This disclosure relates to a steel pipe, a steel pipe structure, a method of manufacturing a steel pipe, and a method of designing a steel pipe.
In recent years, gas fields and oil fields are newly developed in abundance due to an increase in demand for gas and petroleum. There are increasing opportunities to embed pipelines that transport gas and petroleum in earthquake-prone areas and non-permafrost areas. However, in such earthquake-prone areas and non-permafrost areas, the ground may be moved due to various causes such as liquefaction, fault displacements, frost heaving, and thawing, and the pipelines may be deformed accordingly. Further, when a pipeline is deformed significantly, steel pipes structuring the pipeline are bent. The pipe can then buckle on the compression side and subsequently break on the tensile side. With these circumstances in the background, techniques of improving deformability of steel pipes so that the steel pipes bend without buckling have been proposed from a viewpoint of preventing damages in the buckling part and preventing leakage of gas or petroleum from the broken part. More specifically, Japanese Patent No. 5447461 (see claim 1 and paragraph 0044) describes a technique of improving the deformability of a steel pipe by arranging a wavelength ratio (the wavelength of a waveform shape/a Timoshenko's buckling wavelength) of the waveform shape (undulation) to be 0.8 or smaller, the waveform shape being formed by outer diameters along the longitudinal direction of the steel pipe through a pipe expansion process.
According to the technique described in Japanese Patent No. 5447461 (see claim 1 and paragraph 0044), while the amplitude of the waveform shape is arranged to have a constant value throughout (0.73 mm=0.06% of OD, where “OD” denotes the diameter of the steel pipe), the range of the wavelength ratio of the waveform shape that can improve the deformability of the steel pipe is defined. However, as a result of extensive studies, we discovered that, even when the wavelength ratio of the waveform shape is in the abovementioned range, deformability of steel pipes may be lowered in some situations depending on the value of the amplitude of the waveform shape. Further, generally speaking, the smaller the wavelength ratio of a waveform shape is, the shorter is the forwarding pitch of the die in the longitudinal direction of the steel pipe during the pipe expansion process. Therefore, when the technique described Japanese Patent No. 5447461 (see claim 1 and paragraph 0044) is used, the labor and time required by the pipe expansion process increase in accordance with the improvement of the deformability of the steel pipe. For this reason, there is a demand for a technique that is able to improve the deformability of steel pipes while reducing the labor and time required by the pipe expansion process.
In view of the circumstances described above, it could be helpful to provide a steel pipe, a steel pipe structure, a method of manufacturing a steel pipe, and a method of designing a steel pipe with which it is possible to improve the deformability while reducing the labor and time required by the pipe expansion process.
Our steel pipe has a waveform shape formed on an outer diameter thereof by a pipe expansion process. Further, a value “a/w” is 0.038% or less, where “a” and “w” denote an amplitude and a wavelength of the waveform shape, respectively.
According to our steel pipe, a value “w/λ,” indicating a ratio of the wavelength “w” of the waveform shape to a Timoshenko's buckling wavelength “λ” is larger than 0.8.
Our steel pipe structure is formed by using our steel pipe. The steel pipe structure includes, for example, a pipeline, a steel pipe pile, a steel pipe sheet pile, and a water gate penstock.
A method of manufacturing a steel pipe manufactures a steel pipe having a waveform shape formed on an outer diameter thereof by a pipe expansion process. Further, the pipe expansion process includes a step of forming the waveform shape such that a value “a/w” is 0.038% or less, where “a” and “w” denote an amplitude and a wavelength of the waveform shape, respectively.
A method of designing a steel pipe designs a steel pipe having a waveform shape formed on an outer diameter thereof by a pipe expansion process, and includes a step of evaluating, with respect to the steel pipe to be manufactured, the relationship between a ratio “w/λ” and a buckling-time bending angle by using Expression (1) below, the ratio “w/λ” indicating a ratio of a wavelength “w” of the waveform shape to a Timoshenko's buckling wavelength “λ”, and further determining the wavelength “w” and an amplitude “a” of the waveform shape, on a basis of a result of the evaluation:
where parameters “D1”, “D2”, “α”, and “β” in Expression (1) have values that are determined by the outer diameter and a thickness of the steel pipe to be manufactured.
By using any of the steel pipe, the steel pipe structure, the method of manufacturing a steel pipe, and the method of designing a steel pipe, it is possible to improve deformability while reducing the labor and time required by the pipe expansion process.
P STEEL PIPE
To evaluate buckling phenomena occurring in the vicinity of a welded joint part of a steel pipe, we performed a bending test on a steel pipe (a UOE steel pipe having an outside diameter of 48 inches (1,219 mm) and a thickness of 22 mm) having a welded joint part. When the outside diameter shape of the steel pipe was measured prior to the bending test, the outside diameter shape of the steel pipe appeared to be a waveform shape and exhibited variances. The variances were caused by a pipe expansion process performed on the steel pipe. The wavelength of the waveform shape was similar to the forwarding cycle of a die used in the pipe expansion process. All the amplitude values of the waveform shape were substantially equal to one another and were caused by a constant mechanical diameter-expanding process.
The buckling-time strain has a proportional relationship with the deformation amount and the curvature of a steel pipe. In other words, a steel pipe that buckles with a small deformation amount or a small curvature (i.e., a steel pipe having a small buckling-time strain) has a low degree of deformability. Conversely, a steel pipe that did not buckle until a large deformation amount or a large curvature was exhibited (i.e., a steel pipe having a large buckling-time strain) has a high degree of deformability and is therefore considered to be applicable to a severe environment such as an earthquake-prone area.
As illustrated in
Accordingly, the analysis result in
On the basis of this relationship, it is possible to maintain the buckling-time strain at a high level by arranging the buckling wavelength ratio to be within a range less than or equal to 0.50. Further, when the buckling wavelength ratio becomes approximately 1.0, the buckling-time strain becomes equivalent to the buckling-time strain exhibited when the buckling wavelength ratio is larger than 1.0 to be as low as approximately 65% of the buckling-time strain exhibited when a steel pipe has a buckling wavelength ratio of 0.5 or smaller.
To shorten the wavelength of the waveform shape, an effective method is to press a die in an overlapping manner so that, during the pipe expansion process, the positions onto which the die is pressed are overlapped in the longitudinal direction of the steel pipe. Accordingly, by using steel pipes each having an outside diameter of 24 inches, an evaluation was made on the waveform shape formed by outer diameters, with respect to a steel pipe to which the overlapping die pressing was applied and another steel pipe to which the overlapping die pressing was not applied. In this situation, the effective length of the die was approximately 450 mm. During the pipe expansion process, the one pipe was prepared by pressing the die with a pitch of 450 mm, and the other pipe was prepared by pressing the die with a smaller pitch of 80 mm (by pressing the die five or six times per effective length).
As a result, we confirmed that the waveform shape formed on the outer diameters is dependent on the manner in which the die is pressed on the steel pipe. More specifically, during the pipe expansion process, the steel pipe on which the die was pressed with the pitch of 450 mm had a waveform shape of which the wavelength was approximately 430 mm to 450 mm. In contrast, during the pipe expansion process, the steel pipe on which the die was pressed with the pitch of 80 mm had a waveform shape of which the wavelength was approximately 60 mm to 70 mm. Further, we also confirmed that the manner in which the die is pressed on the steel pipe also has an impact on the amplitude of the waveform shape and that the smaller the pitch for the pressing of the die is, the smaller the amplitude of the waveform shape is.
Accordingly, we evaluated relationships between wavelengths and amplitudes of the waveform shape.
The above notion signifies that, by arranging the value of the design factor a/w to be equal to or smaller than 0.038%, and preferably by arranging the value of the design factor a/w to be equal to or smaller than 0.038% while arranging the buckling wavelength ratio to be larger than 0.8, it is possible to achieve the buckling wavelength ratio required by realizing the buckling-time bending angle described in Japanese Patent No. 5447461 (see claim 1 and paragraph 0044), i.e., it is possible to increase the die forwarding amount during the pipe expansion process. Accordingly, by adjusting the wavelength and the amplitude of the waveform shape to arrange the value of the design factor a/w to be equal to or smaller than 0.038%, it is possible to improve the deformability while reducing the labor and time required by the pipe expansion process.
By generalizing the feature lines indicated in
Accordingly, it is possible to design a steel pipe of which it is possible to improve deformability while reducing the labor and time required by the pipe expansion process, by preparing values of the parameters D1, D2, α, and β for each of the various outer diameters and the thicknesses of steel pipes in advance through an experiment or an analysis, subsequently reading such values of the parameters D1, D2, α, and β that correspond to the outside diameter and the thickness of a steel pipe to be manufactured, further evaluating the relationship between the buckling-time bending angle and the buckling wavelength ratio X by constructing Expression (1) while using the read values, and determining the wavelength and the amplitude of the waveform shape of the steel pipe to be manufactured on the basis of the result of the evaluation. Further, by performing the pipe expansion process according to the determined buckling wavelength ratio, it is possible to manufacture a steel pipe in which the deformability is improved, while reducing the labor and time required by the pipe expansion process. The steel pipe is applicable to a steel pipe structure such as a pipeline, a steel pipe pile, a steel pipe sheet pile, a water gate penstock, or the like.
A number of examples have thus been explained to which steel pipes, structures and methods are applied. However, this disclosure is not limited to the text and drawings presented in the examples to represent a part of the disclosure. In other words, other modes of carrying out steel pipes, structures and methods, other examples, operation techniques and the like that can be arrived at by one skilled in the art on the basis of the described examples all fall within the scope of the appended claims.
It is possible to provide the steel pipe, the steel pipe structure, the method of manufacturing a steel pipe, and the method of designing a steel pipe with which it is possible to improve the deformability while reducing the labor and time required by the pipe expansion process.
Number | Date | Country | Kind |
---|---|---|---|
2015-049513 | Mar 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/056999 | 3/7/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/143743 | 9/15/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3779312 | Withers, Jr. | Dec 1973 | A |
4007774 | Withers, Jr. | Feb 1977 | A |
4305460 | Yampolsky | Dec 1981 | A |
4330036 | Satoh | May 1982 | A |
T103901 | Lupke et al. | Feb 1984 | I4 |
5680772 | Furukawa | Oct 1997 | A |
8354084 | Tallis | Jan 2013 | B2 |
8555932 | Twist | Oct 2013 | B2 |
8573260 | Twist | Nov 2013 | B2 |
8839823 | Twist | Sep 2014 | B2 |
8985160 | Twist | Mar 2015 | B2 |
20140202576 | Shitamoto | Jul 2014 | A1 |
20150090361 | Tajika | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2864280 | Jan 2007 | CN |
2013-212521 | Oct 2013 | JP |
2013-231506 | Nov 2013 | JP |
5447461 | Mar 2014 | JP |
2015-13314 | Jan 2015 | JP |
1802446 | Dec 1995 | RU |
2273540 | Apr 2006 | RU |
1530292 | Dec 1989 | SU |
Entry |
---|
Office Action dated Jul. 19, 2018, of counterpart Chinese Application No. 201680014323.3 along with its Search Report in English. |
Office Action dated Jul. 19, 2018, of counterpart Russian Application No. 2017131621 along with an English translation. |
Number | Date | Country | |
---|---|---|---|
20180104731 A1 | Apr 2018 | US |