Embodiments of the present disclosure relate to stators used in electric machines and, more particularly, systems and apparatuses comprising a stator core having air flow slots for cooling.
During operation, heat is generated by losses in the winding and the stator core of an electrical machine, such as a motor. These losses may be due to, for example, electrical resistance in the winding and often take the form of thermal energy. This thermal energy must be removed by thermal conduction out of the stator core. Air may often be used to cool the winding and the stator core. Therefore, it is now recognized that a need exists for an efficient means for increasing air flow near the windings in the stator core for cooling.
In accordance with the above, presently disclosed embodiments are directed to systems and apparatuses comprising a stator core having air flow slots for cooling. In certain embodiments, the apparatuses of the present disclosure may comprise a stator core having an inner circumference. The stator core may comprise a plurality of slots extending radially from the inner circumference. The slots may comprise winding slots and air flow slots. In certain embodiments, a winding may be located in the winding slots. The air flow slots may be unobstructed by the winding so as to allow for the flow of air there through. In certain embodiments, the systems of the present disclose may comprise a shaft, a rotor fitted on the shaft, and a stator of the present disclosure, wherein the rotor is mounted for rotation within the stator. In certain embodiments, systems and apparatuses disclosed herein may allow for efficient and improved cooling of the winding and/or the stator core.
For a more complete understanding of the present disclosure and its features and advantages, reference is made to the following description, taken in conjunction with the accompanying drawings, in which:
While embodiments of this disclosure have been depicted, such embodiments do not imply a limitation on the disclosure, and no such limitation should be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only and not exhaustive of the scope of the disclosure.
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of the actual implementation are described in this specification. It will of course be appreciated that in the development of any such embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. Furthermore, in no way should the following examples be read to limit or define the scope of the disclosure.
Turning now to the drawings,
The stator core 102 may also comprise at least one air flow slot 110. In certain embodiments, the air flow slot 110 may be fluidly connected to at least one winding slot 108. As used herein, “fluidly connected” means a fluid, such as air, may freely pass between one component of the stator 100 (e.g., the air flow slot 110) to another component of the stator 100 (e.g., the winding slot 108). In certain embodiments, the air flow slot 110 may be adjacent to at least one winding slot 108. As used herein, “adjacent” refers to the proximity of two components of the stator 100 to each other. Such components that are identified as being adjacent may be abutting or may also be near or close to each other without necessarily contacting each other. Although referred to herein as a winding slot 108 and an air flow slot 110, a single slot 106 may comprise a winding portion 108 and an air flow portion 110.
The stator 100 may further comprise a winding 112. The winding 112 may be located in the plurality of winding slots 108. In certain embodiments, the winding 112 may comprise a plurality of coils. The winding 112 may be of substantially similar size and shape as the winding slots 108. In certain embodiments, the stator 100 may further comprise a plurality of wedges 114 located in one or more winding slots 108 in the plurality of winding slots. The wedges 114 may secure the winding 112 into position within one or more winding slots 108.
In certain embodiments, the width of the portion of the air flow slot 110 nearest in proximity to the winding slot 108 (i.e., the width 116 of the air flow slot 110) may be smaller than the width of the portion of the winding slot 108 nearest in proximity to the air flow slot 110 (i.e., the width 118 of the winding slot 108). Such structure may prevent the winding 112 from entering the air flow slot 110 so that the air flow slot 110 is unobstructed by the winding 112, which in turn allows for maximum air flow through the air flow slot 110.
For instance, as shown in
Although
Among the other benefits discussed herein, the stators comprising air flow slots of the present disclosure may be manufactured such that the air flow slot is punched into the stator core laminations at the same time as the winding slot. Thus, the stators of the present disclose may be manufactured in an efficient manner without requiring the addition of a step to existing manufacturing processes known in the art.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2661434 | Kilbourne | Dec 1953 | A |
2664512 | Huntley | Dec 1953 | A |
3488532 | Anderson | Jan 1970 | A |
4152610 | Wallenstein | May 1979 | A |
4298812 | Damiron | Nov 1981 | A |
8362661 | DeBlock | Jan 2013 | B2 |
8847445 | Kowalski | Sep 2014 | B2 |
20040135441 | Groening | Jul 2004 | A1 |
20100019626 | Stout | Jan 2010 | A1 |
20140091653 | Saitou | Apr 2014 | A1 |
20150084457 | Lang et al. | Mar 2015 | A1 |
20150091398 | Bradfield | Apr 2015 | A1 |
20150372566 | Airoldi | Dec 2015 | A1 |
20160301286 | Salter et al. | Oct 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190036393 A1 | Jan 2019 | US |