1. Field of the Invention
This invention relates to a steam generator and more specifically to a steam generator utilizing microwave heat. The steam generator is capable of use as a stationary unit and for a propulsion system in a vehicle. The conversion of electrical energy to steam permits the use of the millions of existing motor vehicles already constructed with internal combustion engines.
2. Prior Art
Earlier patents have dealt with the use of microwave energy to generate steam and also to use the steam to propel a vehicle with the steam produced. Two Long, et al patents, U.S. Pat. No. 3,778,578 and U.S. Pat. No. 3,794,801 show the concept of steam generation by the use of microwave energy and the use of the steam so generated to propel a vehicle. Interestingly, neither of these patents disclosed the source of electrical power to operate the steam powered vehicle. Both of the Long, et al patents generate the steam in a coil. Another patent, Long, U.S. Pat. No. 3,816,689 is similar to both Long et al patents but teaches the use of silicon carbide particle about the coils.
3. Objects
The objects of the invention are;
To provide an efficient steam generator that is adaptable both as a stationary steam generator and as a source of propulsion for a vehicle including existing vehicles with internal combustion engines.
To provide a steam generator that is sufficiently limited in weight and size to permit it's use in a vehicle as the propulsion system.
To provide a steam generator that is economical to operate.
To provide a steam generator system that is comparatively reasonable in cost to construct.
A steam generator is provided which includes a tank. The tank has an inner surface and is open at one end. The opposite end has at least one port. At least one water line extends along the length of the tank and has jets to spray a mist of water. A flange is mounted on the open end of the tank and a magnetron is mounted in the flange. The magnetron includes a means to cool the magnetron. A heat tube extends from the magnetron into the tank. A block of silicon carbide is located within the heat tube. The silicon carbide has a passageway through it which passage is connected to the magnetron. There is a means for supplying power to the magnetron to activate the magnetron. There is also a means to supply water to the water line. A means is connected to the port for delivery of steam from the tank.
The steam generator is enclosed within a tank 11 with a magnetron 13 mounted on the outside of the tank 11 and pressure gauges 15 also located on the outside of the tank 11. The pressure gauge 15 also serves as a blow off valve. The tank 11 has an open end 17. A flange 19 is secured by bolts 21 to the open end 17. The tank 11 has an inside surface 23 and an outside surface 25. A cooling fan 27 surrounds the magnetron 13 which is mounted on the flange 19.
A heat tube 29 extends from the magnetron 13 through the flange 19 into the tank 11. One or more ports 33, as shown in
In
The water lines 41 include, in close proximity to one another, pin sprayers 43 to produce a comb of mist which impinges upon the heat tube 29.
As previously stated, the heat tube 29 extends from the magnetron 13, as shown in
The magnetron 13 fires microwave energy into the passageway 48 heating the block 45. This in turn heats the heat tube 29. As the mist of water from the water lines 41 impinges on the heat tube 29, steam is produced which accumulates and creates increased pressure within the tank 11. As seen in
In
The oil in the crankcase 59 floats on the water and a float 61 which rides on the water is used to control the removal of the water. Once the water reaches a specified depth, a pump 63 in a separator line 64 which is connected to the crankcase 59, is activated. The pump 63 forces the water through a filter 65 to remove any retained oil. The separator line 64 is also connected to a storage container 66 where the water is accumulated. When the water level in the crankcase 59 drops to a predetermined level, the float 61 drops and turns off a switch 67 which terminates the removal of water from the crankcase 59.
The source of make-up water is a dehumidifier 69 which collects water from the atmosphere. A make-up pump 71 forces the make-up water through a make-up filter 72 into the storage container 66 by means of a make-up line 73.
As previously stated, the engine 55 being used as an example is a four-cylinder engine. The same approach would be used for a six or eight cylinder engine. Since the engine 55 in
The water formed in the manifold 75 from exhaust steam is returned to the steam generator and more specifically, the water lines 41, in the steam generator by a recycle line 77. The water in the recycle line 77 is freed into the water line 41 by a recycle pump 79.
The storage container 66 is also connected to the recycle line 77 to supply by a storage line 80 additional water from the storage container 66 as needed. Inside the storage 66 is a float 81. The float 81, which detects the level of water in the storage container 66, is connected to a switch 83 which provides a signal to the gauge 85, most usually located on the dash board of the vehicle 93.
The vehicle 93, namely a two-door car is shown in
Additionally electric power is produced by magnetos 97 pictured on each wheel 99 of the vehicle 93. An outer ring 101 has magnets 103 mounted on it. The outer ring 101 rotates with the wheel on which it is mounted. On an inner ring 105 which does not rotate, coils 107 are located. As the magnets 103 rotate past the coils 107, electricity is generated in the coils 107.
A schematic diagram of the electrical circuitry is shown in
The alternating power source 109 and the magnetos 97 and the solar panels 95 are all fed into an inverter 111. Inverters 111 are well known and are adaptable to each specific application. In this case, the inverter 111 takes a combination of different power sources, that may vary as to input at different times and converts that available power to both generally one hundred ten volt alternating current and twelve volt direct current that must be used to power the magnetron 13. The general electrical system 112 of the vehicle 93 such as lights and horn operate on twelve volt direct current.
A computer 113 which controls batteries 115 operates on twelve volt direct current as does the distributor 74 which controls the activation of the ball valves 57 in the steam lines 53.
Referring to
The computer 113 selects which battery 115 is first used and only one battery 115 at a time is discharged. At start up, the battery one 121 is preferably selected first. All the other batteries 115, namely batteries two 123 through ten 125, while battery one 121 is being discharged, are continued with a trickle charge.
When battery one 121 is discharged, battery two 123 begins discharge. Battery one 121 is supplied a fast charge and batteries three 129 through battery ten 125 remain on trickle charge. When battery two 123 is drained of power, batteries three 129 is placed on discharge and battery two 123 placed on fast charge. Battery one 121 and battery four 131 think battery ten 125 remain on trickle charge. This cycle continues through battery ten 125. The battery 115 just discharged is placed on fast charge and all other batteries 115 except that battery 115 just discharged and the one battery 115 currently on discharge are placed on trickle charged.
While a preferred embodiment has been shown and described, it will be apparent to those skilled in the art that many other changes and modifications may be made without departing from the invention in it's broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the invention.