
GGB by Timken Bearings FAQ; “What is a Slide Bearing ?; ” https://www.ggbearings.com/en/why-choose-ggb/faq/bearings-faq/what-slide-bearing; accessed Oct. 10, 2024, pp. 1.
Google.com, “Spider Bearing—Search Results;” https://www.google.com/search?q=spider+bearing&rlz=X1 C1GCEA_enUS1059US1059&oq=spider+beari&gs_Icrp=EgZjaHJvbWUqCQgAEEUYOxiABDIJCAAQRRg 7GIAEMgYIARBFGDkyBwgCEAAYgAQyBwgDEAAYgAQyBwgEEAAYgAQyBwgFEAAYgAQyBwgGEAAY gAQyBggHEEUYPKgCALACAA&sourceid=chrome&ie=UTF-8, accessed Oct. 18, 2024, pp. 4.
Gopinath, Divya, “A System for Impedance Characterization of Coronary Stents”, University of Strathclyde Engineering, Thesis, Aug. 2015, pp. 77.
McMaster-Carr Online Catalog, “Bearings search results;” https://www.mcmaster.com/products/bearings/; accessed Oct. 18, 2024, pp. 5.
McMaster-Carr Online Catalog, “Slide Bearings search results;” https://www.mcmaster.com/products/slide-bearings/; accessed Oct. 18, 2024, pp. 21.
RBCBearings.com, “RBC Bearings Incorporated—Products;” https://www.rbcbearings.com/Products; accessed Oct. 18, 2024, pp. 2.
SKF.com; “Products: Bearings;” https://www.skf.com/us/products/bearings; accessed Oct. 18, 2024, pp. 8.
Wikipedia, “Plain Bearing,” https://en.wikipedia.org/wiki/Plain_bearing; accessed Oct. 18, 2024, pp. 10.
Related Publications (1)
Number Date Country
20210338999 A1 Nov 2021 US