There are no related applications.
This invention was not invented through federally sponsored research or development.
There is no joint research agreement.
There is no reference to a “Sequence Listing”.
It is common knowledge that large electricity generators produce a large current of electricity from dammed reservoirs. The standard method of operation is that a large reservoir of water is created by damming a river and then allowing a tunnel or pipeline, at the bottom of the dam, of water to flow past the turbines on the generators to turn the turbines of the hydroelectric power generator and create electricity. Inventor Stauffer has invented an alternative method by which to create the pipeline of water to turn the turbines of the hydroelectric power generator, which does not require a dam nor a reservoir of water behind the dam. Instead, the powerful flow of water can be created by submerged pipelines that flow from higher elevations to lower elevations.
Inventor Stauffer also perceives the need to solve the following problems:
The science of siphons and how they work is well settled. Wikipedia has the following explanation under the word “siphon”:
The word siphons is sometimes used to refer to a wide variety of devices that involve the flow of liquids through tubes but in the narrower sense it refers specifically to a tube in an inverted U shape which causes a liquid to flow uphill, above the surface of the reservoir, without pumps, powered by the fall of the liquid as it flows down the tube under the pull of gravity, and is discharged at a level lower than the surface of the reservoir. Note that while the siphon must touch the liquid in the (upper) reservoir (the surface of the liquid must be above the intake opening), it need not touch the liquid in the lower reservoir and indeed there need not be a lower reservoir—liquid can discharge into mid-air.
In practical siphons, atmospheric pressure pushes the liquid up the tube into the region of reduced pressure at the top of the tube in the same way as a barometer, and indeed the maximum height of a siphon is the same as the height of a barometer, because they operate by the same mechanism. The reduced pressure is caused by liquid falling on the exit side.
When both ends of a siphon are at atmospheric pressure, liquid flows from high to low. However, if the lower end is pressurized, liquid can flow from low to high, as in siphon coffee. While in everyday siphons, atmospheric pressure is the driving mechanism, in specialized circumstances other mechanisms can work—in the laboratory, some siphons have been demonstrated to work in a vacuum, indicating the tensile strength of the liquid is contributing to the operation of siphons at very low pressures. Most familiar siphons have water as a fluid, though mercury is often used in experiments, and other fluids such as organic liquids or even carbon dioxide can be siphoned.
Egyptian reliefs from 1500 BC depict siphons used to extract liquids from large storage jars. There is physical evidence for the use of siphons by Greek engineers in the 3rd century BC at Pergamon. Hero of Alexandria wrote extensively about siphons in the treatise Pneumatica. In the 9th century, the Banu Musa brothers invented a double-concentric siphon, which they described in their Book of Ingenious Devices. The edition edited by Hill includes an Analysis of the double-concentric siphon.
Siphons were studied further in the 17th century, in the context of suction pumps (and the recently developed vacuum pumps), particularly with an eye to understanding the maximum height of pumps (and siphons) and the apparent vacuum at the top of early barometers. This was initially explained by Galileo via the theory of horror vacui (“nature abhors a vacuum”), which dates to Aristotle, and which Galileo restated as resintenza del vacuo, but this was subsequently disproved by later workers, notably Evangellista Torricelli and Blaise Pascal.
Specifically, Pascal demonstrated that siphons work via atmospheric pressure (as Torricelli had advocated), not viahorror vacui, via the following experiment. Two beakers of mercury are placed in a large container, at different heights. The beakers are connected with a three-way tube: a regular siphon (U-shaped tube), with an additional tube extending upward from the hook in the tube: one end of the tube goes down into each beaker (as in a normal siphon), while the third end laces upward, and is open to the air. The large container is slowly filled with water (the tube remains open to the air): us water goes into the container, the weight of the water threes the mercury up into the tube (water being denser hence heavier than air)—as the water level increases, the level of mercury rises because the pressure increases—and once the mercury enters the top of the siphon, the mercury flows from the higher beaker to the lower, as in a standard siphon. As the mercury had been open to the air at all time, there was never a vacuum—it was instead the pressure of the water.
There are two main issues in the operation of a siphon:
The first issue is basic: liquid flows from the higher level to the lower level because the lower location has lower potential energy—water flows downhill. This is independent of the particular connection—liquids will also flow from higher to lower if there is a direct path (a canal), or if there is a tube that goes below the reservoirs (an “inverse” siphon), and these do not depend on siphon effect. Note that this is due to different heights (moving in the direction of gravity), not due to differences in atmospheric pressure at different heights (in fact, lower locations will, all else equal, have higher atmospheric pressure, due to a longer column of air above).
The second issue, why liquid flows up, is due primarily to atmospheric pressure (in ordinary siphons), and is the same mechanism as in suction pumps, vacuum, pumps, and barometers, and can be replicated in the simple experiment of placing a straw in water, capping the top, and pulling it up (leaving the bottom tip submerged).
A siphon works because gravity pulling down on the taller column of liquid causes reduced pressure at the top of the siphon (formally, hydrostatic pressure). This reduced pressure means gravity pulling down on the shorter column of liquid is not sufficient to keep the liquid stationary so it flows from the upper reservoir, up and over the top of the siphon.
Looking at
When the column of liquid is allowed to fall, in
An occasional misunderstanding of siphons is that they rely on the tensile strength of the liquid to pull the liquid up and over the rise. While water has been found to have a great deal of tensile strength in some experiments (such as with the z-tube), and siphons in vacuum rely on such cohesion, common siphons can easily be demonstrated to need no liquid tensile strength at all to function. Furthermore, since common siphons operate at positive pressures throughout the siphon, there is no contribution from liquid tensile strength, because the molecules are actually repelling each other in order to resist the pressure, rather than pulling on each other. To demonstrate, the longer lower leg of a common siphon can be plugged at the bottom and filled almost to the crest with liquid, leaving the top and the shorter upper leg completely dry and containing only air. When the plug is removed and the liquid in the longer lower leg is allowed to fall, the liquid in the upper reservoir will then typically sweep the air bubble down and out of the tube. The apparatus will then continue to operate as a siphon. As there is no contact between the liquid on either side of the siphon at the beginning of this experiment, there can be no cohesion between the liquid molecules to pull the liquid over the rise. Another simple demonstration that liquid tensile strength isn't needed in the siphon is to simply introduce a bubble into the siphon during operation. The bubble can be large enough to entirely disconnect the liquids in the tube before and after it, defeating any liquid tensile strength, and yet if the bubble isn't too big, the siphon will continue to operate with little change.
The uphill flow of water in a siphon doesn't violate the principle of continuity because the mass of water entering the tube and flowing upwards is equal to the mass of water flowing downwards and leaving the tube. A siphon doesn't violate the principle of conservation of energy because the loss of gravitational potential energy as liquid flows from the upper reservoir to the lower reservoir equals the work done in overcoming fluid friction as the liquid flows through the tube. Once started, a siphon requires no additional energy to keep the liquid flowing up and out of the reservoir. The siphon will draw liquid out of the reservoir until the level falls below the intake, allowing air or other surrounding gas to break the siphon, or until the outlet of the siphon equals the level of the reservoir, whichever comes first.
In addition to atmospheric pressure, the density of the liquid, and gravity, the maximum height of the crest is limited by the vapor pressure of the liquid. When the pressure within the liquid drops to below the liquids vapor pressure, tiny vapor bubbles can begin to form at the high point and the siphon effect will end. This effect depends on how efficiently the liquid can nucleate bubbles; in the absence of impurities or rough surfaces to act as easy nucleation site for bubbles, siphons can temporarily exceed their standard maximum height during the extended time it takes bubbles to nucleate. For water at standard atmospheric pressure, the maximum siphon height is approximately 10 m (32 feet); for mercury it is 76 cm (30 inches), which is the definition of standard pressure. This equals the maximum height of a suction pump, which operates by the same principle. The ratio of heights (about 13.6) equals the ratio of densities of water and mercury (at a given temperature), since the column of water (resp. mercury) is balancing with the column of air yielding atmospheric pressure, and indeed maximum height is (neglecting vapor pressure and velocity of liquid) inversely proportional to density of liquid.
The chain model is a flawed analogy to the operation of a siphon in ordinary conditions.
A simplified but misleading conceptual model of a siphon is that it is like a chain hanging over a pulley with one end of the chain piled on a higher surface than the other (see
There are a number of problems with the chain model of a siphon, and understanding these differences helps to explain the actual workings of siphons. The first is in practical siphons, the liquid is pushed through the siphon, not pulled. That is, under most practical circumstances, dissolved gases, vapor pressure, and (sometimes) lack of adhesion with tube walls, conspire to render the tensile strength within the liquid ineffective for siphoning. Thus, unlike a chain which has significant tensile strength, liquids usually have little tensile strength under typical siphon conditions, and therefore the liquid on the rising side cannot be pulled up, in the way the chain is pulled up on the rising side.
A related problem is that siphons have a maximum height (for water siphons at standard atmospheric pressure, about 10 meters), as this is the limit to how high atmospheric pressure will push the water, but the chain model has no such limit—or rather is instead limited by how strong the links are (above a certain height, the chain links could not support the weight of the hanging chain and the links would snap), corresponding to tensile strength of the liquid, which is not the cause of maximum height in siphons.
In
A further problem with the chain model of the siphon is that siphons work by a gradient of hydrostatic pressure within the siphon, not by absolute differences of weight on either side. The weight of liquid on the up side of the siphon can be greater than the liquid on the down side, yet the siphon can still function. For example, if the tube from the upper reservoir to the top Of the siphon has a much larger diameter than the section of tube from the lower reservoir to the top of the siphon, the shorter upper section of the siphon may have a much larger weight of liquid in it, yet the siphon can function normally—this is because hydrostatic pressure depends an height (reduces as one goes up a column), but does not depend on diameter of the tube.
Despite these shortcomings, in some situations siphons do function in the absence of atmospheric pressure and via tensile strength and in these situations the chain model can be instructive. Further, in other settings water transport does occur via tension, most significantly in transpirational pull in the xylem of vascular plants.
A plain tube can be used as a siphon. An external pump has to be applied to start the liquid flowing and prime the siphon. This can be a human mouth. This is sometimes done with any leak-free hose to siphon gasoline from a motor vehicle's gasoline tank to an external tank. (Siphoning gasoline by mouth often results in the accidental swallowing of gasoline, which is quite poisonous, or aspirating it into the lungs, which can cause death or lung damage). If the tube is flooded with liquid before part of the tube is raised over the intermediate high point and care is taken to keep the tube flooded while it is being raised, no pump is required. Devices sold as siphons conic with a siphon pump to start the siphon process. When applying a siphon to any application it is important that the piping be as closely sized to the requirement as possible. Using piping of too great a diameter and then throttling the flow using valves or constrictive piping appears to increase the effect of previously cited concerns over gases or vapor collecting in the crest which serve to break the vacuum. Once the vacuum is reduced the siphon effect is lost.
Reducing the size of pipe used closer to requirements appears to reduce this effect and creates a more functional siphon that does not require constant re-priming and restarting. In this respect, where the requirement is to match a flow into a container with a flow out of said container (to maintain a constant level in a pond fed by a stream, for example) it would be preferable to utilize two or three smaller separate parallel pipes that can be started as required rather than attempting to use a single large pipe and attempting to throttle it.
A forceful stream of water can be fabricated with a siphon tube, or pipeline, that will flow from the top part of the Ocean or lake or reservoir (e.g., 10 meters below the surface of a lake or ocean) to a lower level in the same lake or ocean (e.g. 60 meters below the surface of a lake or ocean) and that forceful stream of water can turn the turbines of an electricity generator and generate electricity. An existing example of a flow of water from the upper part of a dammed reservoir to a lower level is the “glory hole” of the Monticello Dam in California. That hole's suction of water from the upper level is an example of a large pipeline that drops 14,400 cubic feet of water per second down the “glory hole” pipeline. Such a forceful current of water could easily turn the turbines of a hydroelectric generator.
David W. Stauffer will make the patent claims, below, on the following invention of a submerged ocean or lake or reservoir hydroelectric plant:
In 2012, the Manual of Patent Examining Procedures (MPEP) was revised as follows:
Patent Revision of 2012; MPEP 2173.05 states:
2173.05(j) Old Combination
A CLAIM SHOULD NOT BE REJECTED ON THE GROUND OF OLD COMBINATION
With the passage of the 1952 Patent Act, the courts and the Board have taken the view that a rejection based on the principle of old combination is NO LONGER VALID. Claims should be considered proper so long as they comply with the provisions of 35 U.S.C. 112, second paragraph.
A rejection on the basis of old combination was based on the principle applied in Lincoln Engineering Co. v. Stewart-Warner Corp., 303 U.S. 545, 37 USPQ 1 (1938). The principle was that an inventor who made an improvement or contribution to but one element of a generally old combination, should not be able to obtain a patent on the entire combination including the new and improved element. A rejection required the citation of a single reference which broadly disclosed a combination of the claimed elements functionally cooperating in substantially the same manner to produce substantially the same results as that of the claimed combination. The case of In re Hall, 208 F.2d 370, 100 USPQ 46 (CCPA 1953) illustrates an application of this principle.
The court pointed out in In re*>Bernhart<, 417 F.2d 1395, 163 USPQ 611 (CCPA 1969) that the statutory language (particularly point out and distinctly claim) is the only proper basis for an old combination rejection, and in applying the rejection, that language determines what an applicant has a right and obligation to do. A majority opinion of the Board of Appeals held that Congress removed the underlying rationale of Lincoln Engineering in the 1952 Patent Act, and thereby effectively legislated that decision out of existence. Ex parte Barber, 187 USPQ 244 (Bd. App. 1974). Finally, the Court of Appeals for the Federal Circuit, in Radio Steel and Mfg. Co. v. MTD Products, Inc., 731 F.2d 840, 221 USPQ 657 (Fed. Cir. 1984), followed the *>Bernhart< case, and ruled that a claim was not invalid under Lincoln Engineering because the claim complied with the requirements of 35 U.S.C. 112, second paragraph. Accordingly, a claim should not be rejected on the ground of old combination.
At first glance, it appears that most of the improvements or new contributions of inventor Stauffer are elements of an old combination of a dam and a hydroelectric plant. Indeed, the science of siphons, pipelines, air bubbles, and hydroelectric generators is well-established. Those elements are common knowledge and are the prior art of the current invention. However, it is novel to put all those elements underneath the water in an ocean, lake, or reservoir in such a manner as to generate electricity without pollution, and the energy input that is required in other existing electricity generators—such, as a coal-fired electricity generator.
MPEP 2173.05(v) states the following:
2173.05(v) Mere Function of Machine
Process or method claims are not subject to rejection by U.S. Patent and Trademark Office examiners under 35 U.S.C. 112, second paragraph, solely on the ground that they define the inherent function of a disclosed machine or apparatus. In reTarczy-Hornoch, 397 F.2d 856, 158 USPQ 141 (CCPA 1968). The court in Tarczy-Hornoch held that a process claim, otherwise patentable, should not be rejected merely because the application of which it is part discloses apparatus which will inherently carry out the recited steps.
Inventor Stauffer claims the following as being novel aspects of those old combinations:
During the examination, the examiner might erroneously suggest that there is nothing that was not previously general knowledge. The examiner might argue that, even though no other scientist in human history has suggested that Stauffer's invention was possible, siphons, hydroelectric generators, and pipelines are knowledge and that it would be obvious to a person skilled in the art of siphons, hydroelectric generators, and pipelines to make inventor Stuffer's invention—that Stauffer's invention is a “mere function of machines” that are already known. Inventor Stauffer submits that:
The Wikipedia explanation, above, discloses the unpatented common knowledge, state of the prior art on siphons. The siphon pipeline is unpatented common knowledge, as is the generator with turbines turned by a flow of water through a tube, as in hydroelectric dams everywhere. However, inventor Stauffer claims the following as being novel aspects of those old combinations: