Claims
- 1. A steam generator, comprising:an entry collector; a discharge collector; a heating-gas duct; and at least one once-through heating area disposed in said heating-gas duct through which a flow is conducted in an approximately horizontal heating-gas direction, said at least one once-through heating area formed from a number of approximately vertically disposed steam-generator tubes connected in parallel for a through flow of a flow medium, said steam-generator tubes configured such that a steam-generator tube of said steam-generator tubes heated to a greater extent compared with a further steam-generator tube of said steam-generator tubes has a higher flow rate of the flow medium compared with said further steam-generator tube, said steam-generator tube and said further steam-generator tube commonly connected to form a first end and a second end, said entry collector connected to said steam-generator tube and said further steam-generator tube at said first end and said discharge collector connected to said steam-generator tube and said further steam-generator tube collector at said second end.
- 2. The steam generator according to claim 1, wherein each of said steam-generator tubes of said at least one once-through heating area has a higher flow rate of the flow medium than each steam-generator tube of said steam-generator tubes disposed downstream of it in a heating-gas direction and belonging to the same said at least one once-through heating area.
- 3. The steam generator according to claim 1, wherein said steam-generator tubes of said at least one once-through heating area have a larger inside diameter than a steam-generator tube of said steam-generator tubes disposed downstream of it in a heating-gas direction and belonging to the same said at least one once-through heating area.
- 4. The steam generator according to claim 1, including a choke device being in each case connected upstream of a number of said steam-generator tubes of said at least one once-through heating area in a direction of flow of the flow medium.
- 5. The steam generator according to claim 1, including at least one of a plurality of entry collectors and discharge collectors connected to said at least one once-through heating area, each of said plurality of entry collectors commonly connected upstream of a number of said steam-generator tubes of said at least one respective once-through heating area in a direction of flow of the flow medium.
- 6. The steam generator according to claim 5, including a choke device connected upstream of at least one of said plurality of entry collectors.
- 7. The steam generator according claim 1, including a gas turbine disposed upstream of said heating-gas duct on a heating-gas side.
- 8. A steam generator, comprising:a heating-gas duct; and at least one once-through heating area disposed in said heating-gas duct through which a flow is conducted in an approximately horizontal heating-gas direction, said at least one once-through heating area formed from a number of approximately vertically disposed steam-generator tubes connected in parallel for a through flow of a flow medium, said steam-generator tubes configured such that a steam-generator tube of said steam-generator tubes heated to a greater extent compared with a further steam-generator tube of said steam-generator tubes has a higher flow rate of the flow medium compared with said further steam-generator tube, said steam-generator tubes of said at least one once-through heating area having on average in each case a ratio of friction pressure loss to geodetic pressure drop at full load of less than 0.4.
- 9. The steam generator according to claim 8, wherein each of said steam-generator tubes of said at least one once-through heating area has a higher flow rate of the flow medium than each steam-generator tube of said steam-generator tubes disposed downstream of it in a heating-gas direction and belonging to the same said at least one once-through heating area.
- 10. The steam generator according to claim 8, wherein said steam-generator tubes of said at least one once-through heating area have a larger inside diameter than a steam-generator tube of said steam-generator tubes disposed downstream of it in a heating-gas direction and belonging to the same said at least one once-through heating area.
- 11. The steam generator according to claim 8, including a choke device being in each case connected upstream of a number of said steam-generator tubes of said at least one once-through heating area in a direction of flow of the flow medium.
- 12. The steam generator according to claim 8, including at least one of a plurality of entry collectors and discharge collectors connected to said at least one once-through heating area, each of said plurality of entry collectors commonly connected upstream of a number of said steam-generator tubes of said at least one respective once-through heating area in a direction of flow of the flow medium.
- 13. The steam generator according to claim 12, including a choke device connected upstream of at least one of said plurality of entry collectors.
- 14. The steam generator according claim 8, including a gas turbine disposed upstream of said heating-gas duct on a heating-gas side.
- 15. A steam generator, comprising:a heating-gas duct; and at least one once-through heating area disposed in said heating-gas duct through which a flow is conducted in an approximately horizontal heating-gas direction, said at least one once-through heating area formed from a number of approximately vertically disposed steam-generator tubes connected in parallel for a through flow of a flow medium, said steam-generator tubes configured such that a steam-generator tube of said steam-generator tubes heated to a greater extent compared with a further steam-generator tube of said steam-generator tubes has a higher flow rate of the flow medium compared with said further steam-generator tube, said steam-generator tubes of said at least one once-through heating area having on average in each case a ratio of friction pressure loss to geodetic pressure drop at full load of less than 0.2.
- 16. The steam generator according to claim 15, wherein each of said steam-generator tubes of said at least one once-through heating area has a higher flow rate of the flow medium than each steam-generator tube of said steam-generator tubes disposed downstream of it in a heating-gas direction and belonging to the same said at least one once-through heating area.
- 17. The steam generator according to claim 15, wherein said steam-generator tubes of said at least one once-through heating area have a larger inside diameter than a steam-generator tube of said steam-generator tubes disposed downstream of it in a heating-gas direction and belonging to the same said at least one once-through heating area.
- 18. The steam generator according to claim 15, including a choke device being in each case connected upstream of a number of said steam-generator tubes of said at least one once-through heating area in a direction of flow of the flow medium.
- 19. The steam generator according to claim 15, including at least one of a plurality of entry collectors and discharge collectors connected to said at least one once-through heating area, each of said plurality of entry collectors commonly connected upstream of a number of said steam-generator tubes of said at least one respective once-through heating area in a direction of flow of the flow medium.
- 20. The steam generator according to claim 19, including a choke device connected upstream of at least one of said plurality of entry collectors.
- 21. The steam generator according claim 15, including a gas turbine disposed upstream of said heating-gas duct on a heating-gas side.
- 22. A steam generator, comprising:a heating-gas duct; and at least one once-through heating area disposed in said heating-gas duct through which a flow is conducted in an approximately horizontal heating-gas direction, said at least one once-through heating area formed from a number of substantially linear and vertically disposed steam-generator tubes connected in parallel for a through flow of a flow medium, said tubes configured such that, in a first and a second steam-generator tube of said tubes of a same once-through heating area, during an increasing heating of said first steam-generator tube, a flow rate of the flow medium increases in said first tube at the cost of a flow rate of the flow medium in said second tube if said second tube is not heated to a greater extent.
Priority Claims (1)
Number |
Date |
Country |
Kind |
196 51 678 |
Dec 1996 |
DE |
|
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation of copending International Application No. PCT/DE97/02800, filed Dec. 1, 1997, which designated the United States.
US Referenced Citations (8)
Foreign Referenced Citations (9)
Number |
Date |
Country |
2621340 |
Nov 1977 |
DE |
4216278 |
Nov 1993 |
DE |
4227457 |
Feb 1994 |
DE |
0326388 |
Aug 1989 |
EP |
0352488 |
Jan 1990 |
EP |
1558043 |
Feb 1969 |
FR |
1-189401 |
Jul 1989 |
JP |
6-221504 |
Aug 1994 |
JP |
13356 |
Jul 1993 |
WO |
Non-Patent Literature Citations (1)
Entry |
“Verdampfungskonzepte für Benson®-Dampferzeuger”, J. Franke et al., VGB Kraftwerkstechnik 73, 1993, vol. 4, pp. 352-361. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/DE97/02800 |
Dec 1997 |
US |
Child |
09/333146 |
|
US |