This patent application relates to commonly-assigned U.S. patent application Ser. No. 12/205,942 entitled “STEAM TURBINE ROTATING BLADE FOR A LOW PRESSURE SECTION OF A STEAM TURBINE ENGINE” and Ser. No. 12/205,940 entitled “STEAM TURBINE ROTATING BLADE FOR A LOW PRESSURE SECTION OF A STEAM TURBINE ENGINE”, all filed concurrently with this application.
The present invention relates generally to a rotating blade for a steam turbine and more particularly to a rotating blade with geometry capable of increased operating speeds for use in a latter stage of a low pressure section of a steam turbine.
The steam flow path of a steam turbine is generally formed by a stationary casing and a rotor. In this configuration, a number of stationary vanes are attached to the casing in a circumferential array and extend inward into the steam flow path. Similarly, a number of rotating blades are attached to the rotor in a circumferential array and extend outward into the steam flow path. The stationary vanes and rotating blades are arranged in alternating rows so that a row of vanes and the immediately downstream row of blades form a stage. The vanes serve to direct the flow of steam so that it enters the downstream row of blades at the correct angle. Airfoils of the blades extract energy from the steam, thereby developing the power necessary to drive the rotor and the load attached thereto.
As the steam flows through the steam turbine, its pressure drops through each succeeding stage until the desired discharge pressure is achieved. Thus, steam properties such as temperature, pressure, velocity and moisture content vary from row to row as the steam expands through the flow path. Consequently, each blade row employs blades having an airfoil shape that is optimized for the steam conditions associated with that row.
In addition to steam conditions, the blades are also designed to take into account centrifugal loads that are experienced during operation. In particular, high centrifugal loads are placed on the blades due to the high rotational speed of the rotor which in turn stress the blades. Reducing stress concentrations on the blades is a design challenge, especially in latter rows of blades of a low pressure section of a steam turbine where the blades are larger and weigh more due to the large size and are subject to stress corrosion due to moisture in the steam flow.
This challenge associated with designing rotating blades for the low pressure section of the turbine is exacerbated by the fact that the airfoil shape of the blades generally determines the forces imposed on the blades, the mechanical strength of the blades, the resonant frequencies of the blades, and the thermodynamic performance of the blades. These considerations impose constraints on the choice of the airfoil shape of the blades. Therefore, the optimum airfoil shape of the blades for a given row is a matter of compromise between mechanical and aerodynamic properties associated with the shape.
In one aspect of the present invention, a steam turbine rotating blade is provided. The rotating blade comprises an airfoil portion. A root section is attached to one end of the airfoil portion. A dovetail section projects from the root section, wherein the dovetail section comprises a tangential entry dovetail. A tip section is attached to the airfoil portion at an end opposite from the root section. A cover is integrally formed as part of the tip section. The blade comprises an exit annulus area of about 18.1 ft2 (1.68 m2) or greater.
In another aspect of the present invention, a low pressure turbine section of a steam turbine is provided. In this aspect of the present invention, a plurality of latter stage steam turbine blades are arranged about a turbine rotor wheel. Each of the plurality of latter stage steam turbine blades comprises an airfoil portion having a length of about 12 inches (30.48 centimeters) or greater. A root section is attached to one end of the airfoil portion. A dovetail section projects from the root section, wherein the dovetail section comprises a tangential entry dovetail. A tip section is attached to the airfoil portion at an end opposite from the root section. A cover is integrally formed as part of the tip section. The plurality of latter stage steam turbine blades comprises an exit annulus area of about 18.1 ft2 (1.68 m2) or greater.
At least one embodiment of the present invention is described below in reference to its application in connection with and operation of a steam turbine engine. Further, at least one embodiment of the present invention is described below in reference to a nominal size and including a set of nominal dimensions. However, it should be apparent to those skilled in the art and guided by the teachings herein that the present invention is likewise applicable to any suitable turbine and/or engine. Further, it should be apparent to those skilled in the art and guided by the teachings herein that the present invention is likewise applicable to various scales of the nominal size and/or nominal dimensions.
Referring to the drawings,
In operation, steam 24 enters an inlet 26 of turbine 10 and is channeled through stationary vanes 22. Vanes 22 direct steam 24 downstream against blades 20. Steam 24 passes through the remaining stages imparting a force on blades 20 causing shaft 14 to rotate. At least one end of turbine 10 may extend axially away from rotor 12 and may be attached to a load or machinery (not shown) such as, but not limited to, a generator, and/or another turbine. Accordingly, a large steam turbine unit may actually include several turbines that are all co-axially coupled to the same shaft 14. Such a unit may, for example, include a high pressure turbine coupled to an intermediate-pressure turbine, which is coupled to a low pressure turbine.
In one embodiment of the present invention and shown in
Blade 20 is formed with a dovetail section 40, an airfoil portion 42, and a root section 44 extending therebetween. Airfoil portion 42 extends radially outward from root section 44 to a tip section 46. A cover 48 is integrally formed as part of tip section 46 with a fillet radius 50 located at a transition therebetween. As shown in
In an exemplary embodiment, dovetail section 40, airfoil portion 42, root section 44, tip section 46 and cover 48 are all fabricated as a unitary component from a 12% chrome stainless steel material. In this embodiment, blade 20 is coupled to turbine rotor wheel 18 (shown in
In addition to providing further details of dovetail section 40,
As turbine rotor wheel 18 (shown in
In an exemplary embodiment, the operating level for blades 20 is 3600 RPM, however, those skilled in the art will appreciate that the teachings herein are applicable to various scales of this nominal size. For example, one skilled in the art could scale the operating level by a scale factors such as 1.2, 2 and 2.4, to produce blades that operate at 3000 RPM, 1800 RPM and 1500 RPM, respectively.
The blade 20 according to one embodiment of the present invention is preferably used in an L2 stage of a low pressure section of a steam turbine. However, the blade could also be used in other stages or other sections (e.g., high or intermediate) as well. As mentioned above, one preferred blade length for blade 20 is about 12 inches (30.48 centimeters). This blade length can provide an L2 stage exit annulus area of about 18.1 ft2 (1.68 m2). This enlarged and improved exit annulus area can decrease the loss of kinetic energy the steam experiences as it leaves the L2 stage blades. This lower loss provides increased turbine efficiency.
As noted above, those skilled in the art will recognize that if the blade length is scaled to another blade length then this scale will result in an exit annulus area that is also scaled. For example, if scale factors such as 1.2, 2 and 2.4 were used to generate a blade length of 14.40 inches (36.58 centimeters), 24.0 inches (60.96 centimeters) and 28.8 inches (73.15 centimeters), respectively, then an exit annulus area of about 26.01 ft2 (2.42 m2), 72.26 ft2 (6.71 m2), and 104.05 ft2 (9.67 m2) would result, respectively.
While the disclosure has been particularly shown and described in conjunction with a preferred embodiment thereof, it will be appreciated that variations and modifications will occur to those skilled in the art. Therefore, it is to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4260331 | Goodwin | Apr 1981 | A |
5067876 | Moreman, III | Nov 1991 | A |
5174720 | Gradl | Dec 1992 | A |
5267834 | Dinh et al. | Dec 1993 | A |
5277549 | Chen et al. | Jan 1994 | A |
5299915 | Dinh et al. | Apr 1994 | A |
5393200 | Dinh et al. | Feb 1995 | A |
5480285 | Patel et al. | Jan 1996 | A |
5494408 | Seeley et al. | Feb 1996 | A |
5531569 | Seeley | Jul 1996 | A |
5829955 | Saito et al. | Nov 1998 | A |
6142737 | Seeley et al. | Nov 2000 | A |
6435833 | Reluzco et al. | Aug 2002 | B1 |
6435834 | Reluzco et al. | Aug 2002 | B1 |
6499959 | Reluzco et al. | Dec 2002 | B1 |
6568908 | Namura et al. | May 2003 | B2 |
6575700 | Arai et al. | Jun 2003 | B2 |
6652237 | Yehle et al. | Nov 2003 | B2 |
6682306 | Murakami et al. | Jan 2004 | B2 |
6814543 | Barb et al. | Nov 2004 | B2 |
6846160 | Saito et al. | Jan 2005 | B2 |
6893216 | Snook et al. | May 2005 | B2 |
7097428 | Barb et al. | Aug 2006 | B2 |
7195455 | Stonitsch et al. | Mar 2007 | B2 |
20020057969 | Namura et al. | May 2002 | A1 |
20030049131 | Murakami et al. | Mar 2003 | A1 |
20040126235 | Barb et al. | Jul 2004 | A1 |
20070292265 | Burdgick et al. | Dec 2007 | A1 |
20090214345 | DeMania et al. | Aug 2009 | A1 |
20100021306 | Mujezinovic et al. | Jan 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100061861 A1 | Mar 2010 | US |