1. Field of the Invention
The present invention deals with the field of steam turbines.
2. Brief Description of the Related Art
Steam turbine rotors and inner casings, when the turbine is starting up, are subject to high thermal stresses, in particular in the region of the inlet, from the relatively hot steam flowing past them, and these stresses limit the service life of the components and the start-up time.
Therefore, various proposals have already made in the past as to how the rotors and inner casings of steam turbines can be cooled in the critical areas without additional, external devices.
U.S. Pat. No. 4,551,063 has disclosed a medium-pressure steam turbine in which cooling steam is removed at the outlet of the high-pressure turbine prior to the reheating and is routed out of an annular space located outside the steam passage, via axial bores in the rotor, into the first two stages of the turbine, where it is fed into the steam passage from the blade roots. A solution of this type can only be employed for high-pressure turbines but not for medium-pressure turbines.
In the case of a combined high-pressure/medium-pressure steam turbine disclosed by U.S. Pat. No. 5,149,247, the stator is divided into an external stator and an internal stator, which are separated from one another by an intermediate space. For cooling purposes, cooling steam is removed from the final stage of the high-pressure part and introduced into the intermediate space. A similar solution is also disclosed in U.S. Pat. No. 6,341,937. Neither solution prevents the whole of the inner stator being exposed to the life steam.
Finally, in U.S. Pat. No. 6,010,302, the rotor is provided with a central bore through which cooling steam which has been removed at the outlet of the high-pressure stage is routed. In this solution, cooling of the inner casing is not provided and is indeed not possible.
Therefore, one aspect of the present invention includes providing a steam turbine which, with relatively simple means, allows flexible internal cooling of the rotor and/or the inner casing and thereby improves the start-up time and service life of rotor and inner casing.
One of numerous principles of the present invention concerns arranging at least in the steam passage plate-like protective shields, which protect the surface of the rotor or inner casing beneath them from the direct action of the hot steam flowing through the steam passage, the plate-like protective shield being arranged parallel and close to the surface of the rotor and/or parallel and close to the inner surface of the inner casing.
A first exemplary configuration is distinguished by the fact that the protective shields, as passive protective shields, rest directly on that surface of the rotor or the inner casing which is to be protected or are only separated from the surface to be protected by a gap. They are not actively cooled, but rather only ensure that the hot steam of the steam passage no longer flows past at a high velocity, for which reason they are referred to here as “passive” protective shields or plates. The high velocity is brought about by the rotation of the rotor and the flow of steam which is present relative to the inner casing and it intensifies the heat transfer from the hot steam to the component surface. On account of the fact that although the hot steam temperature is still active, the protective shields mean that there is no longer any relative velocity between steam and component surface, the heat transfer is significantly reduced. The protective shields may in this case be designed (on the rotor side) as part of the rotor blades secured to the rotor.
A second exemplary configuration of the invention is characterized in that the protective shields are arranged at a distance from that surface of the rotor or inner casing which is to be protected, so as to form a relatively wide intermediate space, and in that the steam turbine is designed in such a manner that cooling steam flows through the intermediate space. Exemplarily, first protective shields are arranged in the front stages, as seen in the direction of flow, of the steam passage, and the cooling steam is removed from the steam passage in one of the stages located further downstream and is fed back through the intermediate space in the opposite direction to the direction of flow.
Therefore, heated steam which is only removed from the steam passage when it has already passed through a pressure drop is used. Consequently, the steam is cooler than the steam in the inlet. This cooler steam is then diverted and passed into the intermediate spaces along the rotor surface or the casing surface to the first stages, which are acted on by the hottest steam. To ensure that the cooling or cool steam can flow in this direction, it is passed to a location at a lower pressure level. This location may, for example, be a sealing chamber in a piston or casing shaft seal or, in the case of double-flow machines, a rear stage in the second flow. However, this location may also be the exhaust steam of the machine. To ensure that no hot steam is able to flow into the cooling intermediate spaces, it is necessary for the cooling intermediate space to be sealed off with respect to the hot steam at a higher pressure. Pressure tight protective shields or plates are used for this purpose.
If in particular the steam turbine is of single-flow design, and in the region of the inlet a seal, in particular in the form of a piston or casing shaft seal, is provided between rotor and inner casing on the opposite side from the steam passage, second protective shields are arranged, for example, in the region of the seal at a distance from that surface of the rotor or inner casing which is to be protected, so as to form a relatively wide intermediate space, and the cooling steam flowing through the intermediate space behind the first protective shields is then passed through the spaces behind the second protective shields.
If in this case the first and second protective shields are intended to protect the surface of the rotor, a common intermediate space which is continuous through the region of the inlet is formed behind the first and second protective shields.
If the first and second protective shields are intended to protect the surface of the inner casing, intermediate spaces, which are connected to one another, e.g., by a passage or bore routed around the region of the inlet in the inner casing, are formed behind the first and second protective shields.
The invention is to be explained in more detail below on the basis of exemplary embodiments in conjunction with the drawing, in which:
Finally,
List of Designations
10 Steam turbine
11 Inner casing
12 Rotor
13 Axis (turbine)
14 Steam passage
15 Inlet
16 Guide vane
17 Rotor blade
18 Protective shield (active)
19 Protective shield (active)
20 Protective shield (passive)
21 Intermediate space
22 Seal (piston seal)
23 Protective shield (active)
24 Protective shield (active)
25 Protective shield (passive)
26,26a,26b Bore, passage
27 First intermediate space
28 Root (hammerhead-like)
29 Gap
30,31 Sealing strip
32 Bore
33 Protective shield
34,35 Sealing strip
36,37 Bore
40 Outer casing of the steam turbine
41 Second intermediate space
42 Sealing member
43 Sealing member
While the invention has been described in detail with reference to exemplary embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. Each of the aforementioned documents is incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
02014534.8 | Jul 2002 | EP | regional |
This application is a Continuation of, and claims priority under 35 U.S.C. § 120 to, International application no. PCT/CH03/00426, filed 26 Jun. 2003, and claims priority under 35 U.S.C. § 119 to EPO patent application no. 02014534.8, filed 1 Jul. 2002, the entireties of both of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CH03/00426 | Jun 2003 | US |
Child | 11017758 | Dec 2004 | US |