This invention relates generally to magnetic resonance imaging (MRI), and more particularly the invention relates to steady state free precession (SSFP) imaging in which selective material imaging is achieved using phase detection.
Magnetic resonance imaging (MRI) provides excellent soft tissue contrast with arbitrary scan-volume orientations, thus making MRI an extremely useful medical imaging modality. However, in many applications, MRI is limited by long scan times, limited spatial resolution, and contrast between lipid-based tissue and water-based tissue. Recent advances in gradiant amplifier technology have enabled the use of fully-refocused steady-state free precession (SSFP) imaging methods. SSFP imaging is a very fast method that can provide good tissue contrast and high resolution. A number of commercial implementations of SSFP are available, all of which conceptually identical.
Recently, several methods have been proposed for SSFP imaging with fat suppression, which provides the necessary contrast between water and lipid. Fluctuating-equilibrium MRI, suppression of lipids by RF-modulated FIESTA, and linear-combination SSFP generates steady-state spectral profiles that suppress the frequency band containing lipid tissue. All of these techniques require at least twice the acquisition time of standard SSFP. Magnetization-prepared SSFP methods which manipulate magnetization into the steady-state after a fat-presaturation pulse are only slightly slower than standard SSFP. However, these methods can result in severe artifacts from transient lipid magnetization.
In accordance with the invention, phase sensitive SSFP provides selective material imaging without additional complexity or scan time in conventional SSFP. Repetition time, TR and scan center frequency are chosen such that an odd number of phase transitions are between resonant frequencies for two species, whereby signal phase can be used to separate the two species.
In one embodiment for suppressing fat while imaging blood, the invention employs excitation repetition time as the reciprocal of the chemical shift difference between water (blood) and lipid (fat). Further, the SSFP signal is refocused halfway between the radio frequency excitation pulses, with the signal phase alternating as a function of resonant frequency. This results in water and lipid signals having opposite signs or phases. By choosing a positive or negative signal, water-only or lipid-only images can be generated.
The invention and object and features thereof will be more readily apparent from the following detailed description and appended claims when taken with the drawings.
As illustrated in
Magnetization is tipped about a traverse axis through an angle α. Between excitations, the magnetization undergoes a precession by an angle θ=2πΔfTR about the z-axis, where Δf is the tissue off-resonance, and also experiences both T1 and T2 relaxation.
During the sequence each spin is affected by RF pulses, relaxation and free precession. The steady-state magnetization for SSFP is a function of the sequence parameters flip angle (α), repetition time (TR) and echo time (TE) as well as the tissue parameters T1, T2, and resonant frequency shift Δf.
All imaging gradients are rewound, and the low spatial frequency-information is acquired at an echo time (TE) midway between RF excitation pulses. The steady-state signal that arises after many repetitions is shown in FIG. 2A. The signal magnitude is a strong function of the resonant frequency, with signal nulls spaced apart by 1/TR. The magnitude also varies for different relaxation times T1 and T2 as is typical for MRI sequences.
The signal phase in SSFP is, to a good approximation, a square-wave function of resonant frequency. At each signal null, the phase changes rapidly by π radians. However, between signal hulls, the phase is very flat. This means that over small frequency variations, the magnetization is refocused in a similar way to spin echo sequences, except that the direction of the “echo” alternates with frequency.
Since water and lipid have different resonant frequencies, in accordance with the invention, their signals can be separated based on the RF signal phase with appropriate choice of repetition time, TR, so that the resonant frequencies of water, fw, and lipid, fl, are on opposite sides of the signal null at scan center frequency. Although this separation is theoretically possible for any choice of TR, a good choice is to select TR as the reciprocal of the resonant frequency difference between lipid and water. This choice centers the water and lipid spectral peaks in successive signal pass-bands, as shown in FIG. 2A.
Using TR=2TE=4.6 ms at 1.5T, and a flip angle of 60 degrees, 3D SSFP images were acquired of the lower leg of a normal volunteer. Imaging parameters were a resolution of 1×1×1 mm3 over a 38×12×12 cm3 field of view, and the scan time was just 75 seconds. The images were reconstructed using a standard Fourier reconstruction, with care taken so that no linear phase results from the Fourier transform in the images. The complex signal points are plotted in a scatter plot shown in
The image pixels are separated into water and lipid images based on the sign of the real-part of the signal. The resulting separation is very good as shown in FIG. 4. Here, the standard SSFP image (a) is separated into water-only (b) and lipid-only (c) images by keeping only the pixels with positive and negative real parts respectively. Lipid areas such as subcutaneous fat (dashed arrow) or bone marrow (dotted arrow) are retained in the fat-only image, while arterial blood (solid arrow) is retained in the water-only image.
Using a maximum-intensity projection, the vessels in the lower leg can be clearly depicted.
Compared with other fat suppressed imaging methods such as RARE or RF-spoiled imaging, the method according to the invention provides the benefits of SSFP imaging including 3D imaging with rapid scan times and T2-like contrast. SSFP is significantly faster than RARE, and 3D acquisitions are possible in reasonably short scan times. Compared with other fat-suppressed SSFP imaging methods, the invention provides fat-suppression with no addition of scan time and is less sensitive to off resonance than fluctuating MR or linear-combination SSFP. Unlike the magnetization-prepared SSFP techniques, it is not sensitive to transient artifacts.
The invention applies to a standard SSFP imaging sequence where the echo time is midway between RF excitation pulses. The most common such method is simple Cartesian imaging. However, the method will also work for radial SSFP imaging, echo-planar SSFP imaging, or spiral in-out imaging.
For applications such as angiography, moment-nulling can be extremely important, as it allows a steady-state to evolve from materials that are moving as well as static materials. Since the method is based on steady-state signal, it may be useful to use a trajectory that is moment-nulled over a sequence repetition in all three dimensions. Examples of this type of trajectory are 3D projection-reconstruction imaging or the more efficient “hour glass” trajectory. In moment nulling, higher order moments are refocused by adding a lobe to each gradient field.
The spin-echo-like property of SSFP sequences is not limited to standard SSFP. Other sequences, such as fluctuating equilibrium MR which vary the phase of the RF pulse will also tend to have time points where the phase is refocused, as well as phase discontinuities of pi radians. Since the sequences can have additional magnitude variations, it may be desirable to use both signal magnitude and signal phase for tissue contrast. Variation of the RF phase in SSFP can have applicability for synthesizing frequency profiles. Combining various acquisitions can be extremely useful for improving the robustness of the invention to magnetic field variations or susceptibility-induced frequency shifts.
There has been described a new, rapid material suppressed imaging technique using standard SSFP imaging with a phase-sensitive reconstruction. The invention exploits the refocusing property of SSFP to provide a robust fat-suppression technique that is only as sensitive to off resonance as the SSFP sequence itself. In using standard SSFP imaging, the repetition time (TR) is approximately equal to the reciprocal of chemical shift between lipid and water, and the effective echo time (TE) is equal to TR/2.
While the invention has been described with reference to specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.
The U.S. government has rights in the disclosed invention pursuant to NIH grants to Stanford University including NIH-HL39297, NIH-HL56394, NIH-AR46904, and NIH-CA50948.
Number | Name | Date | Kind |
---|---|---|---|
4769603 | Oppelt et al. | Sep 1988 | A |
5144235 | Glover et al. | Sep 1992 | A |
5225781 | Glover et al. | Jul 1993 | A |
5541514 | Heid et al. | Jul 1996 | A |
5655531 | Nishimura et al. | Aug 1997 | A |
6307368 | Vasanawala et al. | Oct 2001 | B1 |
6339332 | Deimling | Jan 2002 | B1 |
6366090 | Heid | Apr 2002 | B1 |
6369569 | Heid | Apr 2002 | B1 |
6404195 | Deimling | Jun 2002 | B1 |
6442414 | Watanabe | Aug 2002 | B1 |
6452387 | Hargreaves et al. | Sep 2002 | B1 |
6583623 | Kwok et al. | Jun 2003 | B1 |
6587708 | Venkatesan et al. | Jul 2003 | B2 |
20020167318 | Hennig | Nov 2002 | A1 |
20030030436 | Hennig et al. | Feb 2003 | A1 |
20040152969 | Zhang et al. | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050040821 A1 | Feb 2005 | US |