This invention relates generally to the field of combustion engines, and more particularly to the field of steam-powered engines. Even more particularly, the invention relates to boilerless engines wherein exhaust gas, and the heat contained therein, produced by a small, secondary gasoline or diesel engine is utilized in the operation of the main engine.
Steam powered engines, often characterized as a type of external combustion engine, are well known, and typically comprise a boiler wherein steam is produced. Such systems are relatively inefficient and have not proven suitable as a means to provide the power source for vehicles and the like.
Examples of early attempts to provide an efficient steam powered engine, all of which show devices with significant differences to the invention at hand, include U.S. Pat. No. 1,233,951, issued to Alder in 1917, U.S. Pat. No. 1,424,798, issued to Black in 1922, U.S. Pat. No. 1,682,307, issued to Porter in 1928, U.S. Pat. No. 2,791,881, issued to Denker in 1957, U.S. Pat. No. 3,074,228, issued to Lee in 1963, U.S. Pat. No. 3,192,705, issued to Miller in 1965, U.S. Pat. No. 3,336,746, issued to Southwick in 1967, U.S. Pat. No. 4,102,130, issued to Stricklin in 1978, U.S. Pat. No. 4,151,814, issued to Doieg in 1979, U.S. Pat. No. 4,393,653, issued to Fischer in 1983, U.S. Pat. No. 4,408,573, issued to Schlueter et al. in 1983, and U.S. Pat. No. 6,095,100 issued to Hughes in 2000.
It has been discovered that an efficient steam powered engine can be produced as part of a system comprising a main engine, used to power a vehicle or other equipment, and a secondary internal combustion engine.
The invention is a steam powered engine system or assembly comprising a main engine used to deliver power to a vehicle or other piece of operational equipment in combination with a small, fuel-efficient, secondary, internal combustion engine powered by gasoline, diesel fuel or the like. The secondary engine provides hot exhaust gas that is utilized in multiple ways. The exhaust gas from the secondary engine is used to heat water to a temperature greater than 212 degrees F. for delivery or injection into the cylinder of the main engine. The exhaust gas is also utilized as a scavenging gas by delivering the exhaust gas into the cylinder of the main engine during the up or non-power stroke of the piston. The exhaust gas is also used to provide the necessary heat to maintain the internal temperature of the cylinder above the minimum temperature necessary for flash conversion of the hot water into steam to drive the piston. The exhaust gas may be routed into the main engine cylinder through ports exposed only when the piston is near the bottom of the down stroke, or may be routed into the main engine cylinder through one or more valves located in the upper portion of the main engine cylinder. A heat exchanger is used to transfer heat from the exhaust gas to the water. Gas turbines, blowers or similar means may be utilized to force the exhaust gas into the main engine cylinder and/or to suction the spent gas from the main engine cylinder. In alternative embodiments, the main cylinder may be provided with internal heating means, such as by providing a glow plug or resistance element, which may be electrically powered by a generator acting in combination with the secondary engine, or by routing the exhaust gas line from the secondary engine through the interior of the main engine cylinder. In alternative embodiments, the secondary engine may be replaced with a hot gas source, such as the combination of a gas flame with a blower.
The steam powered engine comprises a system of inter-related components, and various embodiments are presented.
As shown in
The water is drawn from a tank 23 containing water at ambient temperature, or at a slightly elevated temperature due to absorption of heat from the engine, and travels through a water conduit 21, passing through a heat exchanger 24 prior to its introduction into the cylinder 11. The heat source for the heat exchanger 24 is the exhaust gas produced by a secondary engine 20, the exhaust gas having a temperature in excess of 1000 degrees F. The hot exhaust gas is routed through a hot gas conduit 22 into the heat exchanger 24, where heat is transferred to the water from the tank 23 to raise the water temperature to above 212 degrees F. The hot gases, now at a slightly reduced temperature, continue through the heat exchanger 24 to be delivered to the cylinder 11 when needed. The secondary engine 20 may comprise a standard gasoline or diesel powered engine of relatively low horsepower, such that the secondary engine 20 alone is insufficient to provide sufficient power to drive the vehicle or equipment to be powered by the main engine 10, but may be used to provide energy to other systems.
Blower means 25, such as for example gas turbines, blowers or other devices capable of forcing or suctioning may be utilized to move the hot exhaust gas through the conduit 22, to introduce the hot exhaust gas into the cylinder 11, or to remove the gas from the cylinder 11 during scavenging. Any excess exhaust gas produced by the secondary engine 20 is vented to atmosphere.
The operation of the steam powered engine system is demonstrated with reference to
An alternative embodiment is illustrated in
In
Number | Name | Date | Kind |
---|---|---|---|
1233951 | Alder | Jul 1917 | A |
1424798 | Black | Aug 1922 | A |
1682307 | Porter | Aug 1928 | A |
2791881 | Denker | May 1957 | A |
3074228 | Lee | Jan 1963 | A |
3192705 | Miller | Jul 1965 | A |
3336746 | Southwick | Aug 1967 | A |
4102130 | Stricklin | Jul 1978 | A |
4151814 | Doieg | May 1979 | A |
4393653 | Fischer | Jul 1983 | A |
4408573 | Schlueter et al. | Oct 1983 | A |
5875633 | Lawson, Jr. | Mar 1999 | A |
6095100 | Hughes | Aug 2000 | A |
6272855 | Leonardi | Aug 2001 | B1 |
6282900 | Bell | Sep 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20080271454 A1 | Nov 2008 | US |