1. Field of the Invention
This invention relates to oil field production apparatus and techniques, and more particularly, to such apparatus and techniques for use in the production of heavy oil or viscous crude oil.
2. Background of the Invention
It has been known to produce viscous crude oils in reservoirs by drilling vertical wells into the producing zone and then injecting steam into the producing zone to increase the mobility and reduce the viscosity of the viscous crude. This steam injection has been done in several different ways. In one technique, wells in the reservoir can be cyclically steamed using a process called cyclic steam stimulation (CSS). In this process, steam is injected down a vertical well into the producing zone. The steam is allowed to “soak” in the reservoir for a relatively short period of time to heat the crude oils, thus reducing its viscosity and increasing its mobility. The well is then placed back in production for a relatively longer period of time to extract the heated less viscous crude oil. This cycle is typically repeated until the production becomes unprofitable.
Another technique which has been used to produce viscous crude reservoirs is to drill vertical wells in a geometrical pattern into the producing zone, such as in a 5-spot or 9-spot pattern. In these geometrical patterns, the wells are placed within the reservoir field, typically in a symmetric fashion, and are designated as either an injection well or a production well based on its position in the pattern. Steam is continuously injected into the producing zone via the injection wells to heat the viscous crude oil and drive it to neighboring vertical producing wells in the geometrical array.
In the initial development of a reservoir of viscous crude these described methods have worked well. Over time however, the steam tends to congregate in the upper portion of the producing zone. This, of course, may cause less heating of the viscous crude in the lower portion of the producing zone. The heavy crude saturated lower portion of the producing zone is not depleted as the high viscosity of the crude prevents its migration to the well bores of the producing wells. Thus large quantities of potentially producible crude oil can otherwise become not recoverable.
It is known in the art that horizontally-oriented, or horizontal wells can be utilized to help production from the portions of the producing zone, especially the lower portion discussed above, which are typically not depleted after injecting steam with vertical wells. It is desirous in these assemblies to deliver uniformly distributed steam to the producing zone along the entire length of the horizontal section of the well.
Horizontal steam injection wells are becoming more functional and efficient for heavy oil steam flooding and in many cases the only economic solution to produce some reservoirs. Successful application of horizontal steam injection requires controlled steam distribution along the entire length of the horizontal section. Many devices have been promoted as completion methods to provide this controlled distribution; however, these devices have not been tested and have severe limitations.
The main limitation is that the proposed equipment can at best provide control for the injection of single phase steam (“100% quality”). The performance of such devices when extracting a portion of a wet steam flow, vapor and liquid, suffers from phase splitting effects. This phase splitting phenomenon relates to the fact that the percent of vapor extracted from the total vapor is different than the percent liquid extracted from the total liquid. For example, if the main flow has a steam quality of seventy-percent (70%), the extracted flow may have a significantly higher or lower quality.
Many steam flood operations use two-phase steam consisting of both a vapor and a liquid phase. Even for operations injecting single phase, 100% quality steam at the wellhead, heat losses and water holdup can yield varying steam qualities along the subsurface horizontal section. Furthermore, if both phases do not split proportionally within a device, mass distribution is non-uniform and uniform latent heat—a more crucial reservoir performance criteria—is not achieved.
Most proposed devices extract steam off the main tubing flow through a series of orifices which may or may not feed additional flow restricting mechanisms before delivery to the reservoir. The basis for many of these devices and hopes for success rely on modified Inflow Control Devices (“ICDs”) operating in a reversed flow direction (“injection mode”). Although not fully tested, such mechanisms do have potential for the distribution of single phase, 100% quality steam. However, in applications utilizing two-phase steam, flow regime effects and different phase velocities cause unknown phase distributions depending on the vapor-water separation within the device. Optimum steam distribution and latent heat delivery requires a device capable of reliably controlling injected steam over a range of qualities of about forty percent (40%) to one-hundred percent (100%).
According to an aspect of the present invention, a well assembly is disclosed for injecting steam into a subterranean reservoir. The well assembly includes a string of tubing in fluid communication with a producing zone of a subterranean reservoir. The string of tubing has a substantially vertical section and a substantially horizontal section extending from a lower portion thereof. The substantially horizontal section defines a heel portion at one end and a toe portion at the opposite end. An opening formed on the inner surface of the substantially horizontal section defines an inlet. An opening formed on the outer surface of the substantially horizontal section defines an outlet. A passageway extends between the inlet and the outlet such that steam received by the inlet is delivered to the outlet. The inlet is formed in the string of tubing axially closer to the heel portion than the outlet so that when steam is received by the passageway an axial momentum of the steam is maintained. For example, the passageway can extend less than about fifteen degrees from the inner surface.
In one or more embodiments, the string of tubing has a reduced cross-sectional flow area and the inlet is formed in the reduced cross-sectional flow area. For example, the reduced cross-sectional flow area can have an inwardly tapered surface and the inlet can be formed at least partially on the inwardly tapered surface.
In one or more embodiments, the string of tubing has a reduced cross-sectional flow area having an inwardly tapered surface, an outwardly tapered surface, and a reduced diameter surface extending between the inwardly tapered surface and the outwardly tapered surface so that a velocity of the steam is increased by the inwardly tapered surface and the velocity of the steam is reduced by the outwardly tapered surface.
In one or more embodiments, an annulus that is in fluid communication with the outlet is formed in the outer surface of the string of tubing and extends around the circumference thereof. A nozzle can be positioned within the annulus to control the flow of steam received from the outlet.
Another aspect of the present invention includes a well assembly for injecting steam into a subterranean reservoir. The well assembly includes a string of tubing in fluid communication with a producing zone of a subterranean reservoir. The string of tubing has a substantially vertical section and a substantially horizontal section extending from a lower portion thereof. The substantially horizontal section defines a heel portion at one end and a toe portion at the opposite end. A reduced cross-sectional flow area is positioned between the heel portion and the toe portion of the substantially horizontal section. An opening formed on the inner surface of the reduced cross-sectional flow area defines an inlet. An opening formed on the outer surface of the substantially horizontal section defines an outlet. A passageway extends between the inlet and the outlet to deliver steam from the inlet to the outlet.
In one or more embodiments, the string of tubing has a reduced cross-sectional flow area having an inwardly tapered surface, an outwardly tapered surface, and a reduced diameter surface extending between the inwardly tapered surface and the outwardly tapered surface so that a velocity of the steam is increased by the inwardly tapered surface and the velocity of the steam is reduced by the outwardly tapered surface.
In one or more embodiments, the inlet is formed on the reduced diameter surface. For example, the inlet can be axially closer to the heel portion than the outlet so that when steam is received by the passageway an axial momentum of the steam is maintained. Alternatively, the inlet and the outlet can be formed at substantially the same axial locations between the heel portion and the toe portion.
In one or more embodiments, the inlet is formed at least partially on the inwardly tapered surface. For example, the inwardly tapered surface can be tapered about fifteen degrees from an axis of the substantially horizontal section and the inlet can be about parallel to the axis of the substantially horizontal section.
In one or more embodiments, an annulus that is in fluid communication with the outlet is formed in the outer surface of the string of tubing and extends around the circumference thereof. A nozzle can be positioned within the annulus to control the flow of steam received from the outlet.
Another aspect of the present invention includes a well assembly for injecting steam into a subterranean reservoir. The well assembly includes a string of tubing in fluid communication with a producing zone of a subterranean reservoir. The string of tubing has a substantially vertical section and a substantially horizontal section extending from a lower portion thereof. The substantially horizontal section defines a heel portion at one end and a toe portion at the opposite end. A reduced cross-sectional flow area having an inwardly tapered surface, an outwardly tapered surface, and a reduced diameter surface extending between the inwardly tapered surface and the outwardly tapered surface is positioned between the heel portion and the toe portion of the substantially horizontal section. An opening formed on the inner surface of the reduced cross-sectional flow area defines an inlet. An opening formed on the outer surface of the substantially horizontal section defines an outlet. A passageway extends between the inlet and the outlet such that steam received by the inlet is delivered to the outlet. The inlet is formed in the string of tubing axially closer to the heel portion than the outlet so that when steam is received by the passageway an axial momentum of the steam is maintained.
In one or more embodiments, the inlet is formed on the reduced diameter surface. For example, the passageway can extend less than about fifteen degrees from the inner surface of the reduced diameter surface.
In one or more embodiments, the inlet is formed at least partially on the inwardly tapered surface. For example, the inwardly tapered surface can be tapered about fifteen degrees from an axis of the substantially horizontal section and the inlet can be about parallel to the axis of the substantially horizontal section.
In one or more embodiments, an annulus that is in fluid communication with the outlet is formed in the outer surface of the string of tubing and extends around the circumference thereof. A nozzle can be positioned within the annulus to control the flow of steam received from the outlet.
Referring initially to prior art
Referring now to prior art
A steam generator source (not shown) is located at the surface and provides an input of steam into tubing string 33. The steam travels down tubing string 33 to its lower horizontal section 29B where it exits via drilled holes 39. As will be described, while steam can exit tubing string 33 between heel portion 33A and toe portion 33B, uniform mass distribution and latent heat is not achieved along horizontal section 29B.
Referring to
When two-phase fluid F is under low velocity conditions, such as less than 40 feet per second, the flow is stratified. In particular, gravity causes the liquid phase to travel along the bottom portion of the pipe. When superficial vapor and liquid velocities are both low, the interface between the liquid and vapor phases is smooth. As vapor velocities begin to increase, the interface becomes wavy. As the superficial liquid velocities increase, the flow tends to form in slugs or large waves of liquid (short in duration) separated by stratified wavy flow. At very high superficial flow velocities, the liquid forms a ring on the inner surface of the pipe wall and the vapor travels in the center of the pipe. At high superficial vapor velocities and steam qualities, the liquid becomes entrained in the vapor core such that the pipe is filled with vapor except for small droplets of liquid mist.
Liquid droplets D have higher densities and thus higher momentum than the vaporous water, which restricts the ability of liquid droplets D to change direction. When liquid droplets D traveling in the main flow of fluid F encounter a smaller vapor flow, or velocity profile, toward drilled holes 39, liquid droplets D experience a drag force to change direction. However, the momentum of liquid droplets D opposes this change of direction, thereby resulting in less movement toward drilled holes 39. In the embodiment shown in
In
Referring to
A plurality of openings 117 are preferably intermittently spaced along the length of tubing 111. For example, openings 117 can be positioned every 100 to 500 feet along tubing 111. In general, spacing of openings 117 will be dependent upon the particular reservoir characteristics. One skilled in the art will appreciate that isolation between a first group of openings 117 and a second group of openings 117 can be utilized. Furthermore, conventional sand control mechanisms, such as a sand screen, can be placed adjacent to openings 117. In one embodiment, tubing 111 ends near the heel portion and openings 117 are configured in the liner.
Openings 117 reduce the directional change necessary for liquid droplets to enter openings 117, thereby making it easier for liquid droplets to exit tubing 111. In particular, when steam is received by passageway 117C an axial momentum of the steam is maintained. Accordingly, the difference in steam quality delivered from the upstream portion of tubing 111 compared with the downstream portion of tubing 111 is reduced as more liquid droplets entrained in the vapor core are able to exit openings 117.
Referring to
Tubing sub 120 includes inwardly tapered surface 121 that extends between the portion of inner surface 113 having the normal diameter of tubing 111 and reduced diameter surface 123, which is where openings 117 are located. Inwardly tapered surface 121 is located upstream of openings 117 to condition the flow of fluid F. Tubing sub 120 can also include outwardly tapered surface 125 that is positioned downstream of openings 117, and that extends from reduced diameter surface 123 to the portion of inner surface 113 having the normal diameter of tubing 111.
The reduction in the diameter of tubing 111 at inwardly tapered surface 121 increases the velocity of fluid F, while the increase in diameter from outwardly tapered surface 125 reduces the velocity of fluid F. The continued variation of the velocity of fluid F along the length of tubing 111 induces mixing of liquid droplets D with the vaporous water prior to flowing toward openings 117. Mixing fluid F can help provide a more uniform steam quality being delivered along the length of tubing 111. By way of example, if tubing 111 were a conventional string of 4.5 inch tubing, inner diameter 113 would be about 3.96 inches. The desired velocity change could be achieved when reduced diameter surface 123 is equivalent to the inner diameter of standard 2⅜ inch tubing, which is about 2.44 inches. Preferably inwardly and outwardly tapered surfaces 121, 125 are at about fifteen degree respective inclines or declines.
Referring to
In the embodiment, the diameter of inner surface 113 adjacent openings 117 is reduced, thereby making the thickness of tubing 111 immediately upstream and downstream of openings 117 thicker than in the embodiment shown in
Tubing sub 120 in
As shown in
The embodiment shown in
The uniform steam delivery described with respect to the above embodiments can prevent steam migration into the underlying water zone or into the upper desaturated portion of the reservoir. Also by delivering the steam uniformly along the entire horizontal section of the producing zone penetrated by the horizontal section of the well, any potential damage to a production liner in this horizontal bore is reduced. Furthermore, the above embodiments reduce phase splitting along the horizontal section of the wellbore, thus delivering a uniform steam quality and ensuring uniform latent heat to the reservoir.
The performance of alternative tubing configurations can be illustrated through the use of a two-phase flow model. In particular, fluid typically flows as a film along the wall of the pipe and as droplets entrained in the vapor core. The liquid entrainment and film thickness in a flowing pipe can be determined using the two-phase flow model. Liquid entrainment can be estimated by the percent of the total liquid on the circumference of the pipe wall that is traveling at significantly lower velocity. At high superficial vapor velocities the liquid on the circumference of the pipe wall becomes entrained in the vapor core resulting in the pipe being filled with vapor and small liquid droplets D. Since gravitational effects in a horizontal section creates thicker films on the bottom, often the liquid thickness is also expressed in terms of a mean film thickness, which would represent the thickness of the film if evenly distributed over the entire inner circumference. In general, if more of the liquid is entrained in the vapor, a more representative sampling or extraction of two-phase flow will occur.
A two-phase flow model for 4.5 inch diameter tubing with a pressure of 400 psig, a mass flow rate of 1200 barrels of steam per day, and a steam quality of seventy percent (70%) was performed. The calculated liquid entrainment was twenty-six percent (26%), the mean liquid film thickness was 0.037 inches, and the bottom liquid film thickness was 0.14 inches. When the tubing is reduced to 3.5 inches and the other flow conditions are kept the same, the liquid entrainment is ninety-six percent (96%), the mean liquid film thickness is 0.003 inches, and the bottom liquid film thickness is 0.008 inches. The reduced cross-section increased the calculated entrained liquid from twenty-six percent (26%) to ninety-six percent (96%) and greatly reduced the liquid film to yield a more evenly and predictable extraction or distribution.
As will be described below, the performance of alternative tubing configurations are compared to prior art tubing string distribution assemblies using a surface horizontal steam injection facility. The horizontal steam injection facility is capable of testing a wide range of full-sized downhole completion equipment, such as tubing and liner flow control devices, at the surface under controlled conditions. Additional details of the surface horizontal steam injection facility can be found in S.P.E. paper #132410, titled, “Addressing Horizontal Steam Injection Completions Challenges with Chevron's Horizontal Steam Injection Test Facility.”
The steam quality extracted from the various tubing configurations was measured for all possible combinations of three inlet pressures, two inlet steam qualities, six inlet rates and two pressure extraction ratios. The figures below show the difference between the steam quality extracted through the device's exit and the steam quality flowing in the tubing as a function of the tubing superficial vapor velocity.
While the invention has been shown in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but susceptible to various changes without departing from the scope of the invention. For example, tubing 111 for each of the embodiments shown in
The present application for patent is a division of co-pending U.S. Non-Provisional application bearing Ser. No. 12/908,687, filed on Oct. 20, 2010, which claims the benefit of U.S. Provisional applications bearing Ser. Nos. 61/254,137 and 61/254,146, both filed on Oct. 22, 2009, which are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61254137 | Oct 2009 | US | |
61254146 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12908687 | Oct 2010 | US |
Child | 14053366 | US |