Embodiments of the present invention relate to blast furnaces, the stave coolers used inside them, and the hardware used to mount these stave coolers and connect and circulate coolants. More particularly, embodiments of the present invention embed a steel box strong enough to support the full weight of the stave and made gas-tight to contain lethal process gases inside the steel containment shells associated with blast furnaces.
Purpose of water-cooled components like stave coolers in blast furnaces is to establish a slow-wearing and stable blast furnace crucible. Brick linings and refractories last longer and wear more slowly when forcibly cooled.
What is needed now is a closed steel “can” that can be attached well enough to the backside of a cast copper/iron stave cooler that it will not pull off after several years of service and that will continue to contain lethal process gases inside for its entire campaign life. All the while supporting the 3,000+ kg weight of a ten foot tall stave cooler inside the blast furnace shell.
Briefly, a stave cooler for a furnace always includes at least one independent liquid coolant piping circuit cast inside. Each has a stave cooler body with a hot face and a backside and a liquid coolant piping cast inside between the hot face and the backside. A single steel collar on the backside of each stave is engineered to support the entire weight of the stave cooler. Any and every external connection of the liquid coolant piping circuits are collected and routed together through the single steel collar. These stave coolers are limited to those mountable only from the inside of steel containment shells provided with a matching penetration. The single steel collar and a cover plate accommodate and provide a gas-tight seal by a continuous welding of the single steel collar to each steel containment shell.
Stave coolers 108 are about forty inches wide at the top and about forty three inches wide at the bottom to accommodate the cone effect of the stack 102 narrowing in diameter at the top. Stave coolers 110 are about forty three inches wide top and bottom because the top and bottom diameters of Belly 104 are about the same. Stave coolers 112 are about forty three inches wide at the top and about forty inches wide at the bottom to accommodate the inverse cone effect of the Bosh narrowing in diameter at the bottom.
A single blast furnace shell 114 is typically made of two inch carbon steel plate, and provides an outermost blast furnace containment. Its walls and penetrations 115 provide the necessary support on which to hang every stave cooler 108, 110, and 112. The penetrations 115 can be cut onsite from the outside with a gas torch. If access to the inside is possible, the job of cutting penetrations 115 is much easier.
Each stave cooler can typically weigh 3,000 kg, principally consisting of very pure copper casting and associated piping and fittings. Such weight is almost entirely supported by a steel water pipe collection box and stave cooler support (hereinafter, “pipe box”) 116 that protrudes from the backside of each stave cooler 108, 110, and 112.
In the top left corner of
These two bolts 119 are long enough to be run completely through pipe box 115 and to be fastened with nuts 120 to a winch line draw plate 121. Such lifting plate 118, bolts 119, nuts 120, and winch line draw plate 121 should already be assembled when the stave cooler 108 is lifted up and dangling on the hoist line. The winch line can be slipped through penetration 116 to draw it out and into place for welding.
All such pieces are reusable, except bolts 119 which get punched in from the outside (after removing nuts 120 and draw plate 121) to fall down to the bottom on the inside. The holes left behind are then plugged up or otherwise filled from the outside. The bolt holes left behind could also be used for thermocouples and wear monitor probes with appropriate packing and sealing.
Since stave coolers 108, 110, and 112 do not all hang the same vertically inside BF 100, their respective pipe boxes 115 must be set at a different angle for each such that all the plumbing exiting from them will be level after installation in the shell 114. Therefore, three variations of pipe box 115 are needed, stave coolers 108 require a pipe box 122, stave coolers 110 require a pipe box 123, and stave coolers 112 require a pipe box 124.
A number of independent loops of MONEL-400, for example, water pipe are cast into every stave cooler 108, 110, and 112. Other embodiments may use copper-nickel instead of MONEL-400. A single group 126 of water inlets and outlets connected internally are routed horizontally out through each respective pipe box 122, 122, and 124. MONEL-400 and copper-nickel water pipe are used instead of ordinary copper tubing in some embodiments because such bonds better to the copper casting being poured and the hot liquid copper will not “burn through” during casting.
A temporary lifting bolt 128 can be fitted into each stave cooler 108, 110, and 112 during installation inside of and on shell 114, e.g., to lift it so lifting plate 118 and bolts 119 can be installed and attached to the hoist line. After it's no longer needed, it can be removed and the inside threaded area plugged. A set of four slip bolts 130 is installed for each stave cooler 108, 110, and 112 from outside shell 114. The four slip bolts 130 are not needed so much to support the weight of each stave cooler 108, 110, and 112 inside shell 114, but are used to hold the stave cooler up against the blast furnace shell. The four slip bolts 130 need to be snug, but should allow for some slippage as will be needed when the stave cooler naturally expands and contracts. Special washers inside or outside, or both, may help this functioning. Once bolts 130 are installed from outside shell 114, a gas-tight cup 132 is welded over the head of each on the outside of shell 114. Lethal carbon monoxide (CO) process gases can leak past otherwise.
Bare water pipe inlet and outlet ends 206 are exposed. In this embodiment, these are sleeved in gas-tight thimbles 208 and enclosed in a pipe box 210. It is possible to not use sleeves at all.
Many other obvious ways exist to bring the water pipe inlet and outlet ends 206 out of pipe box 210 and fit them with pipe couplers 214. The point is to keep process gases contained inside while enabling the coolant plumbing connections outside. So the pipe ends themselves or the couplers can be welded to the thimble cover plate 212 when there is no sleeving. The piping includes 2″ diameter NPT components in this embodiment.
A flexible, thermally conductive material suitable for elevated temperature service may be stuffed inside pipe box 210 before it is sealed up.
Inside, not shown, this particular embodiment has four independent loops of MONEL-400 2″ Schedule-40 pipe that are cast inside copper stave casting body panel 200, together they constitute a pipe circuit. The only parts of that visible in
It is important to gather the inlet and outlet pipe ends 126 closely together into one group per stave. Their common exit through the blast furnace shell 114 can then be “protected” by the one pipe box (120,122,124) from venting dangerous lethal process gases and from the mechanical and thermal stresses associated with having to support the 3,000+ kg weight of an installed stave cooler. Here, in this embodiment, the pipe boxes are made of ASTM A-36 carbon steel, but structural steel, or boiler plate steel are also possible.
Embodiments of the present invention do not cast the pipe boxes into the copper stave casting body panel 200. We ourselves tried doing that with unsatisfactory results. Carbon steel components do not bond well to the copper using conventional methods and can pull out and apart in service. For example, see the “manifold 106” in U.S. Pat. No. 10,222,124, issued Mar. 5, 2019. Steel components do not seal well in gas tight connections to the copper using conventional methods and lethal process gases can leak through the copper made porous at the interface while in service. The molten liquid copper during the casting pour cannot be pushed to well-up high enough inside.
A sufficiently strong “manifold” must have the copper casting well up high inside to add the strength needed to support the full weight of the stave cooler.
What makes pushing up the molten copper to well up high inside the “manifold” a bad idea is a so-called shrink-back. The extra thick copper welling up creates hot spots that shrink with cooling so much that the copper will pull off the steel inside.
Supports made of steel can be mechanically locked in by exotic dissimilar metal welding, and/or by entrained liquid copper that passed through and froze inside openings preformed in the steel footer rings.
As represented in
Extraordinary measures are required to be sure the steel footing and foundation frame 202 stays strong and does not ever separate from the copper stave casting body panel 200. Exotic welding methods must be applied to weld steel to copper. Currently, this can only be done by specially equipped and advanced stave foundries. No practical field method or equipment is available.
Mechanical anchoring methods are used herein to lock the carbon steel footing and foundation frame 202 in place within the copper stave casting body panel 200. Openings 204 are placed in the bottom half of the footing and foundation frame 202 such that fingers of molten copper can flow in and freeze during casting to lock the parts together. No bonding of metals is relied upon by this alternative technology, and so the quality of any bonding achieved need not be all that good. Advantageously, the pipe boxes are excluded from the casting processes, and so are not underfoot.
During construction of BF 100, and the installation of any of stave coolers 108, 110, and 112, the job of hanging each inside in its place is highly simplified by the use of only one pipe box 122, 123, 124. Conventional staves often had four inlets widely separated from their corresponding four outlets wherein each was shielded by its own “protection pipe”. Work crews find it much easier while maneuvering the heavy stave cooler to thread through the single pipe box in the blast furnace shell 114.
The stave coolers are lifted up inside blast furnace shell 114 and maneuvered to insert its corresponding pipe box 122, 123, 124 through an appropriate matching penetration. An adapter ring 216 is slipped over and a in-field weld 302 applied. Then a, in-field weld 303. A thimbled cover plate 212 with thimble sleeves is slipped over inlet/outlet pipe ends and welded at the factory with a weld 304 and a weld 305. All welds 301-305 must be continuous and gas-tight in order to contain lethal process gases inside pipe box 122, 123, 124. Fortunately, all welds are simplified by being carbon steel to carbon steel, and so those applied in the field can succeed with conventional equipment.
Returning to
The steel footing and foundation frame 202, and a matching pipe box, could be in the form of a ring and a cylinder in order to facilitate friction welding by spinning carbon steel footing and foundation frame 202 under pressure into the casting 200.
The point is to show openings 204 for copper finger entraining exist all around the bottom lower perimeter of footing and foundation frame 202.
Once each stave cooler 108, 110, and 112 is raised and hung inside shell 114, and its pipe box 122, 123, 124 is pushed all the way through, an adapter plate 210 is slipped over outside and welded on all around for a gas-tight seal. The inside opening dimensions of adapter plate 210 can be tightly controlled economically. More so than trying to get the pipe box penetrations in shell 114 to locate and fit concisely. The adapter plate 210 is a crutch to make installation easier, the pipe boxes themselves can, of course, be directly welded to the pipe box penetrations in shell 114, given the gaps all around are not too wide.
Since each stave cooler 108, 110, and 112 here is made from cast copper, its hot-face will wear rapidly in service if not provided with a protection barrier, layer or liner. Ordinarily this will be common refractory brick walls erected as the inner liners of BF 100 and cooled by stave coolers 108, 110, and 112. Bricks can require some sort of horizontal ribs and grooves with which the bricks can be inserted and retained for a twenty year campaign life.
Stave coolers made of copper need to have a wear resistant barrier installed on their hotfaces. For example, horizontal rows of refractory bricks made of silicon carbide or graphite can be stacked in front of or inserted by various means into an appropriately contoured hotface. The key benefits of StarCeram® S Sintered Silicon Carbide (SSiC) are advertised commercially to include excellent chemical resistance, very high strength, corrosion resistance up to very high application temperatures, excellent mechanical high temperature properties, very good thermal shock resistance, low thermal expansion, very high thermal conductivity, high wear resistance, very high hardness, semiconductor properties. All good things for a stave cooler in a blast furnace.
Simple “bricks” or blocks of cast iron are also expected to function well.
An alternative to bricks is any refractory or shotcrete, which is similar to gunite and is a refractory that is blown onto the hotfaces of stave coolers through high pressure concrete hoses and nozzles. Minerals Technologies Inc. (MiNTEQ) of Bethlehem, Pa., is a commercial producer of shotcrete for blast furnaces. Its rapid installation rates bring down costs and total refractory installation time, they are low-rebound and reduce total consumption, and they are superior refractoriness that increase blast furnace life, and improve fuel efficiency.
A variety of SUPERSHOT™ products are sold worldwide for Blast furnace operations. SUPERSHOT™ AR material suits mid-stack to upper-stack re-linings and repairs. It has excellent abrasion resistance at lower temperatures. Sixty percent alumina silica, low cement bonded shotcrete. Such does not require high-firing temperatures to develop its physical properties and abrasion resistance. SUPERSHOT™ SC15 is 72% alumina silica, 15% silicon carbine with ultra-low cement binder. It is high density, high thermal conductivity, low porosity shotcrete capable of rapid dry out. SUPERSHOT™ BL shotcrete material is suited for the thermal protection of Belly Linings during blow-in. The same shotcrete equipment can be used, with no change over to gunning material and batch guns. Rapid installation rates of over eight tons/hour are possible.
Alternatively, steel anchor frame 514 is welded in with solid state welding technology to achieve very strong, gas-tight bonds with the copper casting. Solid-state welding is defined as a joining process without any liquid or vapor phase, with the use of pressure, and with or without increased temperature. Solid-state welding generally refers to a coalescence that results from the intense application of pressure alone or a combination of heat and pressure. When heat is used, the temperature in the process is kept below the melting point of the metals being welded. No filler metal is used. Representative welding processes include: diffusion welding where two surfaces are held together under pressure at an elevated temperature and the parts coalesce by solid-state diffusion; friction welding where coalescence is achieved by the heat of friction between two surfaces; and, ultrasonic welding where moderate pressure is applied between two parts and an oscillating motion at ultrasonic frequencies is used in a direction parallel to the contacting surfaces. The combination of normal and vibratory forces results in shear stresses intense enough to push aside surface films and produce atomic bonding of the two surfaces.
The life and performance of bricks 600 will be severely curtailed if they do not stay in intimate contact with stave cooler hotface 606 to receive cooling. Gaps, cracks, and spalling can cause excessive heating. It helps if bricks 600 form a tight enough complete horizontal ring row around the inside of BF 100 that they will swell and expand side-to-side enough to press the feet 618 harder into channels 602. A proper selection of materials for brick 600 is therefore required to get an appropriate amount of expansion without crushing or cracking.
The rotate-in-to-lock refractory brick 700 will not function correctly if not used a correct relative orientation to earth's gravity.
Bricks 700 must be installed in complete horizontal ring rows around the interior of BF 100 before proceeding to a next upper row. Any brick installed in a row above would prevent the top 720 from rotating up because it would contact and be stopped by the bottom 724 of the brick above.
The refractory gravity brick 800 will function best if used in a relative orientation to earth's gravity that helps it constantly press its nose 812 deeper into the matching seat 810 as it swells, ages, deteriorates, and shifts over extended periods of operational time.
Bricks 800 are preferred to be installed in complete horizontal ring rows around the interior of BF 100 before proceeding to a next upper row. Any brick 800 installed adjacent to any other brick 800 will not prevent the removal of a damaged brick nor the insertion of a new brick thanks to the favorable geometries.
“Bricks” made of cast iron could be shaped like bricks 700 and 800 and be usefully applied.
The weight of every brick 700 or 800 is pretty much carried by their respective stave coolers 702 and 802 because they each fully rest on the horizontal rows of ledges 706 and upturned ribs 806. This means that wear that thins the bricks from their faces can be allowed to continue years longer because the bricks don't have to support any brickwork above. Sudden collapse is not a problem.
Cast copper furnace-block coolers with fused-in copper-nickel (CuNi) pipe embodiments of the present invention for pyrometallurgical furnaces improve over prior furnace-block coolers. The improvements herein include a widespread, continuous metallurgical bonding and fusing of a concentric diffusion interface between the CuNi alloy coolant pipes and the surrounding Cu casting. The fusion bonding is never more than only slightly incomplete over its entire surface area. As a result, the thermal conductivity through the concentric diffusion interface is very high and about equal to the bulk CuNi material. Operational thermal stresses at the concentric diffusion interface are kept in-bounds of shear force limits by including a thick, intrinsic cast copper thermal buffer solidified between the hot face and the front-facing CuNi alloy coolant pipes.
Such thermal buffers are typically about 25-32 millimeters thick if the hot face is patterned, and about 38-mm if not. Such thicknesses do not introduce so much bulk material thermal resistance as to allow the hot face to rise above 450° C. during normal operation. Nor can the thermal buffer be much thinner than this as that would reduce its heat spreading effects and cause asymmetric heating inside the CuNi alloy coolant pipes and consequential coolant boiling.
Such thermal buffer's geometric conditions are verified as appropriate, before foundry casting, by Computational Fluid Dynamics and Finite Element Analysis (CFD/FEA) tools, and a 3D-CAD model of the furnace-block cooler.
Casting conditions are overall to result in all but slight and unclustered portions (<15% of total) of the outside surface area of the CuNi alloy coolant pipes metallurgically fusing at their concentric diffusion interface with the solidified casting. Years of experience and testing has led the present inventor to accept that “slight and unclustered portions (<15% of total)” can be dismissed in quality control without much ill effect in the service life of the furnace-block coolers.
Such years of experience and testing has also led the present inventor to understand as a rule-of-thumb that when the hot face rises above 450° C. during operation, unacceptable levels of thermal shear forces will develop at the concentric diffusion interface. And if oxygen is present, the hot face will oxidize and flake. Furnace operators are universally provided with temperature measurements and the means to dial back the heat.
In prior work, the Present Inventor taught that “ASTM Schedule-40 pipe, or thinner, can therefore be used for the UNS-type C71500 copper-nickel alloy pipe coils.” This turned out not to be true in practice. The CuNi alloy coolant pipe used herein cannot have a wall thickness thinner than ASTM Schedule-40 because burn-through of the walls during casting is all too easy without cooling. And cooling is strictly prohibited herein because such seriously interferes with crystal grain formation across the pipe-to-casting concentric diffusion interface 106. In order words, the pipe will not form proper metallurgical bonds with the casting.
The thermal buffer 904 distributes and moderates an incoming heat flow from a hot face 910 and spreads the heat flow across a span of multiple CuNi alloy coolant pipes 902. The intervening thermal resistance must not be so great as to allow any part of the hot face to exceed 450° C., as determined in computer modelling. Nor should the thermal buffer 904 be fabricated so lightly as to allow asymmetric heating on an inside 912 of the CuNi alloy coolant pipes 902 and consequential film boiling of a coolant 914. After years of design and implementation, the average thermal buffer is typically about 25-32 millimeters thick if the hot face is patterned, and about 38-mm if not. Such patterning usually comprises ridges, grooves, pocket, etc., to retain bricks and other refractory.
CFD/FEA computer modelling is used to verify that the inside wall temperature of the CuNi alloy coolant pipes 102 in operation will not exceed (1) a temperature expected to cause film boiling, or (2) chemical degradation of glycol or other cooling media.
Alternative embodiments of the present invention include weld overlays or calorization of the hot face with aluminum as a final step in manufacturing to protect the furnace-block coolers from wear, abrasion, corrosion, and burn through.
The operational temperature limits are verifiable and predictable as being inbounds from a 3D-CAD model of the furnace-block cooler before their casting in a foundry, e.g., using Computational Fluid Dynamics (CFD) and/or Finite Element Analysis (FEA) tools. For example, it can be predicted, given a starting thickness dimension for the thermal buffer, that the hot face will not operate above 450° C. and that there is enough extra material provided to account for predictable wear and corrosion. Casting conditions are herein to result in all but slight, unclustered portions (<15% of total) of the outside surface area and concentric diffusion interface 106 of the CuNi alloy coolant pipes metallurgically fusing and thus able to provide a good thermally conductive bridge in the concentric diffusion interface.
The surrounding pipe-to-casting concentric diffusion interface 906 is a metal alloy diffusion that bridges a thickness of about 100-micrometers between an inner base metal in the CuNi material unaffected by heat, and into the solidified casting. A heat affected zone (HAZ) within concentric diffusion interface 906 comprises a tempered, a partially transformed, a recrystallized, and a grain-growth nucleation zone. Outside from these is a solid-liquid boundary into a fused zone (FZ) of solidified pure copper.
If the CuNi material in the CuNi alloy coolant pipes 902 that is unaffected by heat is an alloy 67.5% Cu and 32.5% Ni, the surrounding concentric diffusion interface 106 will continuously transition through alloys (e.g., 79.4% Cu and 20.6% Ni, 90.8% Cu and 9.2% Ni, 97% Cu and 3% Ni, 99% Cu and 1% Ni), and finally into the nearly 100% Cu and 0% Ni of the casting 904.
The nucleation points that occur during solidification are fixed in the outer edges of the sand mold and in the surface areas of the CuNi alloy coolant pipes and fittings. The grains of copper crystal constituting the fusion grow into the bulk of the copper casting as it solidifies. The copper crystal grains at these nucleation points will be the smallest in size because the copper is cooling first and then more rapidly here. In general, copper crystal grain sizes throughout the bulk will be random sized and generally exceed six millimeters after complete solidification.
CuNi-pipe-cast-in-copper furnace-block coolers require tight controls to eliminate casting defects. Fusion bonds between the outside surface area of the CuNi alloy coolant pipes that is too shallow, too deep, or not sufficiently widespread are defects. All but slight, unclustered portions (<15% of total) of the total outside surface area of the CuNi alloy coolant pipes with the Cu casting is necessary in high heat flux regime applications that exceed 25 kW/m2 on the hot faces.
Here,
The various temperatures, geometries, and materials employed by the foundry are expertly manipulated such that on mutual contact, only a shallow surface skin part of the CuNi alloy coolant pipes raises above melting. And then only briefly.
Initially, before solidification, the Cu casting 1102 must be substantially hotter at point-in-time 1110 than the melting point of copper. Similarly, at the start, the CuNi alloy coolant pipe 1104 must be solid and therefore substantially below the melting point of copper at point-in-time 1112. The two eventually come into contact with one another at point-in-time 1116 (for the Cu copper 1102) and point-in-time 1118 (for the CuNi alloy coolant pipe 1104).
The contact of the hot liquid Cu casting 1102 with both the CuNi alloy coolant pipe 1104 and the walls of the mold take heat away. The outside skin of the CuNi alloy coolant pipe 1104 rises rapidly with the taken heat to just above melting at point-in-time 1120.
CuNi alloy coolant pipes are very difficult to weld together in the field. And so some embodiments of the furnace-block coolers herein require stainless steel couplers at the ends of the pipe inlets and outlets that are often partially embedded into the casting. The difficult, specialty welds of CuNi to stainless steel are exclusively done in the factory as part of the assembling of the ASTM Schedule-40 CuNi 70/30 standard 1.0″, 1.25″, 1.50″, 1.75″, and 2.0″ pipes and butt-fuse fittings before casting. Only factories have the right environmental conditions, specialty equipment, and trained personnel to make good welds.
The CuNi alloy coolant pipes and fittings are preferably butt-welded together using TIG/GTAW. The CuNi alloy coolant pipes and fittings with 70/30 alloy is the most common material, but 90/10 alloy is possible.
Butt-welds are required at the fittings which often become necessary for complex and lengthy pipe coils. The butt-fused ends are beveled 37.5°±2.5° to penetration, especially in the larger diameters of 1.0″, 1.25″, 1.50″, 1.75″, and 2.0″ inches.
One diameter (1D) radius bends are normally implemented with butt-weld fittings, and 1.5D or larger bends can be seamlessly cold formed or hot formed without much difficulty.
For a 1.0 inch ASTM Schedule-40 pipe, with an OD of 1.315 inches, the center line bend radius is 1.0 inch for short radius and 1.5 inch for long radius.
The most commonly used pipe sizes are 1.0-2.0 inch, all ASTM Schedule-40. It is uncommon to go outside this, e.g., 0.75 inch and 2.5 inch can be used, but less often.
Seamless pipes/fittings are always preferred.
ASTM Schedule-80 is preferred sometimes for the external inlets and outlets, for increased coupler strength. Cast-in thermowells commonly use ASTM Schedule-80. CuNi is also preferred for embedded thermowells in order to achieve metallurgical bonding and accurate temperature readings. And so, the accuracy of temperature readings obtained by thermocouples is improved by embedding and metallurgical bonding a thermowell or tubing of copper-nickel alloy in a method step of solidifying.
In general, stave cooler embodiments of the present invention include stave cooler bodies cast from a pour of hot liquid copper. A liquid coolant piping is a thin-wall alloy of copper such as MONEL, copper-nickel, and nickel-copper. Such is frozen in place in one or more independent circuits within the copper stave cooler body as a result of a single solidification of the stave cooler body in a foundry casting. The sought after benefit is a long-term thermal conductivity between the hot face and a circulating coolant that is stabilized and survives through repeated thermal cycles of the stave cooler.
The stave cooler bodies are cast from essentially pure copper and the liquid coolant piping is a thin-wall copper-nickel alloy. A welding occurs as a metallurgical bond along the liquid coolant piping entirety to and within the copper stave cooler body as a result of the heat pulse received from a single solidification of the stave cooler body in casting. Such metallurgical bonds thereby stabilize the long-term thermal conductivity between the hot face and a circulating coolant. Such survives through repeated thermal cycles of the stave cooler.
No doubt variations and modifications to the above will occur to artisans that have read and understood our disclosures here. Such variations and modifications are intended to be included in the scope of the Claims that follow.
Number | Date | Country | |
---|---|---|---|
Parent | 16290922 | Mar 2019 | US |
Child | 16926649 | US | |
Parent | 16712912 | Dec 2019 | US |
Child | 16290922 | US |