The present invention relates to proprietary data transmission and, more particularly, to transmitting and receiving a proprietary message using an information-bearing noise having an internal structure associated with the message.
Methods of transmitting proprietary data are in demand for both civil and military applications. Transmitting proprietary data is a challenging problem for the following reasons. On the one hand, proprietary data should not be easily retrieved by an enemy (in military applications) or by a competitor (in business applications) if the data were intercepted. On the other hand, proprietary data should be successfully retrieved by their intended recipient.
A traditional approach to transmitting~proprietary data consists in encoding a given proprietary message in a non-random signal and then hiding that signal in a noise-like background. However, since the signal used for encoding is not random, it will be retrieved by an enemy or a competitor as soon as they are able to recognize the presence of a useful signal in the noisy background and to separate this signal from the noise. It would be very useful to introduce a proprietary data transmission technique which is free of this drawback.
In accordance with the present invention, there is provided a stealth communication method for transmitting a proprietary message using an information-bearing noise having an internal structure associated with the message. The spectral properties of the information-bearing noise are indistinguishable from those of the noise in the communication channel. This information-bearing noise can be combined with a non-random decoy signal.
A complete understanding of the present invention may be obtained by reference to the accompanying drawings, when considered in conjunction with the subsequent, detailed description, in which:
For purposes of clarity and brevity, like elements and components will bear the same designations and numbering throughout the FIGURES.
This invention introduces a new approach to proprietary data transmission. The main idea of the stealth communication method proposed is not to hide a non-random information-bearing signal in a noisy background but rather using a special kind of an information-bearing noise. This smart noise is indistinguishable by its spectral properties from the noise in the communication channel. Yet, it has an internal structure that allows the intended recipient to successfully retrieve the proprietary message encoded in the noise. Moreover, such a smart noise (SN) can be combined with a decoy signal, the latter having a regular non-random structure and may be of a larger power than the SN. In this case an enemy or a competitor will be misled and will try to retrieve whatever information is encoded in the decoy signal. It will be shown that it is possible to design the structure of the SN in such a way that combining it with a much stronger decoy signal does not distort this structure and even enhances the retrieval properties of the SN.
1. Stealth Communication System
The proof of this concept is provided by means of using a numerical simulator.
The transmitter is represented by tokens 0, 1, 2, 9, 15, and 21. Token 9 represents a source of raw random data. In this case, it generates a PN sequence of the amplitude of 1 V at the rate of 128 Hz. The output of this token may be either +1 or −1. Generally, a subsystem represented by token 9 should generate a time series with statistical and spectral properties that are similar to those of the noise in the communication channel. This requirement is easy to satisfy if the channel noise can be represented by the noise sampled locally at the transmitter. Otherwise, one must be able to estimate some of the parameters of the channel noise at the receiver. The corresponding methods have been published (Mitlin, 2004). In the case of limited information about the channel, the minimum requirement of the time series is that its magnitude should be approximately on or below the level of the channel noise.
The time series generated by token 9 is separated into two random data streams. The first (token 0) is generated as follows:
output=(current input+input delayed by one sample)/2 (1)
The second (token 1) is generated as follows:
output=(current input−input delayed by one sample)/2 (2)
It follows from Eqs. (1) and (2) that operations performed by tokens 0 and 1 present the original time series as the sum of two other time series which, presuming that consecutive samples of the original time series are uncorrelated, provides that at least the first two statistical momenta are the same for these two time series.
Other properties of these two time series, however, are different. The most noticeable difference is in their Fourier spectra.
The random data streams generated by tokens 1 and 0 are components for further generation of the smart noise. They enter a switch (token 2) with two states controlled by the output of token 15. Token 15 represents a source of the proprietary message to be transmitted. In this case, it is a PN sequence with the amplitude of 1 V and two levels, +1 and −1. Symbols at the output of token 15 are generated at the rate of 1 Hz. Accordingly, the two internal states of switch 2 are +1 and −1. The output of switch 2 is a sequence of one-second long segments of the random data streams generated by tokens 0 and 1. A typical spectrum of this output is shown in
The final element of the transmitter relevant to our study is token 21. This token generates a decoy signal that conceivably could be added to the smart noise if an additional level of protection is needed for the message to be transmitted. We will discuss the details of operation, relevant to token 21, later in this document. It will be assumed for now that the decoy signal generator is turned off.
Depending on the specifics of the system, the transmitter may be complemented by a bandpass filter whose purpose is to shape the spectral window at the edges. Also, if the smart noise is generated by combining more than two random data streams, the latter may have to be passed through a bank of detrenders.
Next, the smart noise enters the channel and is distorted (or, shall we say, disguised) by the channel noise. In this study an AWGN channel is assumed.
Next, the mixture of the smart noise and the channel noise enters the receiver. There it is processed by two sequences of tokens (tokens 8, 4, 7, 3, 6 and tokens 10, 12, 14, 11, 13). Token 8 performs the same operation as token 0. Similarly, token 10 performs the same operation as token 1. Tokens 4 and 12 are cross-correlators with a window of 2. The outputs of these tokens, which are autocorrelation functions of the outputs from tokens 8 and 10, are then each processed by a rectifier (i.e. an absolute value is taken). The rectifier outputs are then each smoothed out by a sequence of two averagers. We found that the best performance of this system is attained as the sizes (in samples) of the windows of tokens 3, 11, 6, and 13 are mutually prime to the number of samples in one message symbol transmitted, i.e. 128. Specifically, the size of the window of tokens 3 and 11 was 67, and the size of the window of tokens 6 and 13 was 43. The outputs of tokens 6 and 13 enter the comparator (token 5). The output of the comparator is either +1 or −1 depending on the result of the comparison, and it represents the proprietary message retrieved at the receiver.
The performance of this stealth communication system was analyzed by comparing symbols of the transmitted and received messages in the BER token 19 after sampling these two messages at the rate of 1 Hz.
2. Test on Randomness
It was observed that transmitting the smart noise with a channel noise (CN) in the background may or may not be done in the stealth mode. Specifically, if the level of the SN is substantially higher than the level of the CN, then standard tests on randomness reveal an order in the structure of the mixture of SN and CN. However, at the SN-to-CN ratios (SNCNR) of the order of unity, the structure cannot be revealed. This is illustrated by the results of simulations described below.
Fourier spectra of different mixtures of the SN and CN are shown in FIGS. 6 to 8. These spectra were computed using 4096 samples. FIG. 6 corresponds to the SNCNR value of 0 dB;
There are even more rigorous tests on randomness described below (Masters, 1995).
A borderline value of the SNCNR separating the situations where the structure of the SN with the CN in the background can and can not be revealed is about 10 dB. This is shown in
3. BER Performance
We conducted a series of simulations to evaluate the performance of the stealth communication system described.
4. Using the Decoy Signal
A remarkable feature of this stealth communication system is that the SN can be complemented with a signal with a well defined, possibly periodical structure. This would be a decoy signal aimed to disguise the presence of the SN. Note that this approach is completely opposite to the traditional one where a lot of noise would be generated to disguise the presence of a non-random signal. Another remarkable feature of the method of adding the decoy signal to the SN is that it can be done not only without corrupting the SN but sometimes even enhancing the SN retrieval quality.
Even more outrageous simulation results are presented in
An important conclusion is that one can use the SN for stealth transmission even when the channel noise is low if a sufficiently large, properly designed decoy signal is used in conjunction with the SN.
5. References
Since other modifications and changes varied to fit particular operating requirements and environments will be apparent to those skilled in the art, the invention is not considered limited to the example chosen for purposes of disclosure, and covers all changes and modifications which do not constitute departures from the true spirit and scope of this invention.
Having thus described the invention, what is desired to be protected by Letters Patent is presented in the subsequently appended claims.