The present invention pertains to a stay interposed between a door of furniture or the like and a main body, and more particularly pertains to a stay interposed between a door rotating around a horizontal rotation axis and a main body.
Furniture having a door which rotates around a horizontal rotation axis is used, for example, in a hanging cupboard for a kitchen. A hanging cupboard for a kitchen is positioned near the ceiling, and therefore opening a door upward is convenient. A stay is interposed between a door and a main body, and supports the weight of a door that is opened to an arbitrary opening angle such that the door closes slowly.
An issue with furniture having a door that rotates around a horizontal rotation axis is that the moment of the door changes with the opening angle of the door. For example, if a door is opened upward, when the door is at the maximum opening position, the stay is subjected to a large moment from the door. On the other hand, when the door is close to the closed position, the stay is only subjected to a small moment from the door.
A typical stay is equipped with a first arm and a second arm which are connected so as to be capable of rotating around a rotation axis in two mutually opposing directions. For example, a free end of the first arm is connected to a housing, and a free end of the second arm is connected to the door. The first arm and the second arm rotate freely in one direction and rotate with a resistance force attributed to frictional force in an opposite direction. When the door is opened, the first and the second arms rotate freely with each other, and thus the door can be opened with a light force. On the other hand, when a person lets go of a door which has been opened to an arbitrary angle, the door tries to return to the closed position under its own weight. However, when the first arm and the second arm are rotated in the other direction, a frictional force works between the first arm and the second arm, and therefore the position of the door opened to an arbitrary angle can be maintained. When closing the door, the door is pushed in the closing direction, and the first arm and the second arm rotate in the other direction in opposition to the resistance force between the first arm and the second arm.
An example of this type of stay is shown in
When the second arm 2 rotates in a counterclockwise direction (2), the rollers 5 move to a gap that is wider between the first opposing surface 3a and the second opposing surface 2a1. Therefore, the torque of the second arm 2 is not transmitted to the first arm 1, and the second arm 2 rotates freely in the counterclockwise direction (2) with respect to the first arm 1. On the other hand, when the second arm 2 rotates in the clockwise direction (1), the rollers 5 move to the gap that is narrower between the first opposing surface 3a and the second opposing surface 2a1, and become stuck therebetween. Therefore, the torque of the second arm 2 is transmitted to the first arm 1. When the torque acting on the second arm 2 is larger than the frictional force between the disk 3 and the first arm 1, the disk 3 slides with respect to the first arm 1. Accordingly, the second arm 2 rotates with resistance force in the counterclockwise direction (2) with respect to the first arm 1.
With the invention disclosed by Patent Document 1, as the rollers 5 move in a gap between the first opposing surface 3a and the second opposing surface 2a1, the torque of the second arm 2 is transmitted to the first arm 1, and transmission of the torque of the second arm 2 to the first arm 1 is cancelled. However, because a gap is present around the rollers 5, it is difficult to stabilize the movement of the rollers 5, which is a problem. In order to stabilize the movement of the rollers 5 with the stay described by Patent Document 1, an elastic member made of a plate spring is provided in the gap, but there is a limitation to the stabilization of the movement of the rollers 5. Moreover, the durability of the elastic member also generates a new problem.
Therefore, an object of the present invention is to provide a stay which is capable of stabilizing movement of a component part used for transmitting or not transmitting the torque of one of a first member and a second member to the other.
In order to solve the abovementioned problems, the invention set forth by claim 1 is a stay including a first member; a second member connected to the first member so as to be capable of rotating around a rotation axis in two opposing directions relatively; a disk joined to the first member through frictional force; and a cam base capable of rotating around the rotation axis in an integrated manner with the second member, and capable of moving in a direction of the rotation axis through relative rotation of the second member with respect to the first member; wherein, when the second member rotates relative to the first member in one direction, the cam base moves away from the disk in the direction of the rotation axis, and the second member and the cam base rotate relative to the first member and the disk; and when the second member rotates relatively to the first member in the other direction, the cam base moves towards the disk in the direction of the rotation axis, and the second member, the cam base and the disk rotate relative to the first member with resistance force.
The invention set forth by claim 2 is the stay according to claim 1, one of the second member and the cam base further including a convex part protruding to the other of the second member and the cam base; and the other of the second member and the cam base further including a concave part which fits with the convex part; wherein, when the second member rotates in the other direction relative to the first member, the convex part and the concave part come into contact, resulting in the cam base moving toward the disk in the direction of the rotation axis; and even after the cam base has moved toward the disk in the direction of the rotation axis, the concave part remains fitted with the convex part.
The invention set forth by claim 3 is the stay according to claim 2, the disk and the cam base further including a plurality of teeth at mutually opposing surfaces; wherein, when the second member rotates relative to the first member in the one direction, the plurality of teeth of the disk and the plurality of teeth of the cam base come into contact, resulting in the cam base moving away from the disk in the direction of the rotation axis.
The invention set forth by claim 4 is the stay according to claim 3, wherein the plurality of teeth of the disk and of the cam base are arranged at the mutually opposing surfaces in a ring shape along the perimeter of the rotation axis.
The invention set forth by claim 5 is the stay according to any one of claims 1 to 4, further comprising a position retention means between the disk and the cam base for allowing the cam base to move in the direction of the rotation axis with respect to the disk, and for temporarily retaining a position of the cam base in the direction of the rotation axis.
The invention set forth by claim 6 is the stay according to claim 5, wherein the position retention means is a resin ring which is supported by either the disk or the cam base and slides on the other.
The invention set forth by claim 7 is the stay according to any one of claims 1 to 4, wherein one end of the first member is capable of rotating with respect to one of a main body and a door; one end of the second member is capable of rotating with respect to the other of the main body and the door; and the other end of the first member and the other end of the second member are capable of rotating mutually.
The invention set forth by claim 8 is the stay according to any one of claims 1 to 4, wherein one end of the first member is capable of rotating with respect to one of the main body and the door; the second member is fixed to the other of the main body and the door; and the other end of the first member and the second member are capable of rotating.
The invention set forth by claim 9 is the stay according to any one of claim 8, wherein the first member is capable of bending at a middle part between the one end and the other end; and the second member further includes a catch mechanism which retains a state where the second member is extended, and retains a state where the second member is bent.
According to the invention set forth by claim 1, when the second member is rotated, the cam base moves towards the disk or moves away from the disk through the cam principle. Because the cam base is moved in a direction of the rotation axis, the movement of the component part (cam base) used to transmit torque can be stabilized.
According to the invention set forth by claim 2, the cam base can be moved toward the disk by a convex part of one of the second member and the cam base and a concave part of the other. Moreover, even after the cam base moves toward the disk in the direction of the rotation axis, the convex part remains fitted with the concave part, and therefore the second member and the cam base can be integrally rotated.
According to the invention set forth by claim 3, the cam base can be moved away from the disk in the direction of the rotation axis by the plurality of teeth of the disk and the cam base.
According to the invention set forth by claim 4, the torque of one of the first member and the second member can be reliably transmitted to the other.
According to the invention set forth by claim 5, the position of the cam base can be temporarily maintained. Therefore, once the cam base has been separated from the disk, it can be prevented from once again contacting the disk and generating a rattling sound.
According to the invention set forth by claim 6, the position of the cam base can be temporarily maintained by a resin ring.
As with the invention set forth by claim 7, one end of the first member is capable of rotating to one of a main body and a door, one end of the second member is capable of rotating to the other of the main body and the door, and the other end of the first member and the other end of the second member are capable of rotating mutually.
As with the invention set forth by claim 8, one end of the first member is capable of rotating to one of the main body and the door, the second member is fixed to the other of the main body and the door, and the other end of the first member and the second member are capable of rotating.
According to the invention set forth by claim 9, an opened state and a closed state of the door can be maintained by a catch mechanism.
A stay of a first embodiment of the present invention is described in detail below based on the attached drawings.
The stay of the present embodiment has a free-stop function or a slowdown function. The free-stop function is a function for which the stay maintains any arbitrary opening angle of the door 14 even after a person lets go of the door 14 after opening it to the arbitrary angle. The slowdown function is a function that allows the stay to slowly close the door 14. When the internal frictional force of the stay is increased, the free-stop function is obtained, and when the internal frictional force of the stay is decreased, the slowdown function is obtained.
The door 14 is connected to the top of the main body 13 through a hinge 17 such that the door 14 can rotate around the horizontal rotation axis. As the hinge 17, a uniaxial hinge having constant instantaneous center may be used, or a slide hinge where the instantaneous center moves may be used.
When the door 14 is opened and closed, the first arm 11 and the second arm 12 rotate simultaneously around the rotation axis C. In other words, the second arm 12 rotates relatively with respect to the first arm 11. For the sake of explanatory convenience, hereinafter it will be assumed that the rotation of the first arm 11 is fixed, and that the second arm 12 rotates.
The torque transmission mechanism 25 meshes the disk 34 and a cam base 36, cancels the meshing, transmits torque of the second arm 12 to the first arm 11, and cancels the transmission thereof. When the disk 34 and the cam base 36 are meshed, the torque of the second arm 12 is transmitted through the disk 34 and the friction plates 31 and 32 to the first arm 11. When the torque of the second arm 12 is larger than the torque attributed to the frictional force of the friction plates 31 and 32, the second arm 12, the disk 34, the cam base 36 and the friction plates 31 and 32 rotate in an integrated manner with resistance force with respect to the first arm 11.
When the meshing of the disk 34 and the cam base 36 is cancelled, the torque of the second arm 12 is not transmitted to the first arm 11, and the second arm 12 and the cam base 36 rotate freely in an integrated manner with respect to the first arm 11 and the disk 34.
The configuration of each part of the stay is as follows. The first arm 11 is provided with a disk shaped connection part 11a and a lever unit 11b protruding in the radial direction from the connection part 11a. The disk shaped connection part 11a is provided with a circumferential ring-shaped crown 11a1 and a ring-shaped ring plate 11a2 provided at the inside of the crown 11a1. A through-hole 11a3 is opened at the center of the ring plate 11a2. A disk-shaped mating part 39a (see
The washer 15 is attached in a rotatable manner via the shaft body 21 and a connector 41 to the free end of the lever unit 11b. The shaft body 21 is crimped and fixed to the washer 15. The connector 41 is fitted onto the shaft body 21 so as to be capable of rotating around the perimeter of the shaft body 21. The free end of the lever unit 11b is connected to the connector 41 so as to be capable of being attached and detached. The shaft body 21 and the washer 15 are made of metal, and the connector 41 rotates with respect to the shaft body 21 and the washer 15 which are integrally connected by crimping and fixing.
The connector 41 is provided with a cylindrical mating part 41a in which the shaft body 21 fits, and a flexible part 41b which projects sideways from the mating part 41a and then bends in an L-shape. The free end of the lever unit 11b is connected to the connector 41 so as to be attachable and detachable. A circular first hole 11b1 and a square shaped second hole 11b2 are opened at the free end of the lever unit 11b. The second hole 11b2 is positioned further to the rotation axis C side than the first hole 11b1, or in other words, is positioned further to the inside. The mating part 41a of the connector 41 is inserted into the first hole 11b1, and the flexible part 41b of the connector 41 is passed into the second hole 11b2.
The disk-shaped ring plate 11a2 of the first arm 11 is sandwiched between the pair of friction plates 31 and 32. The friction plates 31 and 32 are formed in a ring shape so that the mating part 39a of the lid member 39 can be inserted. The lid member 39 and the disk 34 are connected so as to be incapable of relative rotation, and the pair of friction plates 31 and 32 is sandwiched therebetween so as also to be incapable of relative rotation. A hole in which the mating part 39a of the lid member 39 is fitted is opened in the center of the friction plate 31. A plurality of holes 31a in which a plurality of projections 39b1 of the lid member 39 fit are opened in the friction plate 31 in the circumferential direction. Pockets 31b for storing lubricating oil are formed between the holes 31a. A plurality of holes 32a in which projections 34a of the disk 34 fit are opened in the friction plate 32 in the circumferential direction, and pockets 32b for storing lubricating oil are formed between the holes 32a.
The lid member 39 is provided with a closed disk 39b which covers the ring plate 11a2 of the first arm 11, and a disk-shaped mating part 39a which projects from the closed disk 39b (see
As shown by the cross-sectional view of
As shown in
As shown in
As shown in
As shown in
The washer 16 is attached in a rotatable manner via the shaft body 22 and a connector 46 to the free end of the lever unit 12b. The shaft body 22 is crimped and fixed to the washer 16. The connector 46 is fitted onto the shaft body 22 so as to be capable of rotating around the perimeter of the shaft body 22. The free end of the lever unit 12b is connected to the connector 46 so as to be capable of being attached and detached, and the connector 46 rotates with respect to the shaft body 22 and the washer 16 which are integrally connected by crimping and fixing.
The connector 46 is provided with a cylindrical mating part 46a in which the shaft body 22 fits, and a flexible part 46b which projects sideways from the mating part 46a and then bends in an L-shape. The free end of the lever unit 12b is connected to the connector 46 so as to be attachable and detachable. A circular first hole 12b1 and a square shaped second hole 12b2 are opened at the free end of the lever unit 12b. The second hole 12b2 is positioned further to the rotation axis C side than the first hole 12b1, or in other words, is positioned further to the inside. The mating part 46a of the connector 46 is inserted into the first hole 12b1, and the flexible part 46b of the connector 46 is passed into the second hole 12b2.
As shown by the plan view of the second arm 12 of
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
When removing the first arm 11 from the connector 41, the mating part 41a (or the free end of the first arm 11) can be supported and the flexible part 41b can be easily bent by pinching the mating part 41a of the connector 41 (or the free end of the first arm 11) and the flexible part 41b with, for example, the thumb and index finger (
As shown in
As shown in
A stay of a second embodiment of the present invention is described in detail below based on
First, an overview of the overall second embodiment is described. A stay of the present embodiment is provided with a stay main body 62 as a second member fixed to a main body 13 of a cabinet, and an arm 61 as a first member connected to the stay main body 62 so as to be capable of rotating around the rotation axis C. A free end, which is one end part of the arm 61 in the lengthwise direction, is attached to the door 14 via a washer 63 so as to be capable of rotation. The other end in the lengthwise direction of the arm 61 is rotatably connected to the stay main body 62. The arm 61 is capable of bending at a center part between the one end part and the other end, and is provided with a first link 71 and a second link 72, which are connected so as to be capable of mutually rotating.
Similar to the stay of the first embodiment, a friction damper is incorporated in the stay main body 62 of the present embodiment. Namely, when the door 14 is opened (when the arm 61 is rotated in the (1) direction with respect to the stay main body 62), the friction damper does not generate resistance force so that the door 14 can be opened with little force. On the other hand, when the door 14 is closed (when the arm 61 is rotated in the (2) direction with respect to the stay main body 62), the friction damper generates resistance force, thereby enabling a free-stop function or a slowdown function. The free-stop function is a function for which the stay maintains any arbitrary opening angle of the door 14 even after a person lets go of the door 14 after opening it to the arbitrary angle. The slowdown function is a function that allows the stay to slowly close the door 14. When the internal frictional force of the stay is increased, the free-stop function is obtained, and when the internal frictional force of the stay is decreased, the slowdown function is obtained.
The arm 61 of the stay of the second embodiment is further incorporated with a catch mechanism which maintains a closed door 14 at the closed position, and maintains an opened door 14 at the opened state. When the door 14 is in an opened state, the arm 61 is maintained in an extended state, and when the door 14 is in a closed state, the arm 61 is maintained at a bent state (see
Note that with the stay of the first embodiment, both the first and the second arms 11 and 12 rotate when the door 14 is opened or closed, but with the stay of the second embodiment, the stay main body 62 is fixed to the main body 13, and only the arm 61 rotates. The stay main body 62 is fixed, but because the arm 61 rotates, it can be said that the stay main body 62 rotates relatively with respect to the arm 61.
The arm 61 is provided with the first link 71 connected to the stay main body 62 so as to be capable of rotation, and with the second link 72 connected to the first link 71 so as to be rotatable. The free end of the second link 72 is connected to the washer 63 via a shaft body 64 so as to be capable of rotating, and the washer 63 is attached to the door 14 of the cabinet. The rotation axis C of the first link 71 with respect to the stay main body 62, a rotation axis D of the second link 72 with respect to the first link 71, and a rotation axis E of the second link 72 with respect to the washer 63 are mutually parallel.
The structure of the frictional force generation mechanism (friction plates 31 and 32, disk 34, lid member 39, resistance force adjusting screw 18 and disk spring 33) is the same as the structure of the frictional force generation mechanism 24 of the first embodiment, and therefore the same reference numerals are attached, and a description thereof is omitted. The frictional force generation mechanism 24 of the present embodiment also presses the friction plates 31 and 32 against the arm 61 to generate frictional force. The disk 34 is connected so as to be capable of rotating in an integrated manner with the friction plate 32, and is joined with the arm 61 through the frictional force of the friction plate 32.
The structure of the torque transmission mechanism 25 (disk 34, cam base 36, resin ring 35, bearing 37 and collar 38) is also the same as that of the torque transmission mechanism 25 of the first embodiment, and therefore the same reference numerals are attached, and a description thereof is omitted. The torque transmission mechanism 25 causes the disk 34 and the cam base 36 to mesh, cancels the meshing thereof, transmits the torque of the arm 61 to the stay main body 62, and cancels the transmission thereof.
When the disk 34 and the cam base 36 mesh, the torque of the arm 61 is transmitted to the stay main body 62 via the friction plates 31 and 32, the disk 34 and the cam base 36. Moreover, when the disk 34 and the cam base 36 are in a meshed state and the torque of the arm 61 is larger than the torque attributable to the frictional force of the friction plates 31 and 32, the arm 61 rotates with resistance force with respect to the friction plates 31 and 32. Through this, the free-stop function or the slowdown function is enabled.
When the meshing of the disk 34 and the cam base 36 is cancelled, the torque of the arm 61 is not transmitted to the stay main body 62, and the arm 61 rotates freely with respect to the stay main body 62. Through this, the door can be opened with minimal force.
The structures of the stay main body of the second embodiment and the arm 61 of the stay of the second embodiment are described in detail below. However, as mentioned above, the structures of the other parts are the same as those of the stay of the first embodiment, and therefore the same reference numerals are attached, and the descriptions thereof are omitted.
The stay main body 62 is provided with a disk-shaped connection part 62a and a pair of attachment pieces 62b which project from the connection part 62a. The disk-shaped connection part 62a is provided with a circumferential ring-shaped crown 62a1 and a ring-shaped ring plate 62a2 at the inside of the crown 62a1. A through-hole 62a3 is opened at the center of the ring plate 62a2, and a plurality of convex parts 48 that function as a cam are formed at the surface of the stay main body 62 that opposes the cam base 36. The plurality of convex parts 48 of the stay main body 62 fit with the plurality of concave parts 45 of the cam base 36.
The arm 61 is provided with the first link 71 and the second link 72, and the first link 71 is provided with a disk-shaped connection part 71a and a main body 71b that project radially from the connection part 71a. The connection part 71a is provided with a circumferential ring-shaped crown 71a1 and a ring-shaped ring plate 71a2 provided at the inside of the crown 71a1. A through-hole 71a3 is opened at the center of the ring plate 71a2, and the mating part 39a of the lid member 39 (see
The second link 72 is connected via a pin 73 to the free end of a main body 71b so as to be capable of rotation. An elongated hole 71b1 is opened along the main body 71b at the free end of the main body 71b. A slider 74 is inserted into the hole 71b1 so as to be capable of sliding in the longitudinal direction of the main body 71b. In order to prevent tilting of the slider 74, the cross-sectional shape of the hole 71b1 is designed to match the cross-sectional shape of the slider 74. A coil spring 75 is provided inside the hole 71b1 as a biasing member to bias the slider 74 to the second link 72.
The slider 74 has a pair of opposing walls 74b separated by a slit 74a, and a roller 76 is inserted between the pair of opposing walls 74b. The roller 76 is supported so as to be rotatable by a pin 77 fixed to the slider 74. The coil spring 75 biases the roller 76 of the slider 74 to a cam 72a of the second link 72. An elongated hole through which the pin 73 is passed is formed in the slider 74.
The second link 72 is supported in a rotatable manner by the first link 71 via the pin 73. The cam 72a is formed at one end part of the second link 72. The cam 72a is provided with an arc-shaped center cam 72a1, a first recessed cam 72a2 formed at one end part in the circumferential direction of the center cam 72a1, and a second recessed cam 72a3 formed at the other end of the center cam 72a1 (see also
The slider 74 and coil spring 75 of the first link 71 and the cam 72a of the second link 72 constitute a catch mechanism. As shown in
When the opened door 14 is closed, the first link 71 and the second link 72 rotate so that the arm 61 bends. When this occurs, the roller 76 of the slider 74 runs onto the arc-shaped center cam 72a1 of the second link 72. The radius of the arc-shaped center cam 72a1 is uniform, and therefore when the roller 76 of the slider 74 contacts the center cam 72a1, torque in the opening direction or the closing direction is not applied to the door 14.
As shown in
When the opening angle of the door 14 is 20° to less than 87°, torque from the catch mechanism is not applied to the door 14. Only the free-stop torque from the friction damper works on the door 14, and therefore, the door 14 can be maintained at an arbitrary angle of 20° to less than 87°.
When the opening angle of the door 14 is from 87° to 90°, a catch torque in the opening direction is applied to the door 14 by the catch mechanism, and thus the open state of the door 14 can be maintained (see
The stays of the first embodiment and the second embodiment of the present invention were described in detail above. However, the present invention is not limited to the above-described embodiments, and the present invention can be embodied in various embodiments within a scope that does not change the gist of the present invention.
With the above-described embodiments, cases were described where the stay was applied to a cabinet that opens upward, but the present invention may also be applied to a downward opening cabinet.
With the above-described embodiments, the cam base is moved away from the disk by the cam principle of the plurality of teeth of the disk and the plurality of teeth of the cam base, but the cam base can also be moved away from the disk by a cam principle of the convex part of the second arm and the concave part of the cam base.
With the above-described embodiments, a plurality of teeth is formed at opposing surfaces of the cam base and disk, and the rotation of the cam base is transmitted to the disk by the meshing of the plurality of teeth. However, the opposing surfaces of the cam base and the disk may be formed as flat surfaces, and the rotation of the cam base can then be transmitted to the disk by frictional force.
With the above-described embodiments, a resin ring is provided between the disk and the cam base, and movement in the direction of the rotation axis of the cam base with respect to the disk is temporarily maintained. However, movement in the direction of the rotation axis of the cam base can also be temporarily maintained by fitting the disk and cam base.
With the above-described embodiments, the ring plate of the first arm is sandwiched by the pair of friction plates, but a single friction plate may also be used and caused to contact only a single surface of the ring plate.
The shapes and structures of each of the component parts of the stays of the above-described embodiments are for illustrative purposes only, and can be changed to various shapes and structures within a scope that does not change the gist of the present invention.
With the above-described second embodiment, the arm is configured of first and second links which rotate mutually, but the arm can also be configured from first and second slide rails which slide mutually in the longitudinal direction. In this case, the length of the arm changes, but the arm does not bend.
The present specification is based on Japanese Patent Application No. 2012-270023 filed on Dec. 11, 2012 and on Japanese Patent Application No. 2013-076849 filed on Apr. 2, 2013. The details thereof are all contained herein.
Number | Date | Country | Kind |
---|---|---|---|
2012-270023 | Dec 2012 | JP | national |
2013-076849 | Apr 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/080696 | 11/13/2013 | WO | 00 |