The present application claims priority under 35 U.S.C. ยง 119 to German Application No. 10 2020 131 417.5, filed on Nov. 26, 2020, the entire contents of which are hereby incorporated herein by reference.
The present disclosure relates to a stator, as well as to a brushless electric motor having such a stator and to a method of winding a stator tooth of a stator of a brushless electric motor.
A brushless electric motor as a three-phase electric machine has a stator with a number of stator teeth arranged, for example, in a star shape, each of which is enclosed by an insulator around which an electric stator winding is wound in each case. In conventional windings, the wire ends usually extend to the left and right at the outer end of the stator tooth. This has the disadvantage that the wire ends are always close to those of the neighboring tooth. The coils are associated with the coil ends of individual strands and are interconnected in a predetermined manner by common connecting conductors. In the case of a brushless electric motor as a three-phase machine, the stator has three strands and thus at least three connecting conductors to which electric current is applied in a phase-shifted manner in each case in order to generate a rotating magnetic field in which a rotor or armature, which is usually provided with permanent magnets, rotates. The connecting conductors are fed to a motor electronics unit to control the electric motor. The coils of the stator winding are interconnected in a certain way by means of the connecting conductors. The type of interconnection is determined by the winding scheme of the stator winding, whereby a star connection or a delta connection of the coils is usual as a winding scheme.
It is known to use the connecting conductors in the form of a busbar assembly. The busbar assembly includes busbars which are connected with their end sections on one side to the winding wires of the coil groups respectively and on the other side each have an external connection terminal for electrical connection to a control unit.
Example embodiments of the present disclosure provide stators each being simple to manufacture, able to be automated, and including a structure that facilitates the construction of a busbar assembly.
Example embodiments of the present disclosure also provide stators, electric motors with stators, and methods of winding stator teeth of stators of brushless electric motors.
An example embodiment of the present invention includes a stator with a rotationally symmetrical stator core including stator teeth each at least partially surrounded by an insulator including a winding chamber with a winding space, the winding space being bounded on an inner side by an inner flange and on an outer side by an outer flange. The stator includes coils wound around the insulators in the winding chamber, the windings of which include a winding wire including a first winding wire end portion on one side of the winding wire and a second winding wire end portion on the other side of the winding wire. The outer flange of the insulator includes two recesses on its inner side at the end surface, into each of which recesses one of the two winding wire end sections is inserted and fixed, the recesses extending from the end surface of the insulator with their longitudinal axes parallel to the longitudinal axis of the stator, and a first of the two recesses being located centrally of the stator tooth in the circumferential direction with respect to the longitudinal axis of the stator, and a second of the two recesses being located in a lateral end region of the outer flange in the circumferential direction.
The longitudinal axis of the stator corresponds to the axis of symmetry and central axis as well as the axis of rotation of the rotor of the electric motor in which the stator is mountable. Furthermore, with respect to the central axis or the longitudinal axis, a radial direction is referred to, which indicates the distance from the central axis, and a circumferential direction is referred to, which is distinguished tangentially to a certain radius extending in the radial direction.
Since, according to an example embodiment of the present disclosure, both end portions of the winding wire are held and positioned in the insulator, a busbar assembly can be easily contacted therewith. In addition, the winding is prevented from getting slack. In addition, the distance between the two winding wire end portions is particularly large in the circumferential direction, which has advantages for contacting.
Preferably, each stator tooth includes an elongated tooth body and a tooth root adjoining it at one radial end and a tooth tip adjoining it at another radial end. The insulator surrounds the tooth body and at least partially surrounds the tooth tip and the tooth root. The recesses extend with their longitudinal axes parallel to the longitudinal axis of the stator from the surface of the insulator to a height corresponding approximately to the top of the tooth body. The recesses are thus long enough to securely receive the winding wire end portions. It is advantageous if the recesses are approximately circular in cross-section with an opening for insertion of the wire, and the wire is clipped or pressed into the recesses to provide a secure positive attachment.
In an example embodiment of the present disclosure, a first one of the two winding wire end portions is inserted into the first recess and the tooth body is wound away from the second recess in a radial direction from the outside to the inside and back from the inside to the outside, with a second one of the two winding wire end portions inserted into the second recess.
Preferably, the lateral end of the outer flange adjacent to the second recess defines a radially inwardly projecting projection adjacent to the underside of the recess, which projection defines the winding space in the circumferential direction of the second winding wire end portion and thus secures the position of the second winding wire end portion during the winding process.
In order to improve contacting with a busbar assembly, it is advantageous if the winding wire ends of the winding wire end sections of each stator tooth protrude over the insulator at the end surface (top). The winding wire ends preferably extend in the longitudinal direction (parallel to the longitudinal axis of the stator) in the area of the recesses.
It is preferred that the distance between the two winding wire ends of a stator tooth in the circumferential direction is at least about 40% of the total width of the outer flange in the circumferential direction. In particular, the spacing is selected such that the spacing of consecutive winding wire ends of the stator in the circumferential direction is constant or substantially constant.
Furthermore, an electric motor including a rotor which is mounted rotatably about an axis of rotation is provided, the rotor being surrounded externally by a previously described stator. Preferably, the winding wire ends are electrically contacted at the end surface with a busbar assembly, the contacts of which are evenly spaced in the circumferential direction. Such a busbar assembly is particularly easy to manufacture and can be automatically placed on the stator.
In addition, a method of winding a stator tooth of a stator of a brushless electric motor is provided. The stator tooth is at least partially surrounded by an insulator which includes a winding chamber with a winding space, the winding space being bounded on an inner side by an inner flange and on the outer side by an outer flange. The outer flange of the insulator includes two recesses on its inner side, which recesses extend with their longitudinal axes parallel to the longitudinal axis of the stator from the end surface of the insulator, and a first of the two recesses is located centrally of the stator tooth in the circumferential direction with respect to a central axis of the stator, and a second of the two recesses is located in a lateral end region of the outer flange lying in the circumferential direction. The method includes inserting and fixing a first winding wire end portion of a winding wire into the first recess, guiding the winding wire away from the second recess and around the insulator to define a winding direction, wrapping of the stator tooth in radial direction from the outside to the inside and back from the inside to the outside while maintaining the winding direction, and inserting and fixing a second winding wire end portion of the winding wire opposite to the first winding wire end portion into the second recess.
The winding process is particularly simple and can be automated due to the defined positions of the winding wire end sections.
Preferably, the lateral end of the outer flange adjacent to the underside of the recess defines a projection projecting inwardly in the radial direction, past which the winding wire is guided internally in the wrapping, so that the projection defines the outward position of the second winding wire end portion to carry out the inserting and fixing, and prevents the second winding wire end portion from slipping outwardly. For further preferred features of the stator tooth, please refer to the preceding description of the stator.
The above and other elements, features, steps, characteristics and advantages of the present disclosure will become more apparent from the following detailed description of the example embodiments with reference to the attached drawings.
Example embodiments of the present disclosure are explained in more detail below with reference to the drawings. Similar or similarly acting components are designated in the figures with the same reference signs.
While example embodiments of the present disclosure have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. The scope of the present disclosure, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
102020131417.5 | Nov 2020 | DE | national |