Stay cable for structures

Information

  • Patent Grant
  • 11319723
  • Patent Number
    11,319,723
  • Date Filed
    Friday, October 18, 2019
    5 years ago
  • Date Issued
    Tuesday, May 3, 2022
    2 years ago
Abstract
A mast is erected to support a load. At least one stay cable supports the mast. The stay cable is oriented to the mast within a radial distance of the blade from the mast. The stay cable is stressed to support the mast while the wind drives the blade without collision of the stay cable.
Description
COPYRIGHT NOTIFICATION

A portion of the disclosure of this patent document and its attachments contain material which is subject to copyright protection. The copyright owner has no objection to the reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office patent files or records, but otherwise reserves all copyrights whatsoever.


BACKGROUND

Exemplary embodiments generally relate to development of renewable energy resources and, in particular, to the development of renewable wind energy. Exemplary embodiments generally relate to structures that support wind turbines or antennas, to dynamo plants, and to fluid reaction surfaces (i.e., impellers) and, more particularly, to structures with bracing or guys.


High oil prices have renewed our interest in wind energy. Wind turbines are being planned and built to convert wind energy into electricity. Some wind turbines are built atop masts, while other wind turbines are supported by towers. A mast is a vertical structure supported by one or more stay cables (or “guys”). The stay cables provide stability to the mast to reduce oscillations from wind and seismic events. A tower, on the other hand, is a larger, stronger, and more expensive self-supporting structure designed to withstand the wind and seismic events. While the mast is less expensive than the self-supporting tower, additional land is needed for the stay cables. Moreover, the mast must withstand a sizable portion of the wind and seismic events. Often, then, design tradeoffs are required when stay cables are used.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The features, aspects, and advantages of the exemplary embodiments are better understood when the following Detailed Description is read with reference to the accompanying drawings, wherein:



FIG. 1 is a schematic illustrating an operating environment, according to exemplary embodiments;



FIGS. 2 and 3 are schematics illustrating a wind energy installation, according to exemplary embodiments;



FIGS. 4A, 4B, 5A, and 5B are schematics illustrating free body diagrams for monopole designs, according to exemplary embodiments;



FIG. 6 is another schematic illustrating the wind energy installation, according to exemplary embodiments;



FIG. 7 is a detailed schematic illustrating a maximum orientation of a stay cable, according to exemplary embodiments;



FIG. 8 is another more detailed schematic illustrating the wind energy installation, according to exemplary embodiments;



FIG. 9 is a schematic illustrating an antenna installation, according to exemplary embodiments; and



FIG. 10 is a schematic illustrating tensioning of the stay cable, according to exemplary embodiments.





DETAILED DESCRIPTION

The exemplary embodiments will now be described more fully hereinafter with reference to the accompanying drawings. The exemplary embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These embodiments are provided so that this disclosure will be thorough and complete and will fully convey the exemplary embodiments to those of ordinary skill in the art. Moreover, all statements herein reciting embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future (i.e., any elements developed that perform the same function, regardless of structure).


Thus, for example, it will be appreciated by those of ordinary skill in the art that the diagrams, schematics, illustrations, and the like represent conceptual views or processes illustrating the exemplary embodiments. Those of ordinary skill in the art further understand that the exemplary cables described herein are for illustrative purposes and, thus, are not intended to be limited to any particular manufacturing process and/or manufacturer.


As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.


Exemplary embodiments conserve energy and further develop renewable energy sources. Exemplary embodiments describe a superior stay cable for vertical and non-vertical structures, such as monopoles, wind turbines, antennas, and buildings. The stay cable of this invention is constructed using parallel wires, whereas conventional stay cables are wound strands of wires. The parallel wire construction has superior strength and stiffness when compared to conventional strand cable. Moreover, exemplary embodiments have a much smaller diameter and weigh less than conventional strand cable. Exemplary embodiments thus describe a superior stay cable that reduces the costs of monopoles, wind turbines, antennas, and buildings.


Because the stay cable is stronger than conventional designs, the structures may be reduced in size and/or weight. Wind turbines, antennas, and any other generally vertical structure may thus be cheaper to manufacture, cheaper to transport, and cheaper to build. Masts that support wind turbines, for example, may be smaller, lighter, and cheaper, thus improving a cost-benefit analysis of alternative wind energy. Less material and labor are required to manufacture and erect wind turbines. Smaller and lighter designs also reduce transportation costs. Exemplary embodiments thus reduce the costs of alternative wind energy and reduce reliance on fossil fuel.



FIG. 1 is a schematic illustrating an operating environment, according to exemplary embodiments. FIG. 1 illustrates a generally vertical structure 20 supported by at least one stay cable 22. The vertical structure 20 is erected to support any apparatus 24, such as a wind turbine, drilling rig, antenna, and/or utility cable (as later paragraphs will explain). The stay cable 22 may be tensioned to add stability to the vertical structure 20. Because stay cables (or “guys”) have long been used to stabilize structures, this disclosure will not provide a detailed explanation of known concepts. Here, though, the stay cable 22 has superior strength and stiffness when compared to conventional stay cables (as later paragraphs will explain), so the stay cable 22 may be orientated at a much smaller angle θ (illustrated as reference numeral 26) than conventional designs. Indeed, the improved stay cable 22 may be oriented at ten degrees (10°) or even less, whereas conventional stay cable designs are traditionally oriented at forty-five degrees (45°) or more.



FIGS. 2 and 3 are schematics illustrating a wind energy installation 30, according to exemplary embodiments. Here the vertical structure 20 is illustrated as a monopole mast 32 supporting a nacelle 34. The nacelle 34 may include an alternator/generator 36 coupled to a rotor assembly 38. Wind drives one or more blades 40 of the rotor assembly 38. The rotor assembly 38 turns or drives the alternator/generator 36. The alternator/generator 36 converts mechanical energy of the rotor assembly 38 into electrical energy (either alternating current or direct current, as is known). The wind energy installation 30 is generally well-known to those of ordinary skill in the art, so this disclosure will not provide a detailed explanation of the wind energy installation 30.


The mast 32 is supported by the at least one stay cable 22. Each stay cable has an upper end 50 attached to an upper region 52 of the mast 32. Each stay cable 22 also has a lower, opposite end 54 that is anchored to some point, such as earth 56. The stay cable 22 is tensioned and stressed to stabilize the mast 32. The stay cable 22 may extend an entire length L (illustrated as reference numeral 60) from the upper end 50 to the lower, opposite end 54. Dampers or other shock-absorbing devices may also be used, as is known.


The stay cable 22, though, does not collide with the rotating blade 40. Because the stay cable 22 has superior strength to similarly-sized conventional designs, the stay cable 22 may be orientated inside the spinning blade 40. Conventional stay cables are traditionally oriented at 45 degrees, so conventional stay cables interfere with a tip 62 of the spinning blade 40. The superior stay cable 22 of this invention, though, may be tensioned and still oriented at the much smaller angle θ (illustrated as reference numeral 26) of ten degrees (10°) or even less. That is, as wind spins the blades 40 of the rotor assembly 38, the stay cables 22 will not intersect a rotor disk 64 (best illustrated in FIG. 3).



FIGS. 4 and 5 are schematics illustrating free body diagrams for monopole designs, according to exemplary embodiments. FIG. 4 illustrates calculations for a height H1 of 270 feet, while FIG. 5 illustrates calculations for a height H2 of 450 feet. These calculations show that the stay cables 22 greatly add stability to the monopole mast 32, even at small angles. These calculations also show that the monopole 32 may be increased in height by using the stronger stay cables 22. Indeed, the below calculations show that the monopole mast 32 may be increased in height (from 270 feet to 450 feet), while maintaining the stay cables 22 at less than or equal to seven degrees (7°).



FIG. 4A illustrates a baseline calculation. The mast 32 is assumed to be 270 feet in height, ten feet (10′) in diameter, and constructed of steel tube having a one inch (1″) wall thickness. The mast 32 is subjected to a conservative horizontal wind load FW of 50,000 pounds force (or 50 kips) and a vertical load FV of 130,000 pounds force (or 130 kips). FIG. 4A illustrates the mast 32 with no supporting stay cables. Without stay cables, the maximum moment at the base is 13,830 kilopounds force feet (or 138.3×103 feet-pounds force) and a maximum deflection at the tip of the mast 32 is 30.4 inches.



FIG. 4B illustrates the braced monopole design. The mast 32 has the same dimensions (e.g., 270 ft. in height, 10 ft. in diameter, and 1″ wall thickness) and loading (50 kips horizontal load and 130 kips vertical load). Here, though, the stay cables 22 brace the mast at ⅓ heights (that is, stay cables 22 are attached at 90 feet, 180 feet, and 270 feet). Each stay cable 22 is constructed of steel using parallel wires with six square inches (6 in2) of total metallic area. Each stay cable 22 has a 230 ksi yield stress and a 270 ksi ultimate load capacity. If a top stay cable 22 is oriented at θ=7°, the maximum moment at the base is 2,894 kilopounds force feet, and the maximum deflection at the tip of the mast 32 is reduced to 6.7 inches. The stresses in the stay cables 22 are 172 ksi for the upper stay, 149 ksi for a middle stay, and 81 ksi for a lower stay.



FIG. 4B thus illustrates a substantial improvement. When FIG. 4B is compared to FIG. 4A, one sees that the stay cables 22 substantially reduce deflection at the tip of the mast 32 (6.7 inches verses 30.4 inches). Moreover, the stay cables 22 are oriented at seven degrees (7°), which is much less than is used with conventional designs. Conventional stay cables are traditionally oriented at about forty five degrees (45°) or more from the mast. Because the stay cables of this invention have superior strength, the stay cables may be oriented at the much smaller angle θ of ten degrees (10°) or even less. Even at such small angles, though, the stresses in the stay cables 22 are substantially less than the yield stress, indicating that even smaller angles, smaller diameter cables, and/or higher loads may be used.


Another dramatic comparison is evident. A conventional mast for a conventional wind turbine is fifteen feet (15 ft.) in diameter. Such a large mast is difficult and costly to transport, often requiring specialized rail cars and/or barges. The above calculations, though, were based on a mast diameter of only ten feet (10 ft.). Exemplary embodiments, then, permit the mast 32 to be substantially reduced in diameter, while still supporting equivalent loadings. Moreover, the smaller mast 32 is more easily transported and may be hauled over-the-road by conventional tractor trailers. The smaller mast 32 also weighs substantially less than conventional designs, so material, installation, and erection costs are reduced.


The calculations illustrated by FIGS. 4A and 4B are simple examples. The above calculations were based on a mast of ten feet (10′) in diameter and constructed of steel tube having a one inch (1″) wall thickness. The diameter, wall thickness, and the number of stay cables 22 may vary according to the load requirements. Indeed, the mast 32 may be tapered, and the concentric height locations of the stay cables 22 may be varied along the mast 32 to provide a more efficient design per the individual desired load required results. The ten feet diameter with one inch (1″) wall thickness thus only illustrates the dramatic reduction in size and costs that are possible using the stronger stay cables 22.


Exemplary embodiments also reduce other loads. For wind towers, the acute angle θ (illustrated as reference numeral 26) of the stay cables 22 may also result in a substantial downward vertical load on connections between sections of the mast or tower. This vertical load, though, reduces the upward vertical load on the bolted connections from wind and turbine induced torque, which in turn reduces the tensile and fatigue load on the bolts. The loads used in the above calculations are the wind shear for the turbine and wind vanes at cut-off wind speed of a maximum 60 miles per hour. These loads reflects data obtained for deflection at the turbine during power production. For simplicity, full gravity and maximum code-induced wind loads are not included, but the design of the guyed tower will be more than adequate. The turbines are basically reducing their wind vane connection loads starting at about 35 miles per hour until about 60 miles per hour, at which point the turbines may be totally disconnected for any power production.



FIG. 5 illustrates another design comparison. Here the mast height H2 is 450 feet in height, but still 10 feet in diameter with a 1-inch wall thickness. The mast 32 is again subjected to the horizontal load FW of 50,000 pounds force (or 50 kips) and the vertical load FV of 130,000 pounds force (or 130 kips). FIG. 5A illustrates no supporting stay cables, while FIG. 5B illustrates bracing at ⅓ heights (that is, stay cables 22 are attached at 150 feet, 300 feet, and 450 feet). Without the stay cables, FIG. 5A illustrates the maximum moment at the base is 24,106 kilopounds force feet with a maximum deflection of 148.3 inches at the tip. In FIG. 5B, though, the mast 32 is again braced by the stay cables 22, with the top stay cable 22 oriented at seven degrees (7°). The maximum moment at the base is 3,400 kilopounds force feet, and the maximum deflection at the tip of the mast is reduced to 14.9 inches. The stresses in the stay cables are 235 ksi for the upper stay, 149 ksi for a middle stay, and 81 ksi for a lower stay.


Again, then, the stay cables 22 provide substantial improvements. Even when the mast 32 is increased in height to 450 feet, the orientation of seven degrees (7°) still maintains deflection to less than fifteen inches. Even at this higher height, the stresses in the stay cables 22 are still within acceptable safety limits. The diameter of the mast 32 is still substantially smaller than conventional designs (10 feet verses 15 feet), so the mast 32 weighs less, is easier to transport, and is easier to erect. Exemplary embodiments thus provide substantially reduced costs for wind turbines, drilling rigs, antennas, and any other vertical mast.



FIG. 6 is another schematic illustrating the wind energy installation 30, according to exemplary embodiments. Because the stay cable 22 has superior strength, the stay cable 22 may be attached at a higher height, and anchored at a lesser distance from the mast 32, than traditional designs. Indeed, exemplary embodiments may be oriented above the tip 62 of the blade 40 without collision. As FIG. 6 illustrates, the upper end 50 of the stay cable 22 is attached at a height 70 greater than the tip 62 of the blade 40 of the rotor assembly 38. The upper end 50 of the stay cable 22 is attached near or at a top 72 of the mast 32. The lower, opposite end 54 of the stay cable 22 is anchored at a distance DB (illustrated as reference numeral 74) from a base 76 of the mast 32. The stay cable 22 is strong enough to wholly extend the entire length L (illustrated as reference numeral 60) from the upper end 50 to the lower, opposite end 54. The stay cable 22 may even comprise multiple, spliced sections or elements to extend the length L (or longer). Dampers or other shock-absorbing devices may also be used, as is known.


The angle θ may be mathematically defined. The mast 32 has a height HM (illustrated as reference numeral 80), and the upper end 50 of the stay cable 22 is attached at a height HS (illustrated as reference numeral 82). The lower, opposite end 54 of the stay cable 22 is anchored at the distance DB (illustrated as reference numeral 74) from the base 76 of the mast 32. The stay cable 22 is attached at the much smaller acute angle θ (illustrated as reference numeral 26) than conventional designs. The acute angle θ may be determined from the trigonometric relation:







tan





θ

=


D
B


H
S






For maximum support, though, the stay cable 22 may be attached as high up the mast 32 as needed. The stay cable 22 is strong enough to be attached at or nearly equal to the height HM of the mast 32. Substitution yields:







tan





θ

=


D
B


H
M







As the above paragraphs explained, the angle θ is substantially less than conventional designs. The angle θ, in fact, may be in the range of nearly zero to ten degrees (0>θ≥10), which is much less than that possible with conventional designs. Indeed, as the calculations accompanying FIGS. 4 and 5 showed, the angle θ may be about seven degrees (7°) for common wind turbine loading.



FIG. 7 is a detailed schematic illustrating a maximum orientation of the stay cable 22, according to exemplary embodiments. For simplicity, though, the mast 32 is only partially illustrated. As earlier paragraphs explained, the rotating blade 40 cannot collide with the stay cable 22. The stay cable 22, when tensioned and stressed, cannot impinge or intersect the spinning blade 40 (e.g., the rotor disk 64 illustrated in FIG. 3). As FIG. 7 illustrates, then, the angle θ has a maximum value θmax that permits unobstructed rotation of the rotor assembly 38. If the orientation of the stay cable 22 exceeds the angle θmax, then the rotating blade 40 may impact the stay cable 22. The angle θmax may thus be expressed in terms of a distance DTip (illustrated as reference numeral 90) between the mast 32 and a width of the tip 62 of blade 40. (The distance DTip is affected by the mounting and/or gearing of the nacelle 34, the design of the blade 40, and other considerations which are not relevant here.) FIG. 7 illustrates a situation when the tip 62 of the blade 40 is in its lowest position (e.g., a six o'clock position), and the distance DTip is measured radially and normally from an outer surface 92 of the mast 32. The maximum value of the acute angle θ is calculated as:








tan






θ
max


=


D
Tip


(


H
S

-

H
B


)



,





where HB (illustrated as reference numeral 94) is a height of the tip 62 of the blade 40 of the rotor assembly 38, as measured from earth or ground 56. As the wind energy installation 30 is being designed, the maximum angular orientation of the stay cable 22 (e.g., the maximum value of the angle θmax) may be determined from the height of the mast 32, the height of the tip 62, and the distance DTip. Any orientation greater than θMax may cause the stay cable 22 to collide with the rotating blade 40. Because conventional stay cables must be much larger in diameter, the larger diameter prohibitively increases costs and is too heavy to handle.


Exemplary embodiments thus reduce the costs of the wind energy installation 30. Because the stay cable 22 is superior to conventional designs, the stay cable 22 may be attached higher up the mast 32 (e.g., the height HS), and closer to the base 68 (e.g., the distance DB). Moreover, the size of the mast 32 may be reduced for a given weight of the nacelle 34. Conversely, the mast 32 may support a greater size and weight of the nacelle 34, thus allowing the rotor assembly 38 and the alternator/generator 36 to be increased in capacity to generate more electricity. For example, longer blades may be used to turn a larger alternator/generator 36. Regardless, material, transportation, and labor costs are reduced for a given design of the wind energy installation 30.



FIG. 8 is another more detailed schematic illustrating the wind energy installation 30, according to exemplary embodiments. Here the blade 40 of the rotor assembly 38 may deflect due to wind. As wind encounters the blade 40, forces against the blade 40 may cause the blade 40 to bend or deflect. As FIG. 8 illustrates, the wind may deflect the tip 62 of the blade 40 a deflection distance Ddef (illustrated as reference numeral 94). The deflection distance Ddef will depend on the design, size, and material of the blade 40, along with wind speed, and perhaps even other factors. Regardless, any deflection in the blade 40 will reduce the distance DTip (illustrated as reference numeral 90) between the mast 32 and the tip 62 of blade 40. The maximum value of the acute angle θ may thus be modified to account for the deflection distance Ddef of the blade 40:







tan






θ
Max


=



(


D
Tip

-

D
def


)


(


H
S

-

H
B


)


.






If the blade 40 deflects due to wind forces, then the maximum acute angle θMax of the stay cable 22 may be computed to still prevent collisions with the rotating, deflecting blade 40.


The above calculations apply to swiveling nacelles. Some nacelles are mounted to a bearing which permits the nacelle 34 to turn, or swivel, about the mast 32. The nacelle 34 may thus capture wind energy from any direction, still without collision of the stay cable 22. Because the nacelle 34 may swivel about a centerline of the mast 32, each stay cable 22 must have an orientation that clears the rotor disk 64 (illustrated in FIG. 3) in any direction of wind. As the nacelle 34 swivels about a vertical axis of the mast 32, the tip 62 of the blade 40 traces a circle about the mast 32. The circle has a radius RTip that is equal to the distance DTip (illustrated as reference numeral 90 in FIGS. 7 & 8) between the mast 32 and the tip 62 of blade 40. That is, when the nacelle 34 swivels about the mast 32, the tip 62 of the blade 40 defines a zone beyond which any stay cable 22 cannot be placed. If the stay cable 22 is oriented outside the circle (of radius DTip) at the height HB (illustrated as reference numeral 94), then the stay cable 22 may collide with the spinning blade 40. Again, then, the maximum value of the angle θ is calculated as:








tan






θ
Max


=


D
Tip


(


H
S

-

H
B


)



,





where HB is the height of the tip 62 of the blade 40 of the rotor assembly 38, as measured from earth or ground. The acute angle θ may also be corrected for wind deflection of the blade 40 (as explained above), thus yielding:







tan






θ
Max


=



(


D
Tip

-

D
Def


)


(


H
S

-

H
B


)


.






At the height HB of the tip 62 of the blade 40, the orientation of the stay cable 22 may not exceed the maximum acute angle θmax and/or the distance (DTip−DDef). Prudent designers may even include a safety factor that further reduces θMax.


The above figures illustrate that the vertical structure 20 (e.g., the mast 32) may have any number of the stay cables 22. If the vertical structure 20 is a utility pole, for example, then perhaps only a single stay cable 22 is needed. Other vertical structures, however, may require two, three, or more stay cables (as FIGS. 4 and 5 illustrated). Multiple stay cables 22 may be radially configured about the mast 32 in equally- or unequally-spaced arrangements.


The mast 32 may have any design and/or construction. The mast 32 may be constructed of any material, such as steel, aluminum, composite, concrete, and/or wood. The mast 32 may have a tubular, tapered, conical, and/or lattice design. The mast 32 may also have any height; indeed, many of the world's tallest structures are radio masts that support communications equipment. The mast 32, though, may support any equipment or load, including oil rigs or platforms, electrical equipment, bridges, and observation decks.



FIG. 9 is a schematic illustrating an antenna installation 100, according to exemplary embodiments. Here the mast 32 is erected to support communications equipment 102, such as an antenna 104 for radio and/or cellular networks. The upper end 50 of the stay cable 22 attaches to or near the top 72 of the mast 32, while the lower, opposite end 54 anchors at the earth or ground 56. Again, the stay cable 22 is stressed to support the mast 32 at the acute angle θ (illustrated as reference numeral 26). Because the stay cables 22 have superior strength for similar sizes of conventional strand designs, the stay cables 22 may be oriented such that the angle 26 is less than or equal to ten degrees (10°).


The stay cables 22 may include other features. Tall masts, for example, may reach into controlled airspace, so the mast 32 and/or the stay cables 22 may require lights, visible flags, or other safety markers. When the stay cables 22 are used with the communications equipment 102, any insulator may sheath at least a portion of the stay cable 22 to improve electromagnetic properties (e.g., insulation or conductivity).


The stay cables 22 may also include any end attachments. The upper end 50 of the stay cable 22, for example, may utilize any means of attaching the stay cable 22 to the mast 32. The opposite, lower end 54 may, likewise, utilize any means of anchoring to the ground or earth.


The stay cables 22 may also be utilized in any environment. Many wind turbines, oil platforms, antennas, and other vertical structures are erected in the ocean. Other vertical structures are erected onshore. Exemplary embodiments may be utilized in any onshore or offshore installation and in any ambient environment (e.g., mountains, deserts, arctic poles, plains, beaches).


The stay cables 22 may also support cantilevered structures. Some structures outwardly cantilever, such as entry overhangs, pedestrian overlooks, and even portions of buildings (e.g., the Clinton Presidential Library and Museum in Little Rock, Ark. USA). The stay cables 22 may be used to support cantilevered structures at the acute angle θ (illustrated as reference numeral 26) without obtrusive bracing. The strength of the stay cables 22 may thus be advantageously used in the design of cantilevered structures.


As FIG. 10 illustrates, each stay cable 22 has a parallel construction 120. The structural stay cable 122 comprises a plurality of individual wires 122 arranged as a bundle 124. Each individual wire 122 in the stay cable 22 is parallel to every other wire. The individual wires 122 in the stay cable 22 are parallel along their entire length and may also be equal in length to every other wire. Each wire 122 in the stay cable 22 is also individually pretensioned. Exemplary embodiments apply a tension value T (illustrated as reference numeral 126) to each wire 122 in the stay cable 22. That is, each individual wire 122 in the stay cable 22 may have an equal, or nearly equal, tension 124 to every other wire in the stay cable 22. Exemplary embodiments pretension every wire 122 in the stay cable 22. The tension value is individually applied or pulled to each wire 122 in the stay cable 22. Individual pre-tensioning of each wire 122 provides lighter, cheaper, and stronger stay cable designs. An individually-tensioned stay cable 22 weighs significantly less than conventional designs, but the strength of the stay cable 22 is still greater than conventional designs. Alternatively, exemplary embodiments may be used to construct a stay cable 22 that is similar in size to conventional designs, but is substantially stronger to support greater loads. Regardless, exemplary embodiments offer greater design alternatives that require less material cost. If the reader desires a more detailed explanation, the reader is invited to consult U.S. application Ser. No. 13/084,693, filed Apr. 12, 2011, entitled “Parallel Wire Cable,” and incorporated herein by reference in its entirety.


Tension is applied to each wire, not strands of wires. Methods are known that tension strands of plural wires. A strand, in the art of stay cable, is defined as a group of multiple wires. Conventional methods are known that apply tension to a strand of multiple wires. Exemplary embodiments, in contradistinction, apply the tension value to each individual wire in the stay cable 22. Each wire has the equal tension value as every other wire in the stay cable 22.


While the exemplary embodiments have been described with respect to various features, aspects, and embodiments, those skilled and unskilled in the art will recognize the exemplary embodiments are not so limited. Other variations, modifications, and alternative embodiments may be made without departing from the spirit and scope of the exemplary embodiments.

Claims
  • 1. An apparatus generating an electrical power in response to a wind, comprising: a mast supporting an electrical generator;a rotor assembly supported by the mast and coupled to the electrical generator, the rotor assembly having outwardly extending propeller blades; andmultiple stay cables supporting the mast, each stay cable of the multiple stay cables having an end attached proximate to a top of the mast, the each stay cable having an opposite end anchored to ground, the each stay cable having a plurality of individually tensioned wires bundled in parallel that permits orienting the each stay cable to the mast at an angle such that the outwardly extending propeller blades never collide with the multiple stay cables during the wind that drives the rotor assembly generating the electrical power.
  • 2. The apparatus of claim 1, wherein the angle is less than ten degrees from the mast.
  • 3. The apparatus of claim 1, wherein the angle is less than seven degrees from the mast.
  • 4. The apparatus of claim 1, wherein the generator converts a mechanical energy of the rotor assembly into an electrical energy.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. application Ser. No. 15/253,990 filed Sep. 1, 2016 and since issued as U.S. Pat. No. 10,508,644, which is a continuation of U.S. application Ser. No. 14/179,645 filed Feb. 13, 2014 and since issued as U.S. Pat. No. 9,458,642, which is a continuation of U.S. application Ser. No. 13/910,186 filed Jun. 5, 2013 and since issued as U.S. Pat. No. 8,667,766, which is a continuation of U.S. application Ser. No. 13/181,551 filed Jul. 13, 2011 and since issued as U.S. Pat. No. 8,474,219, with all applications incorporated herein by reference in their entireties. This patent application also relates to U.S. application Ser. No. 13/588,279 filed Aug. 17, 2012 and since issued as U.S. Pat. No. 8,464,497, which is also incorporated herein by reference in its entirety. This application also relates to U.S. application Ser. No. 13/084,693 filed Apr. 12, 2011, since abandoned, which is also incorporated herein by reference in its entirety.

US Referenced Citations (160)
Number Name Date Kind
364077 Addis May 1887 A
448786 Ogden Mar 1891 A
1254737 Smithey Jan 1918 A
1459623 Gerrard et al. Jun 1923 A
1537698 Robinson May 1925 A
2095721 Sunderland Oct 1937 A
2141138 Reed Dec 1938 A
2501202 Bartleman Mar 1950 A
2803363 Hutchinson Aug 1957 A
2808845 Wood Oct 1957 A
2878498 Gollnow Mar 1959 A
2945457 Avery et al. Jul 1960 A
3083817 Campbell Apr 1963 A
3086232 Nixon Apr 1963 A
3104778 Leonard Sep 1963 A
3153696 Blanchard Oct 1964 A
3173519 Sullivan Mar 1965 A
3379000 Webber Apr 1968 A
3443607 Dittrich May 1969 A
3460334 Brinsley Aug 1969 A
3500625 Gokyu Mar 1970 A
3526570 Durkee et al. Sep 1970 A
3531811 Baker et al. Oct 1970 A
3542087 Fegley Nov 1970 A
3556168 Baker et al. Jan 1971 A
3586226 Nippert, Sr. Jun 1971 A
3659633 Durkee et al. May 1972 A
3715877 Akachi Feb 1973 A
3726075 Akachi Apr 1973 A
3777428 Caufield Dec 1973 A
3885777 De Carbon May 1975 A
3919762 Borelly Nov 1975 A
4044447 Hamada Aug 1977 A
4094117 Torti Jun 1978 A
4106957 Tournoy Aug 1978 A
4192057 Borelly Mar 1980 A
4200212 Hartig Apr 1980 A
4203267 Langhorst May 1980 A
4258518 Xercavins Mar 1981 A
4266911 Helm May 1981 A
4409050 Carter, Jr. Oct 1983 A
4488649 Mark Dec 1984 A
4517467 Fuhring May 1985 A
4533297 Bassett Aug 1985 A
4545728 Cheney, Jr. Oct 1985 A
4594827 Finsterwalder Jun 1986 A
4617789 Borden Oct 1986 A
4648146 Nutzel Mar 1987 A
4673309 Schlaich et al. Jun 1987 A
4792700 Ammons Dec 1988 A
4840214 Bourgois Jun 1989 A
4841714 Meier Jun 1989 A
4979871 Reiner Dec 1990 A
5056284 Ruckdeschel et al. Oct 1991 A
5083469 Percheron et al. Jan 1992 A
5167399 Delomel Dec 1992 A
5299913 Heidelberg Apr 1994 A
5400584 Ito Mar 1995 A
5543196 Robinson Aug 1996 A
5573852 Thal Nov 1996 A
5688098 Theno Nov 1997 A
5809710 Jungwirth Sep 1998 A
5888321 Kazama Mar 1999 A
5956935 Katayama Sep 1999 A
6109460 Herlevi Aug 2000 A
6315249 Jensen Nov 2001 B1
6476326 Fuzier Nov 2002 B1
6523776 Elder Feb 2003 B1
6614125 Willis et al. Sep 2003 B2
6658684 Stubler et al. Dec 2003 B2
6715176 Stubler Apr 2004 B2
6800956 Bartlett Oct 2004 B2
6929450 Noble Aug 2005 B2
6944550 Marchetti Sep 2005 B2
6968779 Doyle Nov 2005 B2
6979175 Drake Dec 2005 B2
7003835 Figg, Jr. et al. Feb 2006 B2
7010824 Stubler et al. Mar 2006 B2
7076985 Rex Jul 2006 B2
7105940 Weesner Sep 2006 B2
7124460 Lecinq et al. Oct 2006 B2
7126235 Bernhoff Oct 2006 B2
7188814 Davis Mar 2007 B2
7431610 Laursen Oct 2008 B2
7508088 Kothnur et al. Mar 2009 B2
7677506 Hammer Mar 2010 B1
7683498 Stommel Mar 2010 B2
7739766 Lecinq Jun 2010 B2
8074347 Anderson et al. Dec 2011 B2
8464497 Lambert Jun 2013 B2
8474219 Lambert Jul 2013 B2
8667766 Lambert Mar 2014 B2
8747219 Wright et al. Jun 2014 B2
8759678 Filatov Jun 2014 B2
8881471 Theobald Nov 2014 B1
8931236 Sinclair Jan 2015 B2
8967943 Drott Mar 2015 B2
9062421 Brand Jun 2015 B2
9334091 Zantout May 2016 B2
9458642 Lambert Oct 2016 B2
9743764 Lambert Aug 2017 B2
10036118 Cullen Jul 2018 B2
10149536 Lambert Dec 2018 B2
10278493 Lambert May 2019 B2
10376051 Lambert Aug 2019 B2
20020028112 Paulshus Mar 2002 A1
20020095878 Henderson Jul 2002 A1
20030086755 Stubler May 2003 A1
20030110583 Stubler Jun 2003 A1
20030141721 Barlett Jul 2003 A1
20040001752 Noble Jan 2004 A1
20040128776 Eicher Jul 2004 A1
20040237222 Stubler Dec 2004 A1
20040247438 McCoin Dec 2004 A1
20040265127 Noble Dec 2004 A1
20050151376 Bernhoff Jul 2005 A1
20050193794 Rex Sep 2005 A1
20050218657 Weesner Oct 2005 A1
20060151767 Wobben Jul 2006 A1
20060185318 Lecinq Aug 2006 A1
20070271897 Hanna Nov 2007 A1
20080028740 Ushijima Feb 2008 A1
20080078128 Livingston et al. Apr 2008 A1
20080116152 Datri May 2008 A1
20080210330 Anderson et al. Sep 2008 A1
20080250576 Brand et al. Oct 2008 A1
20090126313 Jolly May 2009 A1
20090167023 Nies Jul 2009 A1
20090224498 Diedericks Sep 2009 A1
20090307998 Zavitz et al. Dec 2009 A1
20100090053 Stiltner Apr 2010 A1
20100202881 Nygaard Aug 2010 A1
20100226772 Deering Sep 2010 A1
20100319983 De Abreu et al. Dec 2010 A1
20100322766 Haans et al. Dec 2010 A1
20110016804 Howard Jan 2011 A1
20110206510 Landen et al. Aug 2011 A1
20110240626 Mullebrouck Oct 2011 A1
20110278852 Hjort Nov 2011 A1
20120045345 Horton, III Feb 2012 A1
20120084948 Breen, IV Apr 2012 A1
20120139253 Lambert Jun 2012 A1
20120260590 Lambert Oct 2012 A1
20130164134 Goldstein Jun 2013 A1
20130170941 Drott Jul 2013 A1
20130305624 Thrush Nov 2013 A1
20130309521 Lambert Nov 2013 A1
20140232118 Luigi Aug 2014 A1
20140361540 Knight Dec 2014 A1
20150128384 Breen, IV May 2015 A1
20150308414 Roer Oct 2015 A1
20150335154 Lambert Nov 2015 A1
20160215761 Rohden Jul 2016 A1
20160215762 Rohden Jul 2016 A1
20160333853 Knight Nov 2016 A1
20170114776 Tucciarone Apr 2017 A1
20170190391 Siegfriedsen Jul 2017 A1
20170318962 Lambert Nov 2017 A1
20170362772 Cullen Dec 2017 A1
20180184805 Lambert Jul 2018 A1
Foreign Referenced Citations (12)
Number Date Country
2807466 Feb 2012 CA
2835139 Jan 2013 CA
108979949 Dec 2018 CN
459035 Apr 1928 DE
1938931 Feb 1971 DE
2806081 Aug 1979 DE
10309825 Sep 2004 DE
103090825 Sep 2004 DE
102015000818 Dec 2015 DE
2732156 Aug 2016 EP
03222872 Oct 1991 JP
WO-2018105821 Jun 2018 WO
Non-Patent Literature Citations (2)
Entry
Google Translation DE 103 090 825 A1, 6 pages, translated Jul. 5, 2018.
Irvine, H. Max, “Cable Structures,” 1981, MIT Press, Cambridge Massachusetts.
Related Publications (1)
Number Date Country
20200072197 A1 Mar 2020 US
Continuations (4)
Number Date Country
Parent 15253990 Sep 2016 US
Child 16656720 US
Parent 14179645 Feb 2014 US
Child 15253990 US
Parent 13910186 Jun 2013 US
Child 14179645 US
Parent 13181551 Jul 2011 US
Child 13910186 US