1 . . . extraction steam turbine, 3 (3a, 3b) . . . extraction system, 4 (4a, 4b) . . . extraction steam supply pipe, 5 (5a, 5b) . . . extraction steam flowmeter, 6 (6a, 6b) . . . extraction steam stop valve, 7 . . . steam extraction control system, 8 . . . extracted steam demander, 9 . . . warning device, 11 . . . restriction flow value setting unit
An embodiment of the present invention will be described below.
The extraction system 3 includes an extraction steam supply pipe 4 (4a, 4b) connected to an intermediate stage of the extraction steam turbine 1 (high-pressure turbine 1a, reheat turbine 1b); an extraction steam flowmeter 5 (5a, 5b) provided in the middle of the extraction steam supply pipe 4; and an extraction steam stop valve 6 (6a, 6b) provided in the middle of the extraction steam supply pipe 4. Extracted steam is delivered to an extracted steam demander 8 under the control of an extracted steam control system 7.
The extraction steam flowmeter 5 measures the flow volume of extracted steam flowing in the extraction steam supply pipe 4 and inputs the measurement to the steam extraction control system 7.
The extraction steam stop valve 6 is driven in an openable and closable manner by e.g. an electric motor. This stop valve 6 is an inexpensive valve device that is simply configured so as to take three states: a fully-closed state, a fully-open state and a predefined intermediate-open state. Such three valve states set the steam extraction states of the extraction system 3.
The steam extraction control system 7 controls the extraction steam stop valve 6 based on the extracted steam flow measurement value obtained by the flowmeter 5. The steam extraction control system 7 is configured as shown in
The restrictive flow setting unit 11 sets two restrictive flow values, a warning flow D3 and an extracted steam stop flow D4, based on an extracted steam flow measurement value D1 and extracted steam flow parameter D2. The extracted steam flow parameter D2 uses the flow of main stream delivered to the extraction steam turbine 1 or a turbine output corresponding thereto, or post-turbine-first-stage pressure. Thus, an instrument for measuring the main stream flow is provided; however, it is not shown in the figure. The extracted steam flow parameter D2 such as the main steam flow and the restrictive flow resulting from the extracted steam flow are set as above. This is because the permissible amount of extracted steam in the extraction steam turbine 1 is correlated with the main steam flow. Specifically, the stage inlet/outlet steam differential pressure in the extraction steam turbine 1 is correlated with the main steam flow. If the main steam flow is small, the inter-state differential pressure decreases. The percentage of the permissible amount of extracted steam can be increased accordingly. Thus, steam extraction that accounts for the permissible range at a maximum can be performed by correlating the restrictive flow with the main steam flow.
The comparator 12 compares the extracted steam flow measurement value D1 with the warning flow D3 and with the extracted steam stop flow D4 to provide a comparison result D5, which is output to the opening instruction/warning instruction generating unit 13.
Based on the comparison result the opening instruction/warning instruction generating unit 13 creates an opening instruction D6 for the extraction steam stop valve 6 and a warning instruction D7 for the warning device 9 (
Under the control of the steam extraction control system 7 as described above, the normal steam extraction is performed with the extraction steam stop valve 6 brought into the fully-open state. The extracted steam flow corresponding to the demand of the extracted steam demander 8 is extracted. In this state, when the extracted steam flow increases and the extracted steam flow measurement value D1 obtained by the flowmeter 5 reaches the warning flow, the control system 7 issues the warning instruction D7 to allow a warning device 9 to give an alarm. In addition, the control system 7 notifies the demander 8 of the fact that since the extracted steam flow is excessive, the extracted steam flow is likely to be restricted or the steam extraction is likely to be stopped. The extracted steam flow measurement value may have still reached the warning flow after a lapse of a predetermined period time after the extracted steam flow excessive warning has been issued. The predetermined period time is a time period that the demander 8 approximately takes to appropriately deal with restriction of the extracted steam flow or with the stoppage of steam extraction. In this case, the control system 7 sends a signal of an intermediate opening instruction as the opening instruction D6 to the extraction steam stop valve 6. Thus, the extraction steam stop valve 6 is intermediately opened to appropriately restrict the extracted steam flow.
In the state where the extraction steam stop valve 6 is intermediately opened, if the extracted steam flow is increased and the extracted steam flow measurement value D1 reaches an extracted steam stop flow, the control system 7 sends a fully-closed instruction signal as an opening instruction D6 to the extraction steam stop valve 6 to be fully closed for stopping steam extraction.
As described above, in the present invention, the two restrictive flow values for the warning flow and the extracted steam stop flow are set to control steam extraction, when the extracted steam flow is about to exceed the warning flow, a warning is issued to the extracted steam demander for advance notice, and thereafter the extracted steam valve 6 is intermediately opened to appropriately restrict steam extraction. In this state, if the extracted steam flow is further increased and then is about to exceed the extracted steam stop flow, the extraction steam stop valve 6 is fully closed to stop steam extraction. With such steam extraction control, a steam turbine plant can exercise extraction control capable of stably supplying extracted steam while it is primarily intended that the turbine can continuously be operated by avoiding occurrence of the turbine trip due to steam extraction even if the steam turbine plant is not equipped with a high-performance and expensive valve device such as an extraction steam control valve and adopts high-pressure steam condition where it is difficult to exercise control based on the pressure difference reference method.
Number | Date | Country | Kind |
---|---|---|---|
2006-138591 | May 2006 | JP | national |