As illustrated in
Attempts have been made to prevent coning/cresting when reservoir characteristics are known. However, these attempts have had limited impact. Examples of attempts include the following:
1) The production well is completed higher up in the net pay zone, so the water cone has to be elongated before the well waters off. This is a temporary fix at best, and extra production is often marginal.
2) As illustrated in
3) Oil production rates are minimized to delay or prevent coning/cresting
4) As illustrated in
5) As illustrated in
There have also been attempts to limit the coning/cresting when reservoir characteristics are unknown or coning/cresting isn't large enough to justify prevention investments. Known remediation attempts have had limited impact. Examples of these attempts include the following:
The following terms and acronyms will be used herein:
Because of the need for a cresting/coning remediation process, SACT is a process that adds steam to the cone/crest zone and heats oil in the cone/crest zone and at the cone/crest zone edges. In a preferred embodiment, the steam addition is followed by a soak period to allow further heating of oil and to allow gravity to cause a re-saturation of the cone/crest zone. Preferably after the soak period, the oil well may then be returned to production.
Preferably, the SACT process is applied to 1) heavy oils where native oil viscosity is too high to allow rapid oil re-saturation of the cone/crest zone, preferably where the viscosity is >1000 cp, and 2) bitumen (SAGD) wells.
According to a primary aspect of the invention, there is provided a cyclic remediation process to restore oil recovery from a primary well that has watered off from bottom water encroachment (cone or crest) whereby:
In a preferred embodiment of the process the well was previously steamed.
Preferably the steam is injected using the existing primary oil production well.
In an alternative embodiment, the steam is added using a separate well.
In another embodiment of the process, the primary well is a horizontal well and bottom water encroachment forms a water crest zone beneath the primary well.
In another embodiment, in the event that the primary well is not suitable for steam injection, several substantially parallel horizontal wells may be linked with a separate perpendicular horizontal well completed in the steam crest zone of each of the parallel horizontal wells.
Preferably several of the substantially parallel horizontal wells may be linked at or near the midpoint of the horizontal well lengths, in the crest zone.
In another embodiment, the heavy oil is bitumen (API <10; μ>100,000 cp).
In another embodiment, there is provided a cyclic remediation process to restore bitumen recovery from a bitumen well that has watered off from bottom water encroachment (cone or crest) whereby:
In another embodiment, the bitumen production well is used for steam remediation injection.
In another embodiment, steam injection rates (measured as water) are 0.5 to 5.0 times fluid production rates when the primary well had watered off.
Preferably the steam quality at the steam injector well head is controlled between 50 and 100%.
Preferably the well is shut in for a soak period of 1 to 10 weeks.
SACT is a remediation process for heavy oil wells (or for SAGD) that have coned or crested due to bottom water encroachment. The process is cyclic and has the following phases:
One of the issues for a conventional heavy oil production facility is that primary production wells are not designed for steam injection. The production wells can be damaged by thermal expansion, and the cement isn't designed for high temperature operations. This problem can be mitigated by one of the following options:
Referring to
Referring to
Referring to
Bitumen SAGD is a special analogous case for SACT process applications. If the SAGD project has an active bottom water 20, we can expect that the lower SAGD production well will cone/crest eventually (
If bitumen is above an active bottom water, SAGD can, theoretically, produce bitumen without interference from bottom water, if process pressures are higher than native reservoir pressure, if the pressure drop in the lower SAGD production well doesn't breach this condition, and if the bottom of the reservoir (underneath the SAGD production well) is “sealed” by high viscosity immobile bitumen underneath the production well. But, this is a delicate balance for the following reasons:
Once the production well has coned/crested, the SACT process can be applied. Unlike heavy oil, the SAGD production well has been thermally completed and it can be used as a SACT steam injector.
Again, the SACT process is cyclic with the following steps:
Nexen conducted a simulation study of SACT using the Exotherm model. Exotherm is a three-dimensional, three-phase, fully implicit, multi-component computer model designed to numerically simulate the recovery of hydrocarbons using thermal methods such as steam injection or combustion.
The model has been successfully applied to individual well cyclic thermal stimulation operations, hot water floods, steam floods, SAGD and combustion in heavy hydrocarbon reservoirs (T. B. Tan et al., Application of a thermal simulator with fully coupled discretized wellbore simulation to SAGD, JCPT, January 2002).
We simulated the following reservoir:
We simulated SACT after primary production coned/crested wells. For a vertical well we used steam slug sizes from 50-200 m3. For horizontal wells we used slug sizes an order-of-magnitude larger.
Based on the results shown in
In 1995-96 Nexen contracted SRC to conduct a scaled-physical model test of the SACT process based on the following:
14 m oil pay column
16 m active bottom water column
32% porosity
4D permeability
3600 cp in-situ viscosity
980 kg/m3 oil density (API=12.9)
28° C., 5 Mpa reservoir T,P
150 m well spacing, 1200 m horizontal well length
Tables 2, 3, 4 and
Based on the studies and simulations discussed herein, it appears that the SACT process of the present invention works best for heavy oil cone/crests, since heating the zone and the oil can improve oil mobility dramatically compared to light oils.
If the heavy oil is produced using horizontal production wells and crests have formed from an active bottom water, a preferred way to link the well crests is a substantially perpendicular horizontal well about mid-way along the crest. (
The steam slug should be preferably 0.5 to 5.0 times the cumulative primary oil production, on a water equivalent basis (ie. steam measured as water volumes). The steam injection rate is determined by injection pressures—preferably no more than 10% above native reservoir pressures at the sand face.
Enough time is needed for the steam to heat surrounding oil and the oil to re saturate the cone (crest zone)—based on the above, it is preferably between 1 to 10 weeks after the end of the steam cycle.
The process may be repeated when the water cut in produced fluids exceeds about 95% (v/v).
Some of the preferred embodiments of the present invention are provided below.
Other embodiments of the invention will be apparent to a person of ordinary skill in the art and may be employed by a person of ordinary skill in the art without departing from the spirit of the invention.
Number | Date | Country | |
---|---|---|---|
61644100 | May 2012 | US | |
61507196 | Jul 2011 | US | |
61549770 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13543012 | Jul 2012 | US |
Child | 13889775 | US | |
Parent | 13628164 | Sep 2012 | US |
Child | 13543012 | US |