Steam washing machine operation method having dry spin pre-wash

Information

  • Patent Grant
  • 7941885
  • Patent Number
    7,941,885
  • Date Filed
    Friday, June 9, 2006
    18 years ago
  • Date Issued
    Tuesday, May 17, 2011
    13 years ago
Abstract
A method for operating a horizontal axis washing machine having a tub with a drum rotatably mounted in the tub and configured to hold a fabric load comprises introducing liquid into the drum to wet the fabric load and spinning the drum to distribute the fabric load about the drum prior to the introducing of the liquid.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to a method of operating a washing machine using steam.


2. Description of the Related Art


The cleaning performance of a washing machine depends on many factors, such as chemical, mechanical, and thermal energy inputs during a wash cycle. The chemical energy relates to the detergent efficiency and water quality, the mechanical energy corresponds to fluid flow and fabric flexing and movement, and the thermal energy is associated with heating the wash liquid. However, a wash cycle that optimizes the chemical, mechanical, and thermal energy inputs to achieve superior performance does not necessarily correspond to efficient usage of natural resources, such as water and fossil fuels, including coal, oil, and natural gas. In view of rising resource costs and concern for environmental conservation, a practical balance between energy inputs and resource usage should be considered in the operation of washing machines.


One approach of reducing water consumption and power (i.e., natural gas or electricity) consumption has been to use steam rather than an immersion heater to heat the wash liquid. With an immersion heater, a larger volume of liquid than is needed for washing must be employed to maintain the heater completely submerged and thereby avoid damage to the surrounding structure. Furthermore, the heater must be powered for a relatively long period of time to heat all of the water required to submerge the heater.


Washing machines with steam generators can use less water than those with immersion heaters. Steam can be injected into the sump of the washing machine or directly into the tub or perforated drum rotatably mounted in the tub to heat the wash liquid. Although steam washing machines have been well-known for some time, methods of operating such washing machines to optimize cleaning performance and efficiently utilize natural resources are still needed.


SUMMARY OF THE INVENTION

A method according to one embodiment of the invention for operating a horizontal axis washing machine having a tub with a drum rotatably mounted in the tub and configured to hold a fabric load comprises introducing liquid into the drum to wet the fabric load; and spinning the drum to distribute the fabric load about the drum prior to the introducing of the liquid.


The liquid can be introduced while the drum is spinning.


The method can further comprise rotating the drum at a tumble speed after the spinning of the drum.


The method can further comprise recirculating the liquid between the tub and the drum. The recirculating can occur during the spinning of the drum. The method can further comprise adding liquid to at least one of the tub and the drum to compensate for liquid absorbed by the fabric load. The adding, recirculating, and spinning can repeat until a ratio of fabric load weight to liquid weight reaches a predetermined ratio. The predetermined ratio can be in a range of about 1:0.5 and 1:2.7. The predetermined ratio can be in a range of about 1:1 and 1:2.


The method can further comprise introducing steam into at least one of the tub and the drum. The introducing of the steam can occur after the introducing of the liquid and the spinning of the drum. The method can further comprise rotating the drum during the introduction of the steam. The rotating of the drum during the introduction of steam can comprise rotating the drum at a tumble speed.


The introducing and spinning can be part of a pre-wash step, and a washing step follows the pre-wash step. A ratio of fabric load weight to liquid weight can be greater during the pre-wash step than during the washing step. The method can further comprise introducing steam into at least one of the tub and the drum at least one of during the pre-wash step, between the pre-wash step and the washing step, and during the washing step. The method can further comprise a rinsing step and an extraction step following the washing step.


The liquid can comprise a detergent solution.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a schematic view of a horizontal axis steam washing machine according to one embodiment of the invention.



FIG. 2 is a flow chart of a method of operating the steam washing machine of FIG. 1 according to one embodiment of the invention, wherein the method comprises a pre-wash step, a heat step, a wash step, a rinse step, and an extract step.



FIG. 3 is a flow chart of a first exemplary execution of the pre-wash step of the method of FIG. 2.



FIG. 4 is a flow chart of a second exemplary execution of the pre-wash step of the method of FIG. 2.



FIG. 5 is a flow chart of a third exemplary execution of the pre-wash step of the method of FIG. 2.



FIG. 6 is a flow chart of a fourth exemplary execution of the pre-wash step of the method of FIG. 2.



FIG. 7 is a flow chart of a fifth exemplary execution of the pre-wash step of the method of FIG. 2.



FIG. 8 is a graph illustrating a relationship between heating time and ratio of fabric weight to liquid weight for the heat step of the method of FIG. 2.



FIG. 9 is a flow chart of an exemplary execution of the heat step of the method of FIG. 2.



FIG. 10 is a flow chart of an exemplary execution of the wash step of the method of FIG. 2.



FIG. 11 is a flow chart of an exemplary execution of the rinse step of the method of FIG. 2.



FIG. 12 is a flow chart of an exemplary execution of the extract step of the method of FIG. 2.



FIG. 13 is a flow chart of an alternative method of operating a steam washing machine according to one embodiment of the invention.



FIG. 14 is a schematic view of the washing machine of FIG. 1 with alternative structures for introducing liquid into a tub of the washing machine according to one embodiment of the invention.



FIG. 15 is a schematic view of the washing machine of FIG. 1 with alternative structures for introducing liquid into a drum of the washing machine according to one embodiment of the invention.



FIG. 16 is a schematic view of the washing machine of FIG. 1 with alternative structures for introducing liquid into a steam generator of the washing machine and for introducing steam into the tub of the washing machine according to one embodiment of the invention.



FIG. 17 is a schematic view of the washing machine of FIG. 1 with alternative structures for introducing liquid into the steam generator of the washing machine and for introducing steam into the drum of the washing machine according to one embodiment of the invention.



FIG. 18 is a schematic view of the washing machine of FIG. 1 with alternative structures for recirculating liquid from the tub to the drum of the washing machine according to one embodiment of the invention.



FIG. 19 is a schematic view of a vertical axis steam washing machine according to one embodiment of the invention.





DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Referring now to the figures, FIG. 1 is a schematic view of an exemplary steam washing machine 10 that can be used to execute a method of operating a washing machine according to one embodiment of the invention. The washing machine 10 comprises a cabinet 12 that houses a stationary tub 14. A rotatable drum 16 mounted within the tub 14 includes a plurality of perforations 18, and liquid can flow between the tub 14 and the drum 16 through the perforations 18. The drum 16 further comprises a plurality of baffles 20 disposed on an inner surface of the drum 16 to lift fabric items contained in the drum 16 while the drum 16 rotates, as is well known in the washing machine art. A motor 22 coupled to the drum 16 through a belt 24 rotates the drum 16. Both the tub 14 and the drum 16 can be selectively closed by a door 26.


Washing machines are typically categorized as either a vertical axis washing machine or a horizontal axis washing machine. As used herein, the “vertical axis” washing machine refers to a washing machine comprising a rotatable drum, perforate or imperforate, that holds fabric items and a fabric moving element, such as an agitator, impeller, nutator, and the like, that induces movement of the fabric items to impart mechanical energy to the fabric articles for cleaning action. In some vertical axis washing machines, the drum rotates about a vertical axis generally perpendicular to a surface that supports the washing machine. However, the rotational axis need not be vertical. The drum can rotate about an axis inclined relative to the vertical axis. As used herein, the “horizontal axis” washing machine refers to a washing machine having a rotatable drum, perforated or imperforate, that holds fabric items and washes the fabric items by the fabric items rubbing against one another as the drum rotates. In horizontal axis washing machines, the clothes are lifted by the rotating drum and then fall in response to gravity to form a tumbling action that imparts the mechanical energy to the fabric articles. In some horizontal axis washing machines, the drum rotates about a horizontal axis generally parallel to a surface that supports the washing machine. However, the rotational axis need not be horizontal. The drum can rotate about an axis inclined relative to the horizontal axis. Vertical axis and horizontal axis machines are best differentiated by the manner in which they impart mechanical energy to the fabric articles. The illustrated exemplary washing machine of FIG. 1 is a horizontal axis washing machine.


The motor 22 can rotate the drum 16 at various speeds in opposite rotational directions. In particular, the motor 22 can rotate the drum 16 at tumbling speeds wherein the fabric items in the drum 16 rotate with the drum 16 from a lowest location of the drum 16 towards a highest location of the drum 16, but fall back to the lowest location of the drum 16 before reaching the highest location of the drum 16. The rotation of the fabric items with the drum 16 can be facilitated by the baffles 20. Typically, the force applied to the fabric items at the tumbling speeds is less than about 1 G. Alternatively, the motor 22 can rotate the drum 16 at spin speeds wherein the fabric items rotate with the drum 16 without falling. In the washing machine art, the spin speeds can also be referred to as satellizing speeds or sticking speeds. Typically, the force applied to the fabric items at the spin speeds is greater than or about equal to 1 G. As used herein, “tumbling” of the drum 16 refers to rotating the drum at a tumble speed, “spinning” the drum 16 refers to rotating the drum 16 at a spin speed, and “rotating” of the drum 16 refers to rotating the drum 16 at any speed.


The washing machine 10 of FIG. 1 further comprises a liquid supply and recirculation system. Liquid, such as water, can be supplied to the washing machine 10 through a liquid inlet 28. A first supply conduit 30 fluidly couples the liquid inlet 28 to a detergent dispenser 32. A first inlet valve 34 controls flow of the liquid from the liquid inlet 28 and through the first supply conduit 30 to the detergent dispenser 32. The first inlet valve 34 can be positioned in any suitable location between the liquid inlet 28 and the detergent dispenser 32. A liquid conduit 36 fluidly couples the detergent dispenser 32 with the tub 14. The liquid conduit 36 can couple with the tub 14 at any suitable location on the tub 14 and is shown as being coupled to a front wall of the tub 14 in FIG. 1 for exemplary purposes. The liquid that flows from the detergent dispenser 32 through the liquid conduit 36 to the tub 14 enters a space between the tub 14 and the drum 16 and flows by gravity to a sump 38 formed in part by a lower portion 40 of the tub 14. The sump 38 is also formed by a sump conduit 42 that fluidly couples the lower portion 40 of the tub 14 to a pump 44. The pump 44 can direct fluid to a drain conduit 46, which drains the liquid from the washing machine 10, or to a recirculation conduit 48, which terminates at a recirculation inlet 50. The recirculation inlet 50 directs the liquid from the recirculation conduit 48 into the drum 16. The recirculation inlet 50 can introduce the liquid into the drum 16 in any suitable manner, such as by spraying, dripping, or providing a steady flow of the liquid.


The exemplary washing machine 10 further includes a steam generation system. The steam generation system comprises a steam generator 60 that receives liquid from the liquid inlet 28 through a second supply conduit 62. A second inlet valve 64 controls flow of the liquid from the liquid inlet 28 and through the second supply conduit 62 to the steam generator 60. The second inlet valve 64 can be positioned in any suitable location between the liquid inlet 28 and the steam generator 60. A steam conduit 66 fluidly couples the steam generator 60 to a steam inlet 68, which introduces steam into the tub 14. The steam inlet 68 can couple with the tub 14 at any suitable location on the tub 14 and is shown as being coupled to a rear wall of the tub 14 in FIG. 1 for exemplary purposes. The steam that enters the tub 14 through the steam inlet 68 subsequently enters the drum 16 through the perforations 18. Alternatively, the steam inlet 68 can be configured to introduce the steam directly into the drum 16. The steam inlet 68 can introduce the steam into the tub 14 in any suitable manner. The washing machine 10 can further include an exhaust conduit that directs steam that leaves the tub 14 externally of the washing machine 10. The exhaust conduit can be configured to exhaust the steam directly to the exterior of the washing machine 10. Alternatively, the exhaust conduit can be configured to direct the steam through a condenser prior to leaving the washing machine 10.


The steam generator 60 can be any type of device that converts the liquid to steam. For example, the steam generator 60 can be a tank-type steam generator that stores a volume of liquid and heats the volume of liquid to convert the liquid to steam. Alternatively, the steam generator 60 can be an in-line steam generator that converts the liquid to steam as the liquid flows through the steam generator 60. The steam generator 60 can produce pressurized or non-pressurized steam.


In addition to producing steam, the steam generator 60, whether an in-line steam generator, a tank-type steam generator, or any other type of steam generator, can heat water to a temperature below a steam transformation temperature, whereby the steam generator 60 produces hot water. The hot water can be delivered to the tub 14 and/or drum 16 from the steam generator 60. The hot water can be used alone or can optionally mix with cold water in the tub 14 and/or drum 16. Using the steam generator to produce hot water can be useful when the steam generator 60 couples only with a cold water source at the liquid inlet 28.


The liquid supply and recirculation system and the steam generator system can differ from the configuration shown in FIG. 1, such as by inclusion of other valves, conduits, wash aid dispensers, and the like, to control the flow of liquid and steam through the washing machine 10 and for the introduction of more than one type of detergent/wash aid. For example, a valve can be located in the liquid conduit 36, in the recirculation conduit 48, and in the steam conduit 66. Furthermore, an additional conduit can be included to couple the liquid inlet 28 directly to the tub 14 or the drum 16 so that the liquid provided to the tub 14 or the drum 16 does not have to pass through the detergent dispenser 32. Alternatively, the liquid can be provided to the tub 14 or the drum 16 through the steam generator 60 rather than through the detergent dispenser 32 or the additional conduit. As another example, the recirculation conduit 48 can be coupled to the liquid conduit 36 so that the recirculated liquid enters the tub 14 or the drum 16 at the same location where the liquid from the detergent dispenser 32 enters the tub 14. The liquid supply and recirculation system can further comprise sensors, such as a liquid level sensor 52 in the sump 38 or a liquid flow sensor 54 in the recirculation conduit 48. The liquid level sensor 52 and the liquid flow sensor 54 can be any type of sensor, such as pressure sensors.


The washing machine 10 can further comprise a controller coupled to various working components of the washing machine 10, such as the liquid level sensor 52, the liquid flow sensor 54, the pump 44, the motor 22, the first and second inlet valves 34, 64, the detergent dispenser 32, and the steam generator 60, to control the operation of the washing machine 10. The controller can receive data from the working components and can provide commands, which can be based on the received data, to the working components to execute a desired operation of the washing machine 10.


The washing machine 10 can further include other components, such as a load sensor that detects fabric load size (e.g., weight or volume, which is typically accomplished by monitoring the motor current) and a flow meter (typically accomplished with an in-line flow meter or a time-based determination of liquid flow) that detects a volume of water supplied to the tub 14 and/or drum 16. The information from the load sensor and the flow meter can be used in the execution of the method 100 described below.


The washing machine of FIG. 1 is provided for exemplary purposes only. It is within the scope of the invention to perform the inventive method on other types of washing machines, examples of which are presented below.


A method 100 of operating a washing machine with steam according to one embodiment of the invention is illustrated in FIG. 2. In general, the method 100 comprises a pre-wash step 102, a heat step 104, a wash step 106, a rinse step 108, and an extract step 110. In general, the fabric items are subjected to a concentrated detergent solution formed by using a relatively low amount of liquid during the pre-wash step 102, the fabric items are heated during the heat step 104, and an additional amount of liquid is added to wash the clothes during the wash step 106. After the fabric items are washed, they are subjected to rinsing with liquid during the rinse step 108, and the rinse liquid is extracted during the extract step 110. Each of the steps 102, 104, 106, 108, 110 of the method 100 will be described in detail.


During the pre-wash step 102, a concentrated detergent solution flows through the liquid supply and recirculation system, and the drum 16 rotates to facilitate distribution of the concentrated detergent solution to the fabric items. The recirculation of the concentrated detergent solution and the rotation of the drum 16 can occur simultaneously, asynchronously, or a combination thereof. The pre-wash step 102 can also be considered a wetting step whereby the fabric items are wetted with the concentrated detergent solution. According to one embodiment of the invention, the fabric items 102 can be saturated with the concentrated detergent solution.


The detergent solution is a combination of the water that enters through the liquid inlet 28 and the detergent or other wash aid. As used herein, the “detergent solution” refers particularly to the combination of water and detergent and/or other wash aid, and the “liquid” refers to any liquid, whether water alone or water in combination with the detergent or other wash aid. The detergent solution is considered to be concentrated in the pre-wash step 102 because it comprises an amount of liquid less than an amount of liquid utilized during the wash step 106, given a constant amount of detergent or other wash aid. For example, if the pre-wash step 102 utilizes half the liquid but the same amount of detergent as the wash step 106, then the detergent solution is twice as concentrated in the pre-wash step 102 than for the wash step 106.


Selecting the amount of liquid for the pre-wash step 102 depends on several factors. As the amount of water in the detergent solution decreases, the concentration of the detergent increases, thereby increasing the chemical energy input and cleaning performance of the detergent. However, liquid lifts stains from the fabric items, and “free liquid” or liquid not absorbed by the fabric items is needed to accomplish the stain lifting. Furthermore, it is desirable to have a sufficient amount of liquid to ensure uniform distribution of the liquid to the fabric load.


One manner of quantifying the amount of liquid used in the pre-wash step 102 is a ratio of fabric weight to liquid weight. Exemplary ratios for the pre-wash step 102 are discussed in detail below. Another manner of quantifying the amount of liquid used in the pre-wash step 102 involves comparing the volume of liquid with structural features of the washing machine 10. For example, the volume of liquid can be less than a volume required to submerge any portion of the drum 16, either when the liquid is being recirculated or when the liquid is not being recirculated. Keeping the volume of liquid below the drum 16 prevents sudslock (i.e., drag force between the drum 16 and the tub 14 due to the presence of suds) when the drum 16 spins. According to one embodiment of the invention, the pre-wash step 102 utilizes an amount of liquid sufficient to saturate the fabric items. The amount of liquid can equal an amount required to saturate the fabric items or can exceed the amount required to saturate the fabric items.


The rotating of the drum 16 during the pre-wash step 102 can correspond to spinning the drum 16, tumbling the drum 16, or a combination of spinning the drum 16 and tumbling the drum 16. For example, according to one embodiment of the invention, the pre-wash step 102 comprises recirculating the liquid and spinning the drum 16 simultaneously, asynchronously, or a combination thereof. The spinning of the drum 16 distributes the fabric items about the drum 16 and forces the liquid in the fabric items to permeate through the fabric items, pass through the perforations 18 in the drum 16, and flow to the sump 38, where the liquid can be recirculated. Tumbling of the drum 16 can be incorporated into this example, wherein the drum 16 can be tumbled after the spinning of the drum 16 to redistribute the fabric items amongst themselves. Alternatively, if the spinning of the drum 16 does not occur during the recirculation of the liquid, the tumbling of the drum 16 can occur during the recirculation of the liquid, which facilitates distribution of the liquid among the fabric items.


During the spinning of the drum 16 and/or the tumbling of the drum 16, the drum 16 can be spun or tumbled in any of several manners, such as at a constant speed, at multiple speeds, according to a speed ramp profile having multiple spin/tumble speeds, or according to a continuous speed ramp. For example, during the spinning of the drum 16, the drum 16 can rotate at a single spin speed, two or more spin speeds (e.g., rotate at a first spin speed for a predetermined period of time followed by rotate at a second spin for a predetermined period of time), at a spin profile having several discrete spin speeds, or at a continuously increasing speed ramp between a first spin speed and a second spin speed. The drum 16 can also be alternatingly tumbled and spun whereby the speed of the drum 16 alternatingly increases and decreases. Furthermore, during the spinning of the drum 16 and/or the tumbling of the drum 16, the drum 16 can be spun or tumbled in a single direction or in alternating directions.


The spin speed and a duration of spinning the drum 16 determines, at least in part, a saturation rate of the fabric items. As stated above, one method of quantifying the amount of liquid used during the pre-wash step 102 involves using the ratio of fabric weight to liquid weight, and the spin speed and the spinning time can be selected in concert with a desired ratio. For example, the desired ratio can be chosen based on the spin speed and the spinning time required to achieve the ratio. As the ratio increases (i.e., the amount of the liquid decreases), the spin speed and the spinning time to achieve saturation also increases. A lower spin speed could be preferred over a higher spin speed, or vice-versa, or it could be desirable to avoid a spin speed in a certain range, such as a speed range corresponding to a natural resonance of the washing machine 10. It could also be desirable to avoid excessively long spinning times, which directly corresponds to lengthening the pre-wash step 102 and a longer overall operation of the washing machine 10. Other factors relevant to the desired ratio include uniform distribution of the liquid among the fabric items and the above-mentioned chemical energy input of the detergent in the liquid and the presence of the free liquid. As the ratio increases, it becomes more difficult to uniformly wet the fabric items with the liquid.


While the desired ratio can vary based on size and type of the fabric items and the structure of the washing machine 10, a suitable range for the ratio has been determined to be from about 1:0.5 to 1:2.7. Values of the liquid weight portion of the ratio below about 0.5 correspond to excessively long spinning times. When the value of the liquid weight portion of the ratio increases above about 2.7, spinning is no longer needed to extract the liquid from the fabric items to collect enough liquid in the sump 38 for continuous recirculation of the liquid. Another suitable range for the ratio has been determined to be from about 1:0.5 to 1:2.3. The value of the liquid weight portion at one end of the exemplary range has been reduced to 2.3 because between values of 2.3 and 2.7, spinning is no longer needed to extract the liquid from the fabric items to collect enough liquid in the sump for intermittent recirculation of the liquid. Within the range of about 1:0.5 to 1:2.3, suitable performance and acceptable spin speeds and spinning times have been observed in a range of about 1:1 to 1:2. Exemplary desired ratios within the latter range include about 1:1.2, 1:1.5, and 1:1.7.


Exemplary executions of the pre-wash step 102 are illustrated in flow charts in FIGS. 3-7. Descriptions of each of the exemplary executions follow, with it being understood that the flow charts and descriptions are provided for illustrative purposes only. It is within the scope of the invention for the pre-wash step 102 to differ from the exemplary executions of FIGS. 3-7. The exemplary executions are described with respect to the exemplary washing machine 10 in FIG. 1, but it is within the scope of the invention to utilize other washing machines. The exemplary executions do not include a step of adding the fabric items to the drum 16; rather, it is to be inferred that the fabric items are added either prior to the execution of the pre-wash step 102 or at some time in the beginning of the pre-wash step 102. If the timing of adding the fabric items to the pre-wash step 102 is critical, then the preferred timing is indicated below.


Referring now to FIG. 3, a first exemplary pre-wash step 102A begins with a user adding detergent and/or other wash aid (hereinafter referred to collectively as detergent) to the washing machine 10 in step 120. The user can place the detergent in the detergent dispenser 32 or directly into the drum 16. Next, water is added in step 122 via the detergent dispenser 32 through the liquid conduit 36. Thus, if the user placed the detergent in the detergent dispenser 32, then the detergent flows with the water through the liquid conduit 36 in the step 122. The liquid from the liquid conduit 36 enters the tub 14 and flows to the sump 38. The water can be added to achieve a first volume of liquid. The achievement of the first volume of liquid can be determined on any suitable basis, such as by adding the water for a known period of time, by detecting a liquid level, such as a liquid level in the sump 38 with the liquid level sensor 52, or by detecting a volumetric flow rate of the water through the first supply conduit 30 or the liquid conduit 36. Regardless of how the achievement of the first volume of liquid is determined, the first volume of liquid can correspond to a predetermined liquid level in the sump 38 that is below the drum 16, as discussed above. An exemplary liquid level for the first volume of liquid is illustrated by a dashed line labeled L1 in FIG. 1.


In step 124, the pump 44 pumps the liquid from the sump 38 and through the recirculation conduit 48 to the recirculation inlet 50 to recirculate the liquid from the tub 14 to the drum 16, thereby wetting the fabric items in the drum 16 with the liquid. The step 124 also includes spinning the drum 16, which can occur while the liquid is recirculating or after the liquid has been recirculated. Spinning the drum 16 while the liquid recirculates advantageously distributes the fabric items around the drum 16 whereby the recirculating liquid can be applied to the distributed fabric items rather than to a stationary pile of the fabric items, which would be the case for the stationary drum 16. Exemplary spin speeds for the pre-wash step 102A are about 100 rpm and about 300 rpm. The drum 16 can spin in one direction only or can spin in alternating directions. Regardless of the relative timing of the recirculation of the liquid and the spinning of the drum 16, the fabric items absorb the recirculating liquid that enters the drum 16, and the spinning of the drum 16 forces the liquid to permeate through the fabric items and flow through the perforations 18 in the drum 16. While some of the liquid remains in the fabric items, the liquid that flows through the perforations 18 falls by gravity for collection in the sump 38.


The recirculation and spinning of step 124 can be optionally followed by tumbling the drum 16 in step 126. When the drum 16 tumbles, the fabric items fall back to the lowest location of the drum 16 and can be redistributed amongst each other. An exemplary tumble speed for the pre-wash step 102A is about 40 rpm. The drum 16 can tumble in one direction only or can tumble in alternating directions.


After the optional tumbling step 124, a status of the pre-wash step 102A is evaluated at step 128. In particular, it is determined whether the pre-wash step 102A is complete. The completion of the pre-wash step 102A can be evaluated in any suitable manner. For example, the pre-wash step 102A can be terminated when the fabric items are sufficiently saturated or when reaching the desired ratio of fabric weight to liquid weight, which can also be evaluated in any suitable manner. As examples, the pre-wash step 102A can be terminated after a predetermined period of time; after the add water step 122, the recirculate/spin step 124, and the tumble step 126, if performed, are executed a predetermined number of times; or when the liquid level is about the same as the predetermined liquid level. Regarding the last example, the fabric items, when not saturated, absorb a portion of the recirculating liquid; therefore, the liquid that flows through the perforations 18 and collects in the sump 38 has a liquid level less than the predetermined level. Conversely, when the fabric items are saturated, the recirculating liquid permeates through the fabric items, flows through the perforations 18, and collects in the sump 38 to a level substantially the same as the predetermined level.


If it is determined in step 128 that the pre-wash step 102A is not complete, then the pre-wash step 102A returns to the add water step 122 and repeats. During the add water step 122, the amount of water added can be an amount sufficient to compensate for the liquid absorbed by the fabric items and thereby maintain the first volume of liquid. This can be accomplished, for example, by adding water until the liquid level in the sump 38 returns to the predetermined level. If it is determined in step 128 that the pre-wash step 102A is complete, then the method 100 proceeds to the heat step 104.


Referring now to FIG. 4, a second exemplary pre-wash step 102B begins with a user adding detergent to the washing machine 10 in step 130. The user can place the detergent in the detergent dispenser 32 or directly into the drum 16. Next, water is added in step 132 via the detergent dispenser 32 through the liquid conduit 36. Thus, if the user placed the detergent in the detergent dispenser 32, then the detergent flows with the water through the liquid conduit 36 in the step 132. The liquid from the liquid conduit 36 enters the tub 14 and flows to the sump 38. The water can be added to achieve a first volume of liquid. The achievement of the first volume of liquid can be determined on any suitable basis, such as by adding the water for a known period of time, by detecting a liquid level, such as a liquid level in the sump 38 with the liquid level sensor 52, or by detecting a volumetric flow rate of the water through the first supply conduit 30 or the liquid conduit 36. Regardless of how the achievement of the first volume of liquid is determined, the first volume of liquid can correspond to a predetermined liquid level in the sump 38 that is below the drum 16, as discussed above. An exemplary liquid level for the first volume of liquid is illustrated by the dashed line labeled L1 in FIG. 1.


In step 134, the pump 44 pumps the liquid from the sump 38 and through the recirculation conduit 48 to the recirculation inlet 50 to recirculate the liquid from the tub 14 to the drum 16, thereby wetting the fabric items in the drum 16 with the liquid. The step 134 also includes tumbling the drum 16, which can occur while the liquid is recirculating or after the liquid has been recirculated. Tumbling the drum 16 while the liquid recirculates advantageously moves the fabric items within the drum 16 whereby the recirculating liquid can be applied to the moving fabric items rather than to a stationary pile of the fabric items, which would be the case for the stationary drum 16. Applying the liquid to the moving fabric items can facilitate distributing the liquid among the fabric items, which absorb the recirculating liquid. An exemplary tumble speed for the pre-wash step 102A is about 40 rpm. The drum 16 can tumble in one direction only or can tumble in alternating directions.


The recirculation and tumbling of step 134 is followed by spinning the drum 16 in step 136. The spinning of the drum 16 forces the liquid absorbed by the fabric items to permeate through the fabric items and flow through the perforations 18 in the drum 16. While some of the liquid remains in the fabric items, the liquid that flows through the perforations 18 falls by gravity for collection in the sump 38. Exemplary spin speeds for the pre-wash step 102B are about 100 rpm and about 300 rpm. The drum 16 can spin in one direction only or can spin in alternating directions.


After the spinning step 134, a status of the pre-wash step 102B is evaluated at step 138. In particular, it is determined whether the pre-wash step 102B is complete. The completion of the pre-wash step 102B can be evaluated in any suitable manner, such as by the exemplary methods described above for the first exemplary pre-wash step 102A. If it is determined in step 138 that the pre-wash step 102B is not complete, then the pre-wash step 102B returns to the add water step 132 and repeats. As in the first exemplary pre-wash step 102B, the amount of water added during the add water step 132 can be an amount sufficient to compensate for the liquid absorbed by the fabric items and thereby maintain the first volume of liquid. If it is determined in step 138 that the pre-wash step 102B is complete, then the method 100 proceeds to the heat step 104.


Referring now to FIG. 5, a third exemplary pre-wash step 102C begins with a user adding detergent to the washing machine 10 in step 140. The user can place the detergent in the detergent dispenser 32 or directly into the drum 16. Next, water is added in step 142 via the detergent dispenser 32 through the liquid conduit 36. Thus, if the user placed the detergent in the detergent dispenser 32, then the detergent flows with the water through the liquid conduit 36 in the step 142. The liquid from the liquid conduit 36 enters the tub 14 and flows to the sump 38. The water can be added to achieve a first volume of liquid. The achievement of the first volume of liquid can be determined on any suitable basis, such as by adding the water for a known period of time, by detecting a liquid level, such as a liquid level in the sump 38 with the liquid level sensor 52, or by detecting a volumetric flow rate of the water through the first supply conduit 30 or the liquid conduit 36. Regardless of how the achievement of the first volume of liquid is determined, the first volume of liquid can correspond to a predetermined liquid level in the sump 38 that is below the drum 16, as discussed above. An exemplary liquid level for the first volume of liquid is illustrated by a dashed line labeled L1 in FIG. 1.


In the step 142 of adding the water, the pump 44 pumps the liquid from the sump 38 and through the recirculation conduit 48 to the recirculation inlet 50 to recirculate the liquid from the tub 14 to the drum 16, thereby wetting the fabric items in the drum 16 with the liquid. The step 142 also includes spinning the drum 16, preferably while the liquid is recirculating. Spinning the drum 16 while the liquid recirculates advantageously distributes the fabric items around the drum 16 whereby the recirculating liquid can be applied to the distributed fabric items rather than to a stationary pile of the fabric items, which would be the case for the stationary drum 16. Exemplary spin speeds for the pre-wash step 102B are about 100 rpm and about 300 rpm. The drum 16 can spin in one direction only or can spin in alternating directions. The fabric items absorb the recirculating liquid that enters the drum 16, and the spinning of the drum 16 forces the liquid to permeate through the fabric items and flow through the perforations 18 in the drum 16. While some of the liquid remains in the fabric items, the liquid that flows through the perforations 18 falls by gravity to the sump 38 for entry into the recirculation conduit 48.


A status of the pre-wash step 102C is evaluated at step 144. In particular, it is determined whether the pre-wash step 102C is complete. The completion of the pre-wash step 102A can be evaluated in any suitable manner, such as by the exemplary methods described above for the first exemplary pre-wash step 102A.


One method of determining whether the fabric items are saturated that is particularly suitable for the step 144 of the pre-wash step 102C involves monitoring output from the liquid flow sensor 54 in the recirculation conduit 48. The liquid flow sensor 54 can be a pressure sensor whose output depends on the flow of liquid past the liquid flow sensor 54. When the fabric items are not saturated, the fabric items absorb a portion of the recirculating liquid; therefore, the liquid that flows through the perforations 18 and enters the recirculation conduit 48 has a reduced volume. Thus, the flow of the liquid past the liquid flow sensor 54 is not relatively constant (i.e., the volume of the liquid has been reduced as the fabric items absorb the liquid), and the output of the liquid flow sensor 54 is relatively unstable, which indicates that the fabric items are not sufficiently saturated and that the pre-wash step 102C is not complete. The output of the flow sensor 54 will inherently have some fluctuation, and the determination of whether the output is relatively unstable can be made, for example, by determining if the fluctuation of the output exceeds a predetermined amount of acceptable fluctuation. If it is determined in step 144 that the pre-wash step 102C is not complete, then the pre-wash step 102C returns to the add water/recirculate/spin step 142 and repeats. The amount of water added can be an amount sufficient to compensate for the liquid absorbed by the fabric items and thereby maintain the first volume of liquid. This can be accomplished, for example, by adding water until the output of the liquid flow sensor 54 becomes stable. When using this method of determining whether the fabric items are saturated, the steps 142 and 144 can be essentially a simultaneous process. For example, the recirculating of the liquid and the spinning of the drum 16 can be continuously executed while the water is added as needed, as determined by the step 144.


When the fabric items are saturated, the liquid that permeates through the fabric items, flows through the perforations 18, and enters the recirculation conduit 48 does not exhibit a reduction in volume. Thus, the flow of the liquid past the liquid flow sensor 54 is relatively constant, and the output of the liquid flow sensor 54 is relatively stable. As a result, the relatively stable reading from the liquid flow sensor 54 without a corresponding introduction of water to maintain the stable reading indicates that the fabric items are sufficiently saturated and that the pre-wash step 102C is complete. As stated above, the output of the flow sensor 54 will inherently have some fluctuation, and the determination of whether the output is relatively stable can be made, for example, by determining if the fluctuation of the output is within the predetermined amount of acceptable fluctuation.


As stated above, the liquid flow sensor 54 can be any suitable device for detecting liquid flow. For example, the liquid flow sensor 54 can comprise a pressure sensor, a flow meter, or a float switch. The flow meter can detect a flow rate or a volume of liquid.


Once it is determined in step 144 that the pre-wash step 102C is complete, then the water addition, the recirculation of the liquid, and the spinning of the drum 16 stop in step 146, and the method 100 proceeds to the heat step 104.


Referring now to FIG. 6, a fourth exemplary pre-wash step 102D begins with a user adding detergent to the washing machine 10 in step 150. The user can place the detergent in the detergent dispenser 32 or directly into the drum 16. Next, water is added in step 152 via the detergent dispenser 32 through the liquid conduit 36. Thus, if the user placed the detergent in the detergent dispenser 32, then the detergent flows with the water through the liquid conduit 36 in the step 152. The liquid from the liquid conduit 36 enters the tub 14 and flows to the sump 38. The water can be added to achieve a first volume of liquid. The achievement of the first volume of liquid can be determined on any suitable basis, such as by adding the water for a known period of time, by detecting a liquid level, such as a liquid level in the sump 38 with the liquid level sensor 52, or by detecting a volumetric flow rate of the water through the first supply conduit 30 or the liquid conduit 36. Regardless of how the achievement of the first volume of liquid is determined, the first volume of liquid can correspond to a predetermined liquid level in the sump 38 that is below the drum 16, as discussed above. An exemplary liquid level for the first volume of liquid is illustrated by the dashed line labeled L1 in FIG. 1.


In step 154, the pump 44 pumps the liquid from the sump 38 and through the recirculation conduit 48 to the recirculation inlet 50 to recirculate the liquid from the tub 14 to the drum 16, thereby wetting the fabric items in the drum 16 with the liquid. The step 154 also includes spinning the drum 16 at a first spin speed, which can occur while the liquid is recirculating or after the liquid has been recirculated. Spinning the drum 16 at the first spin speed while the liquid recirculates advantageously distributes the fabric items around the drum 16 whereby the recirculating liquid can be applied to the distributed fabric items rather than to a stationary pile of the fabric items, which would be the case for the stationary drum 16. The first spin speed can be a relatively low spin speed sufficient to distribute the fabric items about the drum 16, and an exemplary spin speed for the first spin speed is about 100 rpm. The drum 16 can spin in one direction only or can spin in alternating directions at the first spin speed.


After the spinning of the drum 16 at the first spin speed, the drum 16 spins at a second spin speed greater than the first spin speed in step 156. The recirculation of the liquid during the step 154 can cease prior to the spinning of the drum 16 at the second spin speed, or, alternatively, it can continue during the spinning of the drum 16 at the second spin speed. The second spin speed can be a relatively high spin speed sufficient to force the recirculating liquid that enters the drum 16 to permeate through the fabric items and flow through the perforations 18 in the drum 16, and an exemplary spin speed for the second spin speed is a speed greater than about 250 rpm, such as about 280 rpm or about 300 rpm. The drum 16 can spin in one direction only or can spin in alternating directions at the second spin speed. While some of the liquid remains in the fabric items, the liquid that flows through the perforations 18 falls by gravity for collection in the sump 38.


Although not shown in FIG. 6, the recirculation and spinning of the steps 154 and 156 can be optionally followed by tumbling the drum 16, similar to tumbling step 126 in the pre-wash step 102A of FIG. 3.


A status of the pre-wash step 102D is evaluated at step 158. In particular, it is determined whether the pre-wash step 102D is complete. The completion of the pre-wash step 102D can be evaluated in any suitable manner, such as by the exemplary methods described above for the first exemplary pre-wash step 102A or by the exemplary method described above with respect to the third exemplary pre-wash step 102C.


If it is determined in step 158 that the pre-wash step 102D is not complete, then the pre-wash step 102D returns to the add water step 152 and repeats. During the add water step 152, the amount of water added can be an amount sufficient to compensate for the liquid absorbed by the fabric items and thereby maintain the first volume of liquid. If it is determined in step 158 that the pre-wash step 102D is complete, then the method 100 proceeds to the heat step 104.


Referring now to FIG. 7, a fifth exemplary pre-wash step 102E begins with a user adding detergent to the washing machine 10 in step 120. The user can place the detergent in the detergent dispenser 32 or directly into the drum 16. In the pre-wash step 102E, it is critical that the fabric items are placed in the drum 16 before, during, or immediately after the step 160 of adding the detergent.


With the fabric items in the drum 16, the drum 16 begins to spin at step 162. During the spinning of the drum 16 at the step 162, liquid has not yet been introduced into the drum 16. As a result, the fabric items are either dry or contain only liquid that was already present in the fabric items prior to the placement of the fabric items in the drum 16. The spinning of the drum 16 prior to introduction of liquid distributes the fabric items about the drum 16 to facilitate uniform introduction of liquid in subsequent step 164. The drum 16 can spin at any suitable spin speed, such as about 100 rpm, in either one direction or alternating directions.


In the step 164, water is added via the detergent dispenser 32 through the liquid conduit 36. Thus, if the user placed the detergent in the detergent dispenser 32, then the detergent flows with the water through the liquid conduit 36 in the step 164. The liquid from the liquid conduit 36 enters the tub 14 and flows to the sump 38. The water can be added to achieve a first volume of liquid. The achievement of the first volume of liquid can be determined on any suitable basis, such as by adding the water for a known period of time, by detecting a liquid level, such as a liquid level in the sump 38 with the liquid level sensor 52, or by detecting a volumetric flow rate of the water through the first supply conduit 30 or the liquid conduit 36. Regardless of how the achievement of the first volume of liquid is determined, the first volume of liquid can correspond to a predetermined liquid level in the sump 38 that is below the drum 16, as discussed above. An exemplary liquid level for the first volume of liquid is illustrated by the dashed line labeled L1 in FIG. 1.


With the drum 16 continuing to spin, the liquid recirculates and is introduced into the drum 16 to wet the distributed fabric items. In particular, the pump 44 pumps the liquid from the sump 38 and through the recirculation conduit 48 to the recirculation inlet 50 to recirculate the liquid from the tub 14 to the drum 16, thereby wetting the fabric items in the drum 16 with the liquid. During the recirculation of the liquid, the drum 16 can continue to spin at the same speed as during the step 162, or the spin speed can be increased. The fabric items absorb the recirculating liquid that enters the drum 16, and the spinning of the drum 16 forces the liquid to permeate through the fabric items and flow through the perforations 18 in the drum 16. While some of the liquid remains in the fabric items, the liquid that flows through the perforations 18 falls by gravity for collection in the sump 38. The spinning of the drum 16 ceases at step 166, which can be coincident with the end of the step 164 (i.e., the spinning stops when the recirculation stops) or extend beyond the end of the step 164 (i.e., the spinning continues after the recirculation stops).


The recirculation and spinning of the steps 164, 166 can be optionally followed by tumbling the drum 16 in step 168. When the drum 16 tumbles, the fabric items fall back to the lowest location of the drum 16 and can be redistributed amongst each other. An exemplary tumble speed for the pre-wash step 102E is about 40 rpm. The drum 16 can tumble in one direction only or can tumble in alternating directions.


After the optional tumbling step 168, a status of the pre-wash step 102E is evaluated at step 170. In particular, it is determined whether the pre-wash step 102E is complete. The completion of the pre-wash step 102E can be evaluated in any suitable manner, such as by the exemplary methods described above for the first exemplary pre-wash step 102A or by the exemplary method described above with respect to the third exemplary pre-wash step 102C.


If it is determined in step 170 that the pre-wash step 102E is not complete, then the pre-wash step 102E returns to the begin spin step 162 and repeats. During the introduction of water in the step 164, the amount of water added can be an amount sufficient to compensate for the liquid absorbed by the fabric items and thereby maintain the first volume of liquid. If it is determined in step 170 that the pre-wash step 102E is complete, then the method 100 proceeds to the heat step 104.


Switching focus to the heat step 104, steam is introduced to heat the fabric items, which are in a wet condition due to the pre-wash step 102. The steam increases the temperature of the fabric load and the liquid absorbed by the fabric load. The steam can also heat any liquid present in the drum 16, tub 14, sump 38, and recirculation conduit 48. The addition of heat facilitates removal of soil from the fabric load. The heat step 104 can proceed for a predetermined period of time or until the fabric load or liquid in the washing machine 10 reaches a predetermined temperature, which can be measured by a temperature sensor. The predetermined temperature can depend on several factors, such as size and type of the fabric items and wash cycle selected by the user. An exemplary predetermined temperature is about 60° C.


The introduction of steam can be accompanied by rotation of the drum 16. For example, the drum 16 can tumble during the entire period of steam introduction or during a portion of the steam introduction period. Alternatively, the introduction of steam and the rotation of the drum 16 can occur in an alternating fashion. The tumbling of the drum 16 moves the fabric items within the drum 16 and facilitates distribution of the steam among the fabric items for uniform heating of the fabric items and the liquid absorbed by the fabric items. Furthermore, the rotation of the drum 16 helps to retain the steam in the drum 16 for effective and uniform heating.


According to one embodiment, the heat step 104 heats the fabric items and the liquid absorbed by the fabric items relatively quickly due to the relatively small amount of liquid absorbed by the fabric items (i.e., relatively high fabric weight to liquid weight ratio). FIG. 8 graphically illustrates the relationship between heating time and the ratio of fabric weight to liquid weight. As the liquid weight increases (i.e., the ratio decreases), time required to achieve a given temperature also increases. Thus, not only does utilizing a low amount of liquid reduce water consumption, but it also corresponds to a reduced power consumption during heating because the steam generator 60 functions for a reduced duration.


An exemplary execution of the heat step 104 is illustrated in flow chart in FIG. 9. A description of the exemplary execution follows, with it being understood that the flow chart and description are provided for illustrative purposes only. It is within the scope of the invention for the heat step 104 to differ from the exemplary execution of FIG. 9. The exemplary execution is described with respect to the exemplary washing machine 10 in FIG. 1, but it is within the scope of the invention to utilize other washing machines.


Referring now to FIG. 9, the heat step 104 comprises a step 180 of adding steam and tumbling. To introduce steam, liquid enters the first liquid inlet 28 and flows through the second inlet valve 64 in the second supply conduit 62 to the steam generator 60. The steam generator converts the liquid to steam, which flows through the steam conduit 66 to the steam inlet 68, where the steam enters the tub 14. The steam disperses from the steam inlet 68 and flows through the perforations 18 into the drum 16, where it heats the fabric load and the liquid absorbed by the fabric load. The steam can also heat any liquid present in the tub 14 or other component of the liquid supply and recirculation system.


As discussed above, the tumbling of the drum 16 is optional and need not occur simultaneously with the introduction of steam. An exemplary tumble speed for the step 180 of the heat step 104 is about 40 rpm. The drum 16 can tumble in one direction only or can tumble in alternating directions.


A status of the heat step 104 is evaluated at step 182, which can occur continuously or at regular intervals during the execution of the step 180 of heating and optional tumbling. In particular, it is determined whether the heat step 104 is complete. The completion of the heat step 104 can be evaluated in any suitable manner, such as by determining if the predetermined time has elapsed or if the predetermined temperature has been achieved. If it is determined in step 182 that the heat step 104 is not complete, then the step 180 of heating and optional tumbling continues. If it is determined in step 182 that the heat step 104 is complete, then the method 100 proceeds to the wash step 106.


The flow charts of FIGS. 2 and 9 indicate that the heat step 104 occurs after the pre-wash step 102 and before the wash step 106. However, it is within the scope of the invention to incorporate the heat step 104 into the pre-wash step 102 and/or the wash step 106 and does not necessarily have to exist as a distinct step between the pre-wash step 102 and the wash step 106.


The wash step 106 utilizes a greater volume of liquid than the pre-wash step 102 to lift soils, spots, stains, debris, and the like from the fabric items. The pre-wash step 102 employs the concentrated detergent solution to chemically treat the fabric items, and the greater volume of liquid for the wash step 106 provides sufficient free liquid to lift the soils from the chemically treated fabric items. The addition of heat during the heat step 104 facilitates the washing of the fabric items, as it is well-known that heat improves cleaning performance. The liquid for the wash step 106 can be formed by a combination of the liquid remaining in the tub 14 and/or drum 16 after the pre-wash step 102 and additional, new liquid. In this case, the new liquid dilutes the detergent solution. According to one embodiment, for example, the concentration of the detergent solution when diluted can approach or equal a concentration of detergent solution utilized during a conventional wash cycle. Alternatively, the liquid for the pre-wash step 102 can be drained, and the wash step 106 can be formed entirely by new liquid.


One manner of quantifying the amount of liquid used in the wash step 106 is the ratio of fabric weight to liquid weight. Exemplary ratios for the wash step 106 are ratios less than the ratio achieved during the pre-wash step 102. Exemplary suitable ranges for the ratio in the pre-wash step 102 were given above as from about 1:0.5 to 1:2.7 or 1:0.5 to 1:2.3. Exemplary suitable ranges for the ratio in the wash step 106 are ratios less than about 1:2.7 or less than about 1:2.3. For example, given the ratio of about 1:1.15 for the pre-wash step 102, an illustrative ratio for the wash step 106 is about 1:3.4.


Another manner of quantifying the amount of liquid used in the wash step 106 involves comparing of the volume of liquid with structural features of the washing machine 10. For example, the volume of liquid can be a volume that submerges at least a portion of the drum 16. By submerging at least a portion of the drum 16 with the liquid, the wash step 106 can include rotating the drum 16 through the liquid to accomplish the washing of the fabric items. Some washing machines, however, include a recirculation inlet that sprays the liquid onto the clothing for washing rather than rotating the drum through the liquid. In such washing machines, the volume of liquid can be a volume that does not submerge any portion of the drum 16. As discussed previously, keeping the volume of liquid below the drum 16 prevents sudslock when the drum 16 spins.


The wash step 106 can proceed in any suitable manner and is not limited to any particular actions. For example, the wash step 106 can include one or more of the following actions: add liquid, recirculate liquid, rotating the drum by tumbling and/or spinning, and draining liquid. The actions can occur any number of times and in any sequence.


An exemplary execution of the wash step 106 is illustrated in flow chart in FIG. 10. A description of the exemplary execution follows, with it being understood that the flow chart and description are provided for illustrative purposes only. It is within the scope of the invention for the wash step 106 to differ from the exemplary execution of FIG. 10. The exemplary execution is described with respect to the exemplary washing machine 10 in FIG. 1, but it is within the scope of the invention to utilize other washing machines.


Referring now to FIG. 10, the wash step 106 begins with tumbling the drum 16 at step 190. An exemplary tumble speed for the wash step 106 is about 40 rpm. The drum 16 can tumble in one direction only or can tumble in alternating directions. While the drum 16 continues to tumble, water is added in step 192 to reach a second volume of liquid greater than the first volume of liquid from the pre-wash step 102. In the exemplary execution of FIG. 10, the second volume of liquid is formed by adding the water to the first volume of liquid already present in the tub 14 and/or drum 16. Thus, the addition of the water to the first volume of liquid dilutes the detergent solution to form the second volume of liquid. In the exemplary execution, the second volume of liquid submerges at least a portion of the drum 16. In step 194, the liquid recirculates while the drum 16 continues to tumble. Recirculation of the liquid ensures that the detergent in the second volume of liquid is evenly distributed within the liquid and that all the fabric items are wet with the liquid. After recirculation of the liquid, the drum 16 continues to tumble in step 196. During the tumbling of the drum 16, the drum 16 rotates through the second volume of liquid to facilitate washing of the fabric items.


A status of the wash step 106 is evaluated at step 198, which can occur while the drum 16 continues to tumble. In particular, it is determined whether the wash step 106 is complete. The completion of the wash step 106 can be evaluated in any suitable manner, such as by determining if a predetermined time has elapsed. If it is determined in step 198 that the wash step 106 is not complete, then the wash step 106 returns to the begin tumble step 190 and repeats. As the wash step 106 repeats, water can be added to maintain the second volume of liquid during the add water step 192, if necessary. If it is determined in step 198 that the wash step 106 is complete, then the wash step 106 concludes with a draining of the liquid through the drain conduit 46 in step 200 and a spinning of the drum 16 in step 202 to extract liquid from the fabric items. The tumbling of the drum 16 can cease prior to the draining step 200, or the tumbling of the drum 16 can continue through the draining step 200, whereby the rotational speed of the drum 16 increases for the subsequent spinning of the drum 16 in the step 202. Thereafter, the method 100 proceeds to the rinse step 108.


The rinse step 108 that follows the wash step 106 can be any suitable step for rinsing the detergent solution from the fabric items. An exemplary execution of the rinse step 108 is shown in the flow chart of FIG. 11. The exemplary execution begins with tumbling the drum 16 at step 210 and adding water in step 212 while the drum 16 continues to tumble. According to the exemplary execution, the amount of water added to the drum 16 submerges at least a portion of the drum 16. As a result, after the water has been added, the drum 16 continues to tumble at step 214, whereby the drum 16 rotates through the water to rinse the fabric items. After a predetermined period of time, the water drains at step 216, and the rinse step 108 concludes with a spinning of the drum 16 to extract liquid from the fabric items. Thereafter, the method 100 proceeds to the extract step 110.


The extract step 110 that follows the rinse step 108 can be any suitable step for extracting liquid from the fabric items. An exemplary execution of the extract step 110 is shown in the flow chart of FIG. 12. The exemplary execution begins with spinning the drum 16 at step 220. After a predetermined period of time, the rotational speed of the drum 16 decreases to tumble the drum 16 at step 222. The tumbling of the drum 16 enables the fabric items to be redistributed prior to another step 224 of spinning the drum 16. After another predetermined period of time, the spinning of the drum 16 ceases, and the drum 16 rotates to fluff the fabric items in step 226. The method 100 ends with the fluff step 226.


While the method 100 has been described as comprising the pre-wash step 102, the heat step 104, the wash step 106, the rinse step 108, and the extract step 110, it is within the scope of the invention for the method 100 to include only one or a subset of the steps 102, 104, 106, 108, 110 or to include additional steps. Furthermore, the steps 102, 104, 106, 108, 110 can be conducted in any suitable order and can be repeated if deemed necessary.


An alternative method 100′ of operating a washing machine with steam according to one embodiment of the invention is illustrated in FIG. 13, where method steps similar to those of the first embodiment method 100 of FIG. 2 are identified with the same reference numeral bearing a prime (′) symbol. The alternative method 100′ is substantially identical to the first embodiment method 100, except that the heat step 104′ in the former employs an intermediate volume of liquid greater than the first volume of liquid but less than the second volume of liquid.


The heat step 104′ can include adding water to increase the volume of liquid from the first volume of liquid to the intermediate volume of liquid. The additional liquid facilitates lifting of the stains as the fabric items and the liquid absorbed by the fabric items are heated during the heat step 104′. However, because the intermediate volume of liquid can hold more heat than the first volume of liquid, the steam generator 60 utilizes more power to produce enough steam to heat the intermediate volume of liquid. Consequently, these factors should be weighed against one another when selecting the intermediate volume of liquid.


As discussed above with respect to the first and second volumes of liquid, one manner of quantifying the amount of liquid for the intermediate volume of liquid is the ratio of fabric weight to liquid weight. Exemplary ratios for the heat step 104′ are ratios less than the ratio achieved during the pre-wash step 102′ but greater than that of the wash step 106′. For example, given the ratios of about 1:1.12 for the pre-wash step 102′ and about 1:3.4 for the wash step 106′, an illustrative ratio for the heat step 104′ is about 1:1.7.


Another manner of quantifying the amount of liquid for the intermediate volume of liquid involves comparing of the volume of liquid with structural features of the washing machine 10. For example, the intermediate volume of liquid can be a volume that submerges at least a portion of the drum 16. Alternatively, the intermediate volume of liquid can be a volume that does not submerge any portion of the drum 16.


As an alternative, the method 100′ can utilize the first volume of liquid during the pre-wash step 102′ and the heat step 104′, the second volume of liquid during the wash step 106′, and the intermediate volume of liquid during a rotate step between the heat step 104′ and the wash step 106′. The rotate step can comprise tumbling or spinning the drum 16. Optionally, the rotate step can be considered as an additional pre-wash step that includes addition of a wash aid. For example, detergent can be added during the pre-wash step 102′, and a different wash aid, such as bleach, can be added during the additional pre-wash step. Adding the bleach after the detergent ensures that the bleach does not harm the performance of the detergent.


As mentioned above, the method 100, 100′ can be executed and adapted for use with any suitable type of horizontal axis or vertical axis washing machine. The washing machine shown in FIG. 1 and described above has been provided for illustrative purposes. The liquid supply and recirculation system and the steam generation system can differ from that of the washing machine 10 in FIG. 1. Variations of the liquid supply and recirculation system and the steam generation system are presented below with respect to FIGS. 14-18. The structures in FIGS. 14-18 can be combined in any desirable manner to configure the liquid supply and recirculation system and the steam generation system.


Alternative structures for introducing liquid into the tub 14 and drum 16 are illustrated schematically in FIGS. 14 and 15. Referring particularly to FIG. 14, the liquid can be supplied from an external source through the detergent dispenser 32 to the tub 14, as shown by a solid line 230, directly from the external source to the tub 14, as shown by a dotted line 232, and from the external source through the steam generator 60 to the tub 14, as shown by a dash-dot-dash line 234. The inlet for supplying the liquid to the tub 14 can be positioned in any suitable location and is illustrated as along an upper wall of the tub 14 in FIG. 14 for exemplary purposes. Alternatively, the liquid can be supplied directly to the drum 16 rather than to the tub 14, as depicted in FIG. 15. The inlet for supplying the liquid to the drum 16 can be positioned in any suitable location and is illustrated as along a front wall of the drum 16 in FIG. 15 for exemplary purposes.


Alternative structures for introducing liquid into the steam generator 60 are illustrated schematically in FIGS. 16 and 17. Referring particularly to FIG. 16, the liquid can be supplied from the external source and through the detergent dispenser 32 to the steam generator 60, as shown by a solid line 236, or directly from the external source to the steam generator 60, as shown by a dotted line 238. The steam created by the steam generator 60 from the liquid can be supplied to the tub 14, as shown by either the solid line 236 or the dotted line 238. The inlet for supplying the steam to the tub 14 can be positioned in any suitable location and is illustrated as along an upper wall of the tub 14 in FIG. 16 for exemplary purposes. Alternatively, the steam can be supplied directly to the drum 16 rather than to the tub 14, as depicted in FIG. 17. The inlet for supplying the steam to the drum 16 can be positioned in any suitable location and is illustrated as along a front wall of the drum 16 in FIG. 17 for exemplary purposes.


Alternative structures for recirculating liquid from the tub 14 to the drum 16 are illustrated schematically in FIG. 18. The liquid from the tub 14 flows to the pump 44, which can direct the liquid to a dedicated recirculation inlet that supplies the liquid to the drum 16, as shown by a solid line 240, or to a conduit, as shown by a dotted line 242, which connects with a shared inlet to the drum 16, as indicated by a dash-dot-dash line 244. The shared inlet can be an inlet for introducing liquid and/or steam into the drum 16. The shared inlet can be coupled with the detergent dispenser 32 and/or the steam generator 60. The dedicated inlet and the shared inlet for supplying the recirculated liquid to the drum 16 can be positioned in any suitable location and are illustrated as along a front wall of the drum 16 in FIG. 18 for exemplary purposes.


The method 100, 100′ can also be employed with a vertical axis washing machine. FIG. 19 presents a schematic view of an exemplary vertical axis washing machine 250. The washing machine 250 comprises a cabinet 252 that houses a stationary tub 254. A rotatable drum 256 mounted within the tub 254 includes a plurality of perforations 258, and liquid can flow between the tub 254 and the drum 256 through the perforations 258. The washing machine 250 further comprises a fabric movement element 260, such as an agitator, impeller, nutator, and the like, that induces movement of fabric items contained in the drum 256. A motor 262 coupled to the drum 256 and to the fabric movement element 260 induces rotation of the drum 256 and the fabric movement element 260. The drum 256 and the fabric movement element 260 can be rotated individually, simultaneously, in one direction, or in opposite directions.


The washing machine 250 of FIG. 19 further comprises a liquid supply and recirculation system. Liquid can be supplied to the tub 254 and/or drum 256 through a detergent dispenser 264, as indicated by a solid line 272 in FIG. 19. The liquid can also be recirculated from a sump 266 to the drum 256 via a pump 268, as indicated by a dotted line 274. The pump 268 can also be used to drain the liquid from the sump 266 to a location external to the washing machine 250. The washing machine 250 further includes a steam generation system. The steam generation system comprises a steam generator 270 that receives liquid and coverts the liquid to steam, which is introduced to the tub 254 and/or drum 256, as shown by a dash-dot-dash line 276. The vertical axis washing machine 250 is provided for illustrative purposes only, and it is within the scope of the invention to utilize other types of vertical axis steam washing machines.


Other structures and methods related to steam washing machines are disclosed in the following patent applications, which are incorporated herein by reference in their entirety: our Ser. No. 11/450,636, now U.S. Pat. No. 7,627,920, issued Dec. 8, 2009, titled “Method of Operating a Washing Machine Using Steam,” and filed concurrently herewith; and our Ser. No. 11/450,529, now U.S. Pat. No. 7,765,628, issued Aug. 3, 2010, titled “Steam Washing Machine Operation Method Having Dual Speed Spin Pre-Wash,” and filed concurrently herewith.


While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.

Claims
  • 1. A method of operating a horizontal axis washing machine having a tub with a drum having an interior surface mounted in the tub for rotation about a horizontal axis and configured to hold a fabric load, the method comprising: distributing an unwetted fabric load by rotating the drum about the horizontal axis at a spin speed to generate a force greater than or equal to 1G acting on the fabric load to distribute the unwetted fabric load about the interior surface of the drum prior to wetting the unwetted fabric load with a detergent solution; andafter the distributing of the unwetted fabric load and while the drum is rotating at the spin speed, wetting the unwetted fabric load by introducing and recirculating a detergent solution into the drum at least until the fabric load is saturated with the detergent solution.
  • 2. The method according to claim 1, further comprising rotating the drum at a tumble speed after the rotating the drum at the spin speed.
  • 3. The method according to claim 1, wherein the recirculating comprises recirculating the detergent solution between the tub and the drum.
  • 4. The method according to claim 3, wherein the introducing of detergent solution comprises adding liquid to at least one of the tub and the drum to compensate for liquid absorbed by the fabric load.
  • 5. The method according to claim 4, wherein the adding, recirculating, and rotating the drum at the spin speed repeats until a ratio of fabric load weight to liquid weight reaches a predetermined ratio.
  • 6. The method according to claim 1 wherein the introducing and recirculating the detergent solution continues until a ratio of fabric load weight to liquid load weight reaches a predetermined ratio in a range of about 1:0.5 to 1:2.7.
  • 7. The method according to claim 1, further comprising introducing steam into at least one of the tub and the drum.
  • 8. The method according to claim 7, wherein the introducing of the steam occurs after the introducing of the detergent solution and the rotating the drum at the spin speed.
  • 9. The method according to claim 7, further comprising rotating the drum during the introducing of the steam.
  • 10. The method according to claim 9, wherein the rotating of the drum during the introducing of the steam comprises rotating the drum at a tumble speed.
  • 11. The method according to claim 1, wherein the introducing and rotating the drum at the spin speed are part of a pre-wash step, and a washing step follows the pre-wash step.
  • 12. The method according to claim 11, wherein a ratio of fabric load weight to liquid weight is greater during the pre-wash step than during the washing step.
  • 13. The method according to claim 11, further comprising introducing steam into at least one of the tub and the drum at least one of during the pre-wash step, between the pre-wash step and the washing step, and during the washing step.
  • 14. The method according to claim 13, further comprising a rinsing step and an extraction step following the washing step.
  • 15. The method according to claim 6, wherein the predetermined ratio is in a range of about 1:1 and 1:2.
US Referenced Citations (208)
Number Name Date Kind
369609 Montanye Sep 1887 A
382289 Ballard May 1888 A
480037 Rowe et al. Aug 1892 A
0647112 Pearson Apr 1900 A
956458 Walter Apr 1910 A
1089334 Dickerson Mar 1914 A
1616372 Janson Feb 1927 A
1676763 Anetsberger et al. Jul 1928 A
1852179 McDonald Apr 1932 A
2314332 Ferris Mar 1943 A
2434476 Wales Jan 1948 A
2778212 Dayton et al. Jan 1957 A
2800010 Dunn Jul 1957 A
2845786 Chrisman Aug 1958 A
2881609 Brucken Apr 1959 A
2937516 Czaika May 1960 A
2966052 Syles Dec 1960 A
3035145 Rudolph May 1962 A
3060713 Burkall Oct 1962 A
3223108 Martz, Jr Dec 1965 A
3234571 Buss Feb 1966 A
3347066 Klausner Oct 1967 A
3498091 Mason Mar 1970 A
3550170 Davis Dec 1970 A
3697727 Neuman et al. Oct 1972 A
3707855 Buckley Jan 1973 A
3712089 Toth Jan 1973 A
3801077 Pearson Apr 1974 A
3830241 Dye et al. Aug 1974 A
3869815 Bullock Mar 1975 A
3890987 Marcussen et al. Jun 1975 A
3935719 Henderson Feb 1976 A
4020396 Gambale et al. Apr 1977 A
4034583 Miessler Jul 1977 A
4045174 Fuhring et al. Aug 1977 A
4108000 Norris Aug 1978 A
4177928 Bergkvist Dec 1979 A
4207683 Horton Jun 1980 A
4214148 Fleischauer Jul 1980 A
4263258 Kalasek Apr 1981 A
4332047 Kuttelwesch Jun 1982 A
4373430 Allen Feb 1983 A
4386509 Kuttelwesch Jun 1983 A
4432111 Hoffmann et al. Feb 1984 A
4489574 Spendel Dec 1984 A
4496473 Sanderson Jan 1985 A
4527343 Danneberg Jul 1985 A
4646630 McCoy et al. Mar 1987 A
4761305 Ochiai Aug 1988 A
4777682 Dreher et al. Oct 1988 A
4784666 Brenner et al. Nov 1988 A
4809597 Lin Mar 1989 A
4879887 Kagi et al. Nov 1989 A
4920668 Henneberger et al. May 1990 A
4987627 Cur et al. Jan 1991 A
4991545 Rabe et al. Feb 1991 A
5032186 Childers et al. Jul 1991 A
5050259 Tsubaki et al. Sep 1991 A
5052344 Kosugi et al. Oct 1991 A
5058194 Violi Oct 1991 A
5063609 Lorimer Nov 1991 A
5107606 Tsubaki et al. Apr 1992 A
5146693 Dottor et al. Sep 1992 A
5152252 Bolton et al. Oct 1992 A
5154197 Auld et al. Oct 1992 A
5172654 Christiansen Dec 1992 A
5172888 Ezekoye Dec 1992 A
5199455 Dlouhy Apr 1993 A
5212969 Tsubaki et al. May 1993 A
5219370 Farrington et al. Jun 1993 A
5219371 Shim et al. Jun 1993 A
5279676 Oslin et al. Jan 1994 A
5291758 Lee Mar 1994 A
5293761 Jang Mar 1994 A
5315727 Lee May 1994 A
5345637 Pastryk et al. Sep 1994 A
5570626 Vos Nov 1996 A
5619983 Smith Apr 1997 A
5727402 Wada Mar 1998 A
5732664 Badeaux, Jr. Mar 1998 A
5743034 Debourg et al. Apr 1998 A
5758377 Cimetta et al. Jun 1998 A
5768730 Matsumoto et al. Jun 1998 A
5815637 Allen et al. Sep 1998 A
6029300 Kawaguchi et al. Feb 2000 A
6067403 Morgandi May 2000 A
6094523 Zelina et al. Jul 2000 A
6122849 Kida et al. Sep 2000 A
6161306 Clodic Dec 2000 A
6178671 Zwanenburg et al. Jan 2001 B1
6295691 Chen Oct 2001 B1
6327730 Corbett Dec 2001 B1
6434857 Anderson et al. Aug 2002 B1
6451066 Estes et al. Sep 2002 B2
6460381 Yoshida et al. Oct 2002 B1
6585781 Roseen Jul 2003 B1
6622529 Crane Sep 2003 B1
6647931 Morgandi et al. Nov 2003 B1
6691536 Severns et al. Feb 2004 B2
6772751 Deuringer et al. Aug 2004 B2
6789404 Kim et al. Sep 2004 B2
6823878 Gadini Nov 2004 B1
6874191 Kim et al. Apr 2005 B2
6889399 Steiner et al. May 2005 B2
7021087 France et al. Apr 2006 B2
7096828 Tippmann Aug 2006 B2
7290412 Yang et al. Nov 2007 B2
7325330 Kim et al. Feb 2008 B2
7404304 Yang et al. Jul 2008 B2
7421752 Donadon et al. Sep 2008 B2
7490491 Yang et al. Feb 2009 B2
7490493 Kim et al. Feb 2009 B2
7520146 Kim et al. Apr 2009 B2
7600402 Shin et al. Oct 2009 B2
7765628 Wong et al. Aug 2010 B2
20010032599 Fischer et al. Oct 2001 A1
20030215226 Nomura et al. Nov 2003 A1
20030226999 Hage Dec 2003 A1
20040163184 Waldron et al. Aug 2004 A1
20040187527 Kim et al. Sep 2004 A1
20040187529 Kim et al. Sep 2004 A1
20040200093 Wunderlin et al. Oct 2004 A1
20040206480 Maydanik et al. Oct 2004 A1
20040221474 Slutsky et al. Nov 2004 A1
20040237603 Kim et al. Dec 2004 A1
20040244432 Kim et al. Dec 2004 A1
20040244438 North Dec 2004 A1
20040255391 Kim et al. Dec 2004 A1
20050000031 Price et al. Jan 2005 A1
20050028297 Kim et al. Feb 2005 A1
20050034248 Oh et al. Feb 2005 A1
20050034249 Oh et al. Feb 2005 A1
20050034250 Oh et al. Feb 2005 A1
20050034487 Oh et al. Feb 2005 A1
20050034488 Oh et al. Feb 2005 A1
20050034489 Oh et al. Feb 2005 A1
20050034490 Oh et al. Feb 2005 A1
20050050644 Severns et al. Mar 2005 A1
20050072382 Tippmann, Sr. Apr 2005 A1
20050072383 Powell et al. Apr 2005 A1
20050092035 Shin et al. May 2005 A1
20050132503 Yang et al. Jun 2005 A1
20050132504 Yang et al. Jun 2005 A1
20050132756 Yang et al. Jun 2005 A1
20050144734 Yang et al. Jul 2005 A1
20050144735 Yang et al. Jul 2005 A1
20050144737 Roepke et al. Jul 2005 A1
20050205482 Gladney Sep 2005 A1
20050220672 Takahashi et al. Oct 2005 A1
20050223503 Hong et al. Oct 2005 A1
20050223504 Lee et al. Oct 2005 A1
20050252250 Oh et al. Nov 2005 A1
20050262644 Oak et al. Dec 2005 A1
20060000242 Yang et al. Jan 2006 A1
20060001612 Kim Jan 2006 A1
20060005581 Banba Jan 2006 A1
20060010613 Jeon et al. Jan 2006 A1
20060010727 Fung Jan 2006 A1
20060010937 Kim et al. Jan 2006 A1
20060016020 Park Jan 2006 A1
20060090524 Jeon et al. May 2006 A1
20060096333 Park et al. May 2006 A1
20060101586 Park et al. May 2006 A1
20060101588 Park et al. May 2006 A1
20060101867 Kleker May 2006 A1
20060107468 Urbanet et al. May 2006 A1
20060112585 Choi et al. Jun 2006 A1
20060117596 Kim et al. Jun 2006 A1
20060130354 Choi et al. Jun 2006 A1
20060137105 Hong et al. Jun 2006 A1
20060137107 Lee et al. Jun 2006 A1
20060150689 Kim et al. Jul 2006 A1
20060151005 Kim et al. Jul 2006 A1
20060151009 Kim et al. Jul 2006 A1
20060191077 Oh et al. Aug 2006 A1
20060191078 Kim et al. Aug 2006 A1
20060277690 Pyo et al. Dec 2006 A1
20070006484 Moschuetz et al. Jan 2007 A1
20070028398 Kwon et al. Feb 2007 A1
20070084000 Bernardino et al. Apr 2007 A1
20070101773 Park et al. May 2007 A1
20070107472 Kim et al. May 2007 A1
20070107884 Sirkar et al. May 2007 A1
20070125133 Oh et al. Jun 2007 A1
20070130697 Oh et al. Jun 2007 A1
20070136956 Kim et al. Jun 2007 A1
20070137262 Kim et al. Jun 2007 A1
20070169279 Park et al. Jul 2007 A1
20070169280 Kim et al. Jul 2007 A1
20070169282 Kim Jul 2007 A1
20070169521 Kim et al. Jul 2007 A1
20070180628 Ahn Aug 2007 A1
20070186591 Kim et al. Aug 2007 A1
20070186592 Kim et al. Aug 2007 A1
20070186593 Ahn Aug 2007 A1
20070199353 Woo et al. Aug 2007 A1
20070240458 Kim et al. Oct 2007 A1
20070283505 Wong et al. Dec 2007 A1
20070283508 Wong et al. Dec 2007 A1
20070283509 Wong et al. Dec 2007 A1
20070283728 Wong et al. Dec 2007 A1
20080006063 Ahn et al. Jan 2008 A1
20080019864 Savage et al. Jan 2008 A1
20080028801 Czyzewski et al. Feb 2008 A1
20080115740 You May 2008 A1
20090056034 Herkle et al. Mar 2009 A1
20090056036 Herkle et al. Mar 2009 A1
20090056762 Pinkowski et al. Mar 2009 A1
Foreign Referenced Citations (290)
Number Date Country
1330526 Jul 1994 CA
1664222 Sep 2005 CN
1962988 May 2007 CN
1962998 May 2007 CN
1965123 May 2007 CN
101003939 Jul 2007 CN
101008148 Aug 2007 CN
101024915 Aug 2007 CN
12203 Feb 1881 DE
42920 Apr 1888 DE
69929 Aug 1893 DE
132104 Jul 1902 DE
243328 Feb 1912 DE
283533 Apr 1915 DE
317887 Jan 1920 DE
427025 Mar 1926 DE
435088 Oct 1926 DE
479594 Jul 1929 DE
668963 Dec 1938 DE
853433 Oct 1952 DE
894685 Oct 1953 DE
1847016 Feb 1962 DE
1873622 Jun 1963 DE
2202345 Aug 1973 DE
2226373 Dec 1973 DE
2245532 Mar 1974 DE
7340082 May 1975 DE
2410107 Sep 1975 DE
2533759 Feb 1977 DE
3103529 Aug 1982 DE
3139466 Apr 1983 DE
3408136 Sep 1985 DE
3501008 Jul 1986 DE
3627988 Apr 1987 DE
8703344 Aug 1988 DE
4116673 Nov 1992 DE
4225847 Feb 1994 DE
4413213 Oct 1995 DE
4443338 Jun 1996 DE
29707168 Jul 1997 DE
19730422 Jan 1999 DE
19736794 Feb 1999 DE
19742282 Feb 1999 DE
19743508 Apr 1999 DE
19751028 May 1999 DE
19903951 Aug 2000 DE
10028944 Dec 2001 DE
10035904 Jan 2002 DE
10039904 Feb 2002 DE
10043165 Feb 2002 DE
10312163 Nov 2003 DE
10260163 Jul 2004 DE
176355 Oct 2006 DE
102005051721 May 2007 DE
102007023020 May 2008 DE
0043122 Jan 1982 EP
0132884 Feb 1985 EP
0135484 Mar 1985 EP
0217981 Apr 1987 EP
0222264 May 1987 EP
0280782 Sep 1988 EP
0284554 Sep 1988 EP
0287990 Oct 1988 EP
0302125 Aug 1989 EP
363708 Apr 1990 EP
0383327 Aug 1990 EP
0404253 Dec 1990 EP
0511525 Nov 1992 EP
0574341 Dec 1993 EP
0582092 Feb 1994 EP
0638684 Feb 1995 EP
0672377 Sep 1995 EP
0726349 Aug 1996 EP
0768059 Apr 1997 EP
0785303 Jul 1997 EP
0808936 Nov 1997 EP
0821096 Jan 1998 EP
0839943 May 1998 EP
0816550 Jul 1998 EP
1163387 Dec 2001 EP
1275767 Jan 2003 EP
1351016 Oct 2003 EP
1411163 Apr 2004 EP
1437547 Jul 2004 EP
1441059 Jul 2004 EP
1441175 Jul 2004 EP
1464750 Oct 2004 EP
1464751 Oct 2004 EP
1469120 Oct 2004 EP
1505193 Feb 2005 EP
1507028 Feb 2005 EP
1507029 Feb 2005 EP
1507030 Feb 2005 EP
1507031 Feb 2005 EP
1507032 Feb 2005 EP
1507033 Feb 2005 EP
1507033 Feb 2005 EP
1529875 May 2005 EP
1544345 Jun 2005 EP
1548175 Jun 2005 EP
1550760 Jul 2005 EP
1555338 Jul 2005 EP
1555339 Jul 2005 EP
1555340 Jul 2005 EP
1561853 Aug 2005 EP
1584728 Oct 2005 EP
1619284 Jan 2006 EP
1655408 May 2006 EP
1659205 May 2006 EP
1666655 Jun 2006 EP
1681384 Jul 2006 EP
1696066 Aug 2006 EP
1731840 Dec 2006 EP
1746197 Jan 2007 EP
1783262 May 2007 EP
1813704 Aug 2007 EP
1813709 Aug 2007 EP
1865099 Dec 2007 EP
1865101 Dec 2007 EP
1889966 Feb 2008 EP
1936023 Jun 2008 EP
2306400 Oct 1976 FR
2525645 Oct 1983 FR
2581442 Nov 1986 FR
2688807 Sep 1993 FR
10423 Jan 1909 GB
21024 Jan 1910 GB
21286 Jan 1898 GB
191010567 Jan 1911 GB
191010792 Jan 1911 GB
191022943 Jan 1911 GB
191024005 Jan 1911 GB
191103554 Jan 1911 GB
102466 Dec 1916 GB
285384 Nov 1928 GB
397236 Aug 1933 GB
514440 Nov 1939 GB
685813 Jan 1953 GB
799788 Aug 1958 GB
835250 May 1960 GB
881083 Nov 1961 GB
889500 Feb 1962 GB
1155268 Jun 1969 GB
1331623 Sep 1973 GB
1352955 May 1974 GB
1366852 Sep 1974 GB
2219603 Dec 1989 GB
2309071 Jul 1997 GB
2348213 Sep 2000 GB
35021275 Aug 1950 JP
36023044 Sep 1960 JP
36000067 Jul 1961 JP
52146973 Dec 1977 JP
54068072 May 1979 JP
57094480 Jun 1982 JP
57032858 Jul 1982 JP
60138399 Jul 1985 JP
61128995 Jun 1986 JP
62066891 Mar 1987 JP
2049700 Feb 1990 JP
02161997 Jun 1990 JP
02026465 Jul 1990 JP
02198595 Aug 1990 JP
2239894 Sep 1990 JP
2242088 Sep 1990 JP
02267402 Nov 1990 JP
03025748 Jun 1991 JP
3137401 Jun 1991 JP
04158896 Jun 1992 JP
4158896 Jun 1992 JP
05023493 Feb 1993 JP
05115672 May 1993 JP
05146583 Jun 1993 JP
05269294 Oct 1993 JP
06123360 May 1994 JP
08261689 Oct 1996 JP
9133305 May 1997 JP
10235088 Sep 1998 JP
11047488 Feb 1999 JP
11164979 Jun 1999 JP
11164980 Jun 1999 JP
11226290 Aug 1999 JP
2000176192 Jun 2000 JP
2003019382 Jan 2003 JP
2003093775 Apr 2003 JP
2003311068 Nov 2003 JP
2003311084 Nov 2003 JP
2003320324 Nov 2003 JP
2003326077 Nov 2003 JP
2004061011 Feb 2004 JP
2004121666 Apr 2004 JP
2004167131 Jun 2004 JP
2004298614 Oct 2004 JP
2004298616 Oct 2004 JP
2004313793 Nov 2004 JP
2005058740 Mar 2005 JP
2005058741 Mar 2005 JP
2005177440 Jul 2005 JP
2005177445 Jul 2005 JP
2005177450 Jul 2005 JP
2005192997 Jul 2005 JP
2005193003 Jul 2005 JP
2006109886 Apr 2006 JP
2006130295 May 2006 JP
2004167131 Sep 2007 JP
9319820 Sep 1993 KR
1019950018856 Jul 1995 KR
1019970011098 Mar 1997 KR
1019970070295 Nov 1997 KR
2019970039170 Jul 1998 KR
200128631 Aug 1998 KR
100146947 Oct 1998 KR
1001146947 Oct 1998 KR
20010015043 Feb 2001 KR
10220010010111 Feb 2001 KR
20040085509 Oct 2004 KR
20050017481 Feb 2005 KR
20060031165 Apr 2006 KR
9214954 Sep 1992 WO
9307798 Apr 1993 WO
9319237 Sep 1993 WO
9715709 May 1997 WO
9803175 Jan 1998 WO
0111134 Feb 2001 WO
0174129 Oct 2001 WO
03012185 Feb 2003 WO
03012185 Feb 2003 WO
03057966 Jul 2003 WO
2004059070 Jul 2004 WO
2004091359 Oct 2004 WO
2005001189 Jan 2005 WO
2005018837 Mar 2005 WO
2005115095 Dec 2005 WO
2006001612 Jan 2006 WO
2006009364 Jan 2006 WO
2006070317 Jul 2006 WO
2006090973 Aug 2006 WO
2006091054 Aug 2006 WO
2006091057 Aug 2006 WO
2006098571 Sep 2006 WO
2006098572 Sep 2006 WO
2006098573 Sep 2006 WO
2006101304 Sep 2006 WO
2006101312 Sep 2006 WO
2006101336 Sep 2006 WO
2006101336 Sep 2006 WO
2006101345 Sep 2006 WO
2006101358 Sep 2006 WO
2006101360 Sep 2006 WO
2006101361 Sep 2006 WO
2006101362 Sep 2006 WO
2006101363 Sep 2006 WO
2006101365 Sep 2006 WO
2006101372 Sep 2006 WO
2006101376 Sep 2006 WO
2006101377 Sep 2006 WO
2006101377 Sep 2006 WO
2006104310 Oct 2006 WO
2006112611 Oct 2006 WO
2006126778 Nov 2006 WO
2006126779 Nov 2006 WO
2006126799 Nov 2006 WO
2006126803 Nov 2006 WO
2006126804 Nov 2006 WO
2006126810 Nov 2006 WO
2006126811 Nov 2006 WO
2006126813 Nov 2006 WO
2006126815 Nov 2006 WO
2006129912 Dec 2006 WO
2006129913 Dec 2006 WO
2006129915 Dec 2006 WO
2006129916 Dec 2006 WO
2007004785 Jan 2007 WO
2007007241 Jan 2007 WO
2007010327 Jan 2007 WO
2007024050 Mar 2007 WO
2007024056 Mar 2007 WO
2007024057 Mar 2007 WO
2007026989 Mar 2007 WO
2007026990 Mar 2007 WO
2007055475 May 2007 WO
2007055510 May 2007 WO
2007058477 May 2007 WO
2007073012 Jun 2007 WO
2007073013 Jun 2007 WO
2007081069 Jul 2007 WO
2007086672 Aug 2007 WO
2007116255 Oct 2007 WO
2007145448 Dec 2007 WO
2008004801 Jan 2008 WO
Related Publications (1)
Number Date Country
20070283507 A1 Dec 2007 US