There are applications where hydrocarbons are to be transferred between floating structures, such as between a production vessel that produces and stores hydrocarbons from an undersea reservoir and a buoy for offloading the stored hydrocarbons at regular intervals to a tanker that is moored to the buoy. The hydrocarbons can be transferred through a pipeline that extends in the sea between the structures and that is connected in a pipe joint at each structure. One problem encountered with such a system is that there is repeated stressing of each pipe end due to pitch, roll and heave of the corresponding floating structure. Such repeated stressing, especially in the wave action zone, can result in fatigue failure of the pipe end and of a corresponding pipe connector on the floating structure. Ways to construct a fatigue resistant midwater pipe and ways to minimize such stressing at minimum costs would be of value.
U.S. Pat. No. 6,779,949 shows a catenary or U-shaped steel midwater pipe where the pipeline ends are placed entirely below the wave turbulent zone. The pipe ends are connected to the floating structure, or floater with flexible hoses in the wave active zone. U.S. Pat. No. 6,769,376 shows a midwater system which includes multiple steel pipe sections with clamped fixed spacers at the pipe section ends and flexible spacers in between, which allows for a relative movement of the pipes to each other. These patents include either a upper flexible part or a spacer means.
Patent application GB2335723 shows a riser decoupling system with a weight-carrying chain or cable part between the floater and the end of the steel midwater pipe. In this way relative movement between the buoy and the end of a subsea pipeline is accommodated by a suspended member in the form of a chain, rope or cable. In that patent the fluid path between the end of the pipeline and the buoy includes a flex hose. Other systems for decoupling the motion of the surface floater from a steel midwater pipes by creating a distance between the steel midwater pipe end and the floater, are shown in patent publications U.S. Pat. No. 6,109,989 and US20030084961.
Patent application WO03062043 shows a special design for a deepwater buoy which at its lower part is connected to a steel horizontal transfer duct via a flex joint. The sections of the steel transfer pipe are welded together and are subject to large fatigue loads as it is placed in the wave active zone. The design of the buoy is such that it reduces fatigue loads of the mooring lines and the horizontal transfer duct; the buoy is therefore made slender and relatively long such that the horizontal fluid transfer duct extends below the wave active zone. The fluid duct is therefore less subject to fatigue loads due to the shape of the buoy and the fact that it is placed under the wave active zone, so that a welded midwater pipe arrangement can be used without the danger of (fatigue) cracks being introduced to the welded area of the midwater pipe.
In accordance with one embodiment of the invention, a fluid transfer system is provided for transferring fluid between structures in the sea, especially where each structure floats, that is of moderate cost, that is provided with fatigue resistant pipe section connections and that minimizes changes of stresses on the ends of a pipeline that carries fluid between the structures. The system includes a steel pipeline for deep waters that extends above the sea floor, with the pipeline extending partly in the wave active zone of the sea, in a shallow catenary curve between the floating structures. The steel pipeline consists of multiple steel pipe sections connected in series in mechanical pipe joints. This avoids welded pipe joints which cannot withstand fatigue stresses present in the wave zone. A first floating structure has a first hull with pitch and roll axes about which the hull pivots in the presence of waves. It is preferred that the connection be as close as practical to the Center of Gravity (CG) of the floater (CALM buoy, FPSO, etc), or on the outside of the floater hull near mid-ship either above or below water. The upper ends of the midwater pipe are placed in an open area adjacent to the roll and pitch axes of the floating structure, or can be placed in an area within turret walls of a weathervaning structure, where that area contains the roll and/or pitch axes.
In a preferred embodiment, applicant provides a recess in the bottom of the first hull, and places a pipe connector within the recess near the pitch and roll axes. A first end of the steel pipeline extends at an incline of many degrees from the vertical up into the recess, where the first end of the pipeline connects to the pipe connector to form a first joint. The incline is the beginning of the catenary curve along which the steel pipeline extends. As the first hull pivots about its pitch and roll axes in the presence of waves, the first end of the pipeline undergoes repeated up and down movement. However, movements of the first pipe end are minimized because the pipeline first end lies near the axes of pivoting. As a result, repeated bending of the pipeline over its length and especially near its first end, and changes in stresses on the overall pipeline and especially near its first end, are minimized to avoid early fatigue failure caused by repeated bending stresses.
The pipe connector is preferably part of or mounted on, a pivot joint that allows the pipe connector on the floating structure to pivot relative to the first pipe end about the pitch and roll axes, by a plurality of degrees with minimum torque. Such pivoting in opposite directions from a quiescent orientation of the system, results in the pipeline first end moving up and down less, and in avoiding changes in torque stresses on the first joint.
The steel midwater pipe with quick mechanical couplings or connections could be of a variety of shapes but preferably is a U-shape as in
The steel midwater pipe arrangement of the invention can be a single offloading pipeline but can also consist of multiple pipelines of different diameters for the transfer of different fluids (crude pipeline, gas pipeline, water injection pipe) and be combined with a power cable and/or umbilical lines. In case of a midwater pipe arrangement consisting of multiple steel pipes, each steel pipe is assembled of pipe sections that are coupled together via a mechanical coupling that can handle the large stresses and fatigue forces acting on the ends of the interconnected pipe sections. In addition, several clamps are placed at regular intervals along the multi-pipe midwater pipe arrangement to keep the pipes at a distance from each other. Each clamp allows for a relative displacement of each pipe in axial directions so as to be able to deal with the differences in temperature of the fluid transferred in each pipe and the resulting differences in contraction and expansion in length of each pipe in the bundle. This can for example, be achieved by a sliding support member (i.e. Teflon) for each pipe in the clamp. The clamp can be combined with buoyancy cans or separate buoyancy modules can be distributed along the pipe or pipeline bundle.
The ends of the pipeline are connected to the floating vessels, preferable in the neutral zone (near the pitch and roll axes) to avoid large stresses on the end connections. It is also possible to connect the steel midwater pipe directly into the internal or external turret of a weathervaning FPSO (floating production storage and offloading). The end connections are preferably flexible, so they can stand torque, stress and pull forces and can be in the form of a stress-joint (see U.S. Pat. No. 6,659,690), a flex-joint, a gimbal table (see WO 2007/082905), a latch connector, a ball-joint, etc, which are all well known solutions in the offshore industry. A gimbal table connection for example allows for full free rotation in any direction like a cardan joint.
The steel midwater pipe or even a midwater pipe bundle can be assembled and installed by pulling it out from one of the floaters or from a floater having a tower for making up pipes with mechanical (not welded) connections such as threaded or clamped connections. The pipe will not touch the seabed when being pulled out from the floater where it is assembled, which can be a FPSO, a drilling rig, a lay vessel, etc. At the floater where the steel midwater pipe is assembled an extra insulation or protective layer can be added over the coupling to protect the coupling and avoid the ingress of seawater in the coupling or in scratches in the coupling made during the assembling process.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
The first floating structure 12 is shown moored by a plurality of mooring chains 34, 36. The second structure 14 usually will be moored, by one of several types of mooring system (not shown). The opposite end portions 40, 42 of the steel pipeline extend at large angles C to the vertical, as parts of a catenary curve 24 of limited depth 44 which is less than the depth 46 of the sea in the vicinity of the system. As a result the pipeline does not lay on the sea floor 50. The shallow catenary curve, with opposite ends extending at least 20° to the vertical, avoids damage to the pipeline from any potentially harmful objects on the sea floor. It also provides high tension in the pipeline, which avoids damage even when one of the vessels moves downward in a large wave. However, the large tension could lead to fatigue failure if there are repeated large bending stresses.
Much of the pipeline (e.g. 40%) lies in the “wave zone” Wz which commonly extends to 400 meters below the sea surface 20. As a result, the pipeline is subjected to repeated changes in tension. The fact that the pipeline extends in a shallow catenary curve and is formed of steel pipe sections connected in series, results in high pipeline tension that has the advantage that the tension does not fall to zero. To avoid fatigue failure and minimize cost, applicant connects pipeline sections by mechanical joints rather than welded joints. The steel midwater pipe parts are interconnected with a quick connection coupling mechanism such as a threaded (helical or parallel threads), a clamped, a click-on, a bolded, etc. connection. Any pipe section with e.g. threaded ends welded to the rest of the same pipe section has the weld performed on shore where the weld can be assumed to be of high quality. Only the connection together of e.g. 24 meter length pipe sections, is here considered a pipe connection.
Alternatively or in combination with the use of different pipe couplings, the steel midwater pipe 22 can be assembled from steel pipe sections of different weight. The pipe section that is in the wave active zone (Wz) has larger wall thickness than the pipe section which is placed in the quiescent zone (below Wz). The steel midwater pipe 22 could also be assembled of sections of pipe that have different material characteristics or even assembled of pipe sections made of different materials. It is an option to add flexible parts or pivoting points in the middle of the midwater pipe which could be needed in rough environmental conditions, so that the movements of one or both floaters (12, 14) are decoupled from the main part of the midwater pipe. This can be done by adding a flex joint or a gimbal table or uni-joint at a certain place or places within the steel midwater pipe at a location closer to the middle of the pipeline than to its ends. However, this generally is not used and is not preferred.
Applicant has designed a fluid transfer system of the type shown in
Another continually varying force that might be applied to the pipe end 30, 30B is torque as the connector 60, 60B pivots with pitch and roll. Applicant substantially avoids such varying torque by constructing the pipe joint 70, 70B where the pipe conduit 60, 60B connects to the pipe end 30, 30B as a flexible connection to enable relative pivoting about the horizontal pitch and roll axes.
Thus the invention provides a fluid transfer system that includes a steel pipeline that extends between bodies that both lie in the sea, and especially where both bodies float on the sea surface. The system is constructed to it can be installed at moderate cost and minimizes fatigue at the pipeline ends, which are the most vulnerable to fatigue failure. The pipeline lies in a shallow catenary curve, which raises the middle of the pipeline above the sea floor. This results in high pipeline tension and the possibility of high loads on a first pipe end when the first floating structure is tilted as it encounters waves. Applicant prefers to construct the first floating structure so it has a recess in the bottom of the hull, with the first recess extending though the pitch and roll axes. The pipeline connector that is mounted on the first hull, lies close to the pitch and roll axes, so the pipeline end experiences minimum movement when the hull pivots about one or both axes. The joint where the pipe end connects to the pipeline connector on the floating structure, is preferably a pivot joint that allows a plurality of degrees of pivoting about the pitch and roll axes to limit torque on the pipe end. The pipeline consists of steel pipe sections connected in series, in pipe joints where pipe ends are connected together mechanically rather than by welding, for high fatigue resistance under the high tension of a shallow catenary curve.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, the midwater pipe could be attached to a floating production unit like a FPSO, SPAR, TLP, at almost any location depending on analysis of fatigue, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3581506 | Howard | Jun 1971 | A |
3677302 | Morgan | Jul 1972 | A |
3811142 | Westra | May 1974 | A |
5639187 | Mungall et al. | Jun 1997 | A |
5947642 | Teixeira et al. | Sep 1999 | A |
6109989 | Kelm et al. | Aug 2000 | A |
6659690 | Abadi | Dec 2003 | B1 |
6688814 | Wetch et al. | Feb 2004 | B2 |
6739804 | Haun | May 2004 | B1 |
6763862 | Fontenot et al. | Jul 2004 | B2 |
6769376 | Perera et al. | Aug 2004 | B2 |
6779949 | Barras et al. | Aug 2004 | B2 |
6824330 | Grobe | Nov 2004 | B2 |
6835025 | Beard et al. | Dec 2004 | B1 |
6983712 | Cottrell et al. | Jan 2006 | B2 |
7029348 | Bauduin et al. | Apr 2006 | B2 |
7179144 | De Baan | Feb 2007 | B2 |
Number | Date | Country |
---|---|---|
2335723 | Sep 1999 | GB |
2336382 | Oct 1999 | GB |
2351724 | Jan 2001 | GB |
WO9954197 | Oct 1999 | WO |
WO03062043 | Jul 2003 | WO |
WO03064809 | Aug 2003 | WO |
WO03087527 | Oct 2003 | WO |
WO2007082905 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090186538 A1 | Jul 2009 | US |