1. Field of the Invention
This invention relates generally to oil recovery methods using steam assisted gravity drainage (SAGD) technology.
2. Description of the Prior Art
In many areas of the world, large deposits of viscous petroleum exist, and these deposits are often referred to as “tar sand” or heavy oil” deposits due to the high viscosity of the hydrocarbons which they contain. These tar sands may extend for many miles and occur in varying thicknesses of up to more then 300 feet. Although tar sand deposits may lie at or near the earth's surface, generally they are located under a substantial overburden which may be as great as several thousand feet thick. Tar sands located at these depths constitute some of the world's largest presently known petroleum deposits. The tar sands contain a viscous hydrocarbon material, commonly referred to as a bitumen, in an amount which typically ranges from about 5 to about 20 percent by weight. While bitumen is usually immobile at typical reservoir temperatures, the bitumen generally becomes mobile at higher temperatures and has a substantially lower viscosity at higher temperature than at the lower temperatures.
Since most tar sand deposits are too deep to be mined economically, a serious need exists for an in situ recovery process wherein the bitumen is separated from the sand in the formation and produced through a well drilled into the deposit. Two basic technical requirements must be met by any in situ recovery process: (1) the viscosity of the bitumen must be sufficiently reduced so that the bitumen will flow to a production well; and (2) a sufficient driving force must be applied to the mobilized bitumen to induce production.
Hydrocarbon recovery may be enhanced in certain heavy oil and bitumen reservoirs by using SAGD. When using SAGD, horizontal production and steam injection wellbores are drilled into the hydrocarbon reservoir formations and steam is injected into the steam injection wellbore. The production and steam injection wellbores relatively are closely spaced in the vertical direction, and the injection of steam into the steam injection wellbore causes the heavy hydrocarbons in the production wellbore to become mobile due to the reduction of in situ viscosity. The benefits of SAGD over conventional secondary thermal recovery techniques include higher oil productivity relative to the number of wells employed and higher ultimate recovery of oil in place.
U.S. Pat. No. 6,988,549 discusses certain problems associated with typical SAGD projects. According to the '549 patent: (a) the economics of such projects is significantly impacted by the cost associated with generating steam; (b) SAGD does not typically employ the use of super-saturated steam because of the high cost of producing this steam with conventional hydrocarbon-fired tube boilers which results in using steam that is less efficient in transferring heat to the heavy oil reservoir; and (c) the produced water associated hydrocarbon production from these operations is typically disposed of in a commercially operated disposal well for a fee.
It is believed that the economics of SAGD may have been adversely impacted by the mechanisms heretofore utilized to inject steam and that the economics may be substantially increased by providing a homogeneous distribution of steam in the steam injection wellbore. This novel and useful for result is achieved with the apparatus of the present invention.
In accordance with the present invention, steam injection pipe string apparatus is provided for use in the steam injection wellbore in a SAGD operation. A steam injection pipe string according to the present invention comprises an elongated tubular structure having first and second ends which is inserted into the steam injection wellbore and which is utilized to provide steam to that wellbore. Steam injection pipe string apparatus according to the present invention comprises a plurality of orifices, e.g. nozzles, which are disposed in and along the length of the elongated tubular structure. The sizes of the nozzles vary between the first and second ends of the elongated tubular structure, and, in one embodiment, the sizes of the nozzles increase between the first and second ends of the elongated tubular structure. The orifices in the elongated tubular structure are thus sized to yield equalized pressure/temperature steam injection at each section along the steam injection wellbore.
Steam injection pipe string apparatus according to the present invention may be implemented by using a plurality of blank pipes in threaded engagement with one another. Nozzles may be formed in the blank pipes utilizing milling techniques or by forming threaded apertures in the blank pipe and installing a nozzle in each threaded aperture.
Alternatively, pipe string apparatus according to the present invention may be formed by joining a plurality of subs together. In this latter instance, each sub has a different size nozzle depending upon its location in the steam injection pipe string.
Additionally, steam injection pipe string apparatus according to the present invention may be implemented using sand-screen sections where the nozzle is arranged to direct the injected steam choked flow parallel to the wellbore. By using such sand screen apparatus, the flow of steam dissipates somewhat upon exiting the steam injection pipe string so as not to erode the wellbore. In another words, the use of a sand-screen apparatus to inject the steam into the steam injection wellbore lessens erosion of that wellbore.
In accordance with the present invention, a system is provided for injecting steam into a wellbore. The system comprises a source of steam and a steam injection pipe string. The steam injection pipe string comprises an elongated tubular structure with first and second ends, where the first end is operatively coupled to the source of steam and where the steam injection pipe string comprises a plurality of orifices which increase in size from the first to the second end of the tubular structure. The elongated tubular structure may comprise a plurality of blank pipes in threaded engagement with one another or a plurality of subs in threaded engagement with one another with different sized orifices in each of the subs. The orifices may, for example, comprise nozzles which may either be formed in the elongated tubular member using milling techniques or which may be installed in threaded apertures formed in the elongated tubular member. The orifices may also comprise sand screen apparatus.
In accordance with the present invention, a steam assisted gravity drainage system is provided comprising a horizontal production wellbore and a horizontal steam injection wellbore which is vertically spaced from and in proximity to the production wellbore. A source of steam is provided which is connected to one end of a steam injection pipe composed of an elongated tubular structure and a plurality of orifices in that structure. The orifices increase in size as the distance from the end of the tubular structure connected to the steam increases.
In the accompanying drawings:
It will be appreciated that the present invention may take many forms and embodiments. In the following description, some embodiments of the invention are described and numerous details are set forth to provide an understanding of the present invention. Those skilled in the art will appreciate, however, that the present invention practiced without those details and that numerous variations from and modifications of the described embodiments may be possible. The following description is thus intended to illustrate and not limit the present invention.
With reference first to
Steam injection pipe string 10 comprises a plurality of orifices 14-19 which are disposed at spaced intervals along the length of steam injection pipe string 10. Orifices 14 are the closest orifices in steam injection pipe string 10 to the source of steam 20, while orifices 19 are the orifices which are furthest away from source of steam 20.
In accordance with the present invention, orifices 14-19 are sized in steam injection pipe string 10 to yield equalized pressure/temperature steam injection along the length of steam injection wellbore 12. Accordingly, the size of the orifices in steam injection pipe string 10 increases as the distance of the orifice from the source of steam 20 increases. In the exemplary embodiment illustrated in
In some circumstances, the sizes of the orifices 14-19 may vary across the length of steam injection pipe string 10 based on wellbore parameters, e.g., permeability of the zones of interest. Further, the nozzles 14-19 in steam injection pipe string 10 may have variable orifices, where the openings in such orifices may be varied from a control line (not shown) or based on the temperature in steam injection pipe string 10. For example, the opening in a variable orifice may constrict or choke more under higher temperatures than at lower temperatures.
Steam injection pipe apparatus according to the present invention may be implemented in a number of ways. Still referring to
With reference to both
With reference now to
With reference to
Referring to
In
The inflow control devices illustrated in
Referring now to
In accordance with the present invention, steam injection pipe string apparatus according to the present invention may further comprise Distributed Temperature Sensing (DST) apparatus, such as is available from the assignee of the present application. Such DST apparatus advantageously utilizes fiber optic cables containing sensors to sense the temperature changes along the length of the injection apparatus and may, for example, provide information from which a temperature profile for the well may be prepared.
The foregoing description has focused on utilization of inflow control devices in the steam injection wellbore in SAGD operations. Those skilled in the art will appreciate that inflow control devices may also be utilized in the production wellbore.
This application claims the benefit of U.S. Provisional Patent Application No. 60/911,156, filed Apr. 11, 2007.
Number | Date | Country | |
---|---|---|---|
60911156 | Apr 2007 | US |