Priority is claimed to German Patent Application No. DE 103 53 451.2, filed on Nov. 15, 2003, the entire disclosure of which is incorporated by reference herein.
The present invention relates generally to steam turbines and particularly to a steam turbine with a rotor rotatable about an axis and surrounded concentrically by a casing.
Steam turbines of the modern type of construction for high efficiencies and high steam inlet temperatures comprise a rotor which is rotatable about an axis of rotation and which is surrounded by a casing. The casing is subdivided into an inner casing, which surrounds the rotor concentrically, and an outer casing, which surrounds the inner casing together with the rotor. Between the rotor and the inner casing is formed a steam duct which is in the form of an annular gap and through which the steam is conducted for the performance of work. The blading of the steam turbine is arranged in the steam duct and consists of alternately arranged rings of stationary guide vanes and of moving blades fastened on the rotor. The guide vanes are arranged on the inner wall of the inner casing, said inner wall delimiting the steam duct (see, for example, EP-A1-0 952 311 or U.S. Pat. No. 5,695,317 or U.S. Pat. No. B1-6,315,520).
Both the outer casing and the inner casing are conventionally horizontally divided thick-walled castings composed of a comparatively costly high-temperature alloy. For example, a steel casting is used for the outer casing. The inner casing, exposed to especially high pressures and temperatures, mostly consists of a special nickel-based alloy. Steam turbines with steam inlet temperatures of about 700° C. or above are currently in the planning stage. Pressures of several 100 bar, for example 350 bar, occur in this case.
According to current estimates, the starting time of steam turbines of the type described amounts to several hours, since, because of the large dimensions and wall thicknesses, the rotors and the casing require a long time before they can be heated to the operating temperature, without excessively high thermal stresses being generated. Further disadvantages of a high-mass inner casing are the high costs, since the nickel-based alloy is a very costly material. Also, for such large castings, there are long delivery times of several months. Since the inner casings are divided and the parts are screwed to one another via flanged connections, high-mass parting line flanges are present which make up a considerable proportion of the entire casing weight. Large and costly parting line screws for the flanged screw connection also have to be employed correspondingly.
An object of the present invention is to provide a steam turbine that avoids the described disadvantages of known steam turbines and is distinguished, particularly by virtue of a novel casing design, by a reduced starting time during operation and by more cost-effective and quicker production. A further or alternate object of the present invention is to specify a method for the production of such a steam turbine.
The present invention provides a steam turbine (10,40,50) with a rotor (18) rotatable about an axis (47) and surrounded concentrically by a casing (11), characterized in that the casing (11) comprises a high-mass hollow-cylindrical basic carrier (21) and a plurality of shells (21,12,22,13,23, . . . ,17,27) which surround the basic carrier (21) concentrically and are produced from a bent metal sheet and between which interspaces (48) capable of being filled with steam are provided.
The casing is constructed from a high-mass hollow-cylindrical basic carrier and a plurality of shells which surround the basic carrier concentrically and are produced from a bent metal sheet, interspaces capable of being filled with steam being provided between these shells. Instead of a high-mass cast inner casing which absorbs both the internal pressure and the shearing force, therefore, sheets, preferably in standard dimensions, are used in a plurality of layers. These absorb essentially only the internal pressure. The guide vanes are mounted in the basic carrier when the casing is an inner casing. Said basic carrier absorbs essentially only the shearing force and the load moment and transmits the shearing force to the axial guide and the load moment to the supports. The casing is mounted and guided via the basic carrier. The basic carrier is subjected to little internal pressure stress and can therefore be constructed with a small wall thickness.
A preferred embodiment of the present invention is distinguished in that the basic carrier is composed of a plurality of annular carrier segments arranged one behind the other in the axial direction and connected to one another, in that the shells have a barrel-shaped design, the next outer shell in each case surrounding all the further inward-lying shells both in the radial and in the axial direction, and in that the shells are connected on the end faces in each case to one of the carrier segments of the basic carrier in a steamtight manner. By the basic carrier being divided axially into segments connected to one another, the production of the casing is simplified considerably.
Good accessibility for assembly and maintenance is achieved in that the basic carrier and the shells are subdivided in a horizontal midplane into an upper and a lower part or into upper and lower segment halves and into upper and lower shells which are in each case screwed to one another in pairs via flanged screw connections. Preferably, to form the flanged screw connections, in each case horizontal flanges are attached, in particular welded, to the upper and lower shells.
Assembly may be further simplified in that the upper shells are in each case screwed to the upper segment halves, preferably via a semiannular flanged connection, and in that the lower shells are in each case welded to the lower segment halves.
So that the pressure drop from the inside outward can be apportioned correctly to the individual shells, it is advantageous that the carrier segments of the basic carrier are connected to one another in such a way that steam can flow out of the interior of the basic carrier into the interspaces between the shells.
Another embodiment of the present invention is characterized in that the steam for operating the steam turbine is conducted to the rotor from outside through all the shells of the casing by means of at least one inlet pipe, and in that the at least one inlet pipe, in its passage through a shell, is in each case sealed off by means of a piston ring seal.
In particular, the casing may be an inner casing or a combined inner and outer casing, there being formed, between the basic carrier and the rotor, a steam duct, in which is arranged a blading comprising guide vanes and moving blades, and the guide vanes of the blading being fastened to the inner wall of the basic carrier. The casing may in this case be of single-flow or double-flow design.
The casing may, however, also be an outer casing. The basic carrier then carries no blading on the inside, but seals instead.
Preferably, the shells are produced in each case from a standard metal sheet consisting of a high-temperature nickel-based alloy, in particular of Alloy 617, with a sheet thickness, dependent on the position of the shell in the casing, of several millimeters, in particular of between 3 and 11 millimeters.
A less costly material, preferably rolled sheet steel, may also be used in the outer shells, in which the steam temperature is markedly lower than in the inner shell.
The present invention will be explained in more detail below by means of exemplary embodiments, with reference to the drawings in which:
The present invention is based on arranging a large number of bent sheets one behind the other instead of a high-mass cast casing or inner casing. Since the sheets are comparatively thin and are effectively insulated from one another thermally by means of the gap lying between them, the thermal stresses are low. The casing is therefore suitable for starting in a very short time. Further advantages are:
The delivery time is markedly shorter than where cast casings are concerned, since the sheets are commercially available. With standard dimensions, the sheets are already available in commercial depots. Alternatively, a specific depot may be set up.
A smaller quantity of costly nickel-based material is required, specifically for three reasons:
On account of the insulation of the sheets from one another, the temperature decreases sharply from the inner shell to the outer shell. A more cost-effective material can therefore be used in the colder outer shells.
Owing to the sharper temperature drop from the inner shell to the outer shell, as compared with the conventional cast casing, the temperatures in the outer shells are lower. Accordingly, the material strength, which increases with a decrease in temperature, is higher there, so that a smaller wall thickness of the shell is sufficient.
The high-mass parting line flange of a conventional cast casing forms a considerable proportion of the entire casing weight. In the casings according to the present invention, because of the low pressure difference from shell to shell, only very small flanges, which are very light as compared with the casing shell, are required.
The parting line screws of the flanged screw connections in the case of the shells divided in a horizontal midplane can have a very small design, as compared with conventional parting line screws. As a result, on the one hand, they can be delivered more quickly, since commercially available thin raw material can be used for manufacture. On the other hand, they can be produced more cost-effectively, since the commercially available raw material is more cost-effective and since they can be manufactured on smaller machines.
Instead of a high-mass cast inner casing which absorbs both the internal pressure and the shearing force, sheets in standard dimensions are used in a plurality of shells. These absorb essentially only the internal pressure. The guide vanes are mounted in the basic carrier. The latter absorbs essentially only the shearing force and the load moment and transmits the shearing force to the axial guide and the load moment to the supports. The casing is mounted and guided via the basic carrier. The basic carrier is subjected to almost no internal pressure stress and can therefore be constructed with a small wall thickness.
Metal sheets bent into a barrel shape and having a thickness of a few millimeters, preferably of between 2 and 11 millimeters, which consist of the here six upper shells (upper halves) 12, 13, 14, 15, 16 and 17 and of the six lower shells (lower halves) 22, 23, 24, 25, 26 and 27, are laid in the manner of onion skins around the steam duct 20 and the rotor 18. The upper and lower shells are fixed to one another in each case via a welded-on small horizontal flange 28, 29 (see also
The basic carrier 21, on the one hand, is divided horizontally into an upper part 21a and a lower part 21b and, on the other hand, is subdivided axially into carrier segments 46 (more precisely, segment halves 46a, b) which carry the guide vanes of the blading 19 on the insides and to which the upper and lower shells 12, . . . ,17 and 22, . . . ,27 are fastened. In the example of
In
For mounting the upper shells 12, 13, 14, 15, 16, 17, it is necessary to screw these to the upper segment halves 46a of the basic carrier 21 by means of a semiannular flanged connection 42. Should the turbine not have to be dismantled again, the upper shells 12, 13, 14, 15, 16, 17 may also be connected to the upper segment halves 46a of the basic carrier 21 by means of a welded connection.
The lower shells 22, 23, 24, 25, 26, 27 may again be connected to the lower segment halves 46b by means of weld seams 42.
The claws and webs for the supports and guides of the casings 11 are not shown in the figures. Claws and webs are attached, for example, to the outermost carrier segments 46 of the basic carrier 21.
In the figures, the casing 11 is designed as an inner casing. However, an outer casing, too, may be produced in the multishell design according to the present invention with a stepped pressure reduction. Instead of the basic carrier segments with blading (left side in
The inner and outer casings configured according to the present invention may also be combined. For example, in
The bent shells (upper and lower shells) can be produced in a simple and cost-effective way by means of the method of end-controlled bending, as disclosed in German patent specification DE-C2-43 10 773.
For an exemplary 400-MW steam turbine with an HP and MP part, it is necessary in the HP part to have 5 shells consisting of Alloy 617 which have stepped wall thicknesses of 9 to 10.5 mm. The MP part has 3 shells consisting of Alloy 617 with stepped wall thicknesses of 3.8 to 5.8 mm. In each case 3 stages of the turbine (3 guide vane rings and 3 moving blade rings) are assigned to a carrier segment of the basic carrier.
Overall, the present invention affords the following advantages:
Number | Date | Country | Kind |
---|---|---|---|
DE 103 53 451.2 | Nov 2003 | DE | national |