The present invention relates to a steel-strip production apparatus.
In recent years, there has been proposed a production apparatus that produces a hot-dip-plated steel strip and a cold-rolled steel strip using the same equipment. To be more specific, Patent Literature 1 describes a production apparatus provided with a continuous annealing furnace, hot dip plating equipment, and a bypass furnace that transfers a steel strip from the continuous annealing furnace to water quenching equipment without causing the steel strip to pass through the hot dip plating equipment. In the production apparatus, when producing the hot-dip-plated steel strip, the steel strip is transferred from the continuous annealing furnace to the hot dip plating equipment, and when producing the cold-rolled steel strip, the steel strip is transferred from the continuous annealing furnace to the water quenching equipment by way of the bypass furnace.
Patent Literature 1: Japanese Laid-open Patent Publication No. 2002-88414
However, the production apparatus described in Patent Literature 1 is provided with bypass furnace in order to switch a steel strip to be produced between the hot-dip-plated steel strip and the cold-rolled steel strip and hence, it is necessary to use a large-scale production apparatus, and it is difficult to design the production apparatus. Furthermore, since a path of the steel strip is changed when switching the steel strip to be produced, cutting and welding operations of the steel strip, and opening and closing operations of the continuous annealing furnace require considerable amount of efforts and times.
In general, in order to prevent oxidation of a steel sheet in the continuous annealing furnace, it is necessary to prevent an atmospheric air from being mixed into an atmospheric gas in the inside of the continuous annealing furnace when switching the steel strip to be produced. Furthermore, when the atmospheric air enters into the continuous annealing furnace, the oxygen or the like contained in the atmospheric air is required to be removed and hence, it is necessary to exchange the atmospheric gas in the continuous annealing furnace. However, in Patent Literature 1, a measure to prevent the atmospheric air from entering into the continuous annealing furnace when switching the steel strip to be produced is not disclosed or suggested. In addition, in the production apparatus described in Patent Literature 1, the transfer path of the steel strip in producing the hot-dip-plated steel strip and the transfer path of the steel strip in producing the cold-rolled steel strip are different from each other and hence, it is necessary to change a program that controls transfer processes of the steel strip each time when switching the steel strip to be produced.
As described above, according to the production apparatus described in Patent Literature 1, it is difficult to produce the hot-dip-plated steel strip and the cold-rolled steel strip using the same equipment without taking considerable amount of efforts and times, while preventing the atmospheric gas in the continuous annealing furnace from flowing to the outside of the furnace and preventing the atmospheric air from entering into the furnace.
The present invention has been made to overcome such problems, and it is an object of the present invention to provide a steel-strip production apparatus adapted to produce the hot-dip-plated steel strip and the cold-rolled steel strip with substantially the same transfer path and transfer length without taking considerable amount of efforts and times, while preventing the atmospheric gas in the continuous annealing furnace from flowing to the outside of the furnace and preventing the atmospheric air from entering into the furnace.
To solve the problem and achieve the object, a steel-strip production apparatus adapted to produce a hot-dip-plated steel strip and a cold-rolled steel strip according to the present invention includes: a continuous annealing furnace; a snout connected to the continuous annealing furnace; a contact-type seal plate device and a noncontact-type seal roll device that are arranged on the entry side of the snout along the transfer direction of the steel strip in this order; a hot-dip-plating tank that is movable; and a roll configured to turn the path direction of the steel strip after passing through the snout, wherein
a hot-dip-plated steel strip production unit configured to produce the hot-dip-plated steel strip by bringing the steel strip continuously annealed in the continuous annealing furnace into the hot-dip-plating tank, and a cold-rolled steel strip production unit configured to produce the cold-rolled steel strip by transferring the steel strip continuously annealed in the continuous annealing furnace without causing the steel strip to pass through the hot-dip-plating tank are configured to be switchable with one another.
Moreover, in the steel-strip production apparatus according to the present invention, the roll configured to turn the path direction of the steel strip is a sink roll when producing the hot-dip-plated steel strip, and a deflector roll when producing the cold-rolled steel strip, and the steel-strip production apparatus selects the sink roll or the deflector roll in accordance with the type of the steel strip to be produced and installs the selected roll at a predetermined position.
Moreover, in the steel-strip production apparatus according to the present invention, the seal roll devices are arranged in two stages along the transfer direction of the steel strip.
Moreover, in the steel-strip production apparatus according to the present invention, further includes: a working space in at least one of a space between the seal plate device and the seal roll device, or a space between the seal roll device and the snout.
The production apparatus of the steel strip according to the present invention is capable of producing the hot-dip-plated steel strip and the cold-rolled steel strip with substantially the same transfer path and transfer length without taking considerable amount of efforts and times, while preventing the atmospheric gas in the continuous annealing furnace from flowing to the outside of the furnace and preventing the atmospheric air from entering into the furnace.
Hereinafter, with reference to drawings, a steel-strip production apparatus according to one embodiment of the present invention is specifically explained by taking a case where a hot-dip galvanized steel strip and a cold-rolled steel strip are produced, as an example.
[Constitution of Production Apparatus]
First of all, with reference to
As illustrated in
As the reducing gas in the continuous annealing furnace 2, in order to prevent oxidation of the surfaces of the steel strip in annealing, a mixed gas of hydrogen and nitrogen having general hydrogen concentration of several percent by volume to several tens of percent by volume can be exemplified. Conditions, such as a hydrogen concentration and the amount of supply of the reducing gas, are properly set.
The hot-dip-galvanizing tank 5 having a hot-dip-galvanizing bath in the inside thereof is configured to be movable between an online position at which hot dip galvanizing is applied to a steel strip S and an off-line position to which the hot-dip-galvanizing tank 5 is retracted when the hot dip galvanizing is not applied to the steel strip S. As a movement mechanism of the hot-dip-galvanizing tank 5, a movement mechanism using a screw jack and a carriage can be exemplified. After the steel strip S, which has passed through the snout 6 and brought into the hot-dip-galvanizing tank 5, is pulled up from the hot-dip-galvanizing bath, galvanized coating weight is adjusted by the plated coating weight control devices, such as a gas wiping device.
After a galvanized coating is formed, the steel strip S is cooled, or alloying treatment may be applied to the steel strip S. The alloying treatment is processing that reheats the steel strip S to a predetermined temperature by using an alloying furnace, such as an induction heating furnace and the like (not illustrated in the drawings), thus alloying the galvanized film adhered to the steel strip S.
As illustrated in
The seal plate device 10 is a contact-type device in which a pair of seal plates 11a and 11b that face each other are brought into contact with the steel strip S during usual short-time line stop or when operation troubles force line stop thus preventing the atmospheric gas (reducing gas) in the continuous annealing furnace 2 from flowing to the outside of the furnace, and preventing the atmospheric air from entering into the furnace. A distance between the seal plate 11a and the seal plate 11b is controlled by opening/closing devices 12a and 12b.
The seal roll device 20 is a noncontact-type device in which a pair of seal rolls 21a and 21b are brought closer to the steel strip S as necessary without being brought into contact with the steel strip S thus preventing the reducing gas in the continuous annealing furnace 2 from flowing to the outside of the furnace and preventing the atmospheric air from entering into the furnace. Each of the seal roll device 20 is capable of being independently controlled for each stage. A distance between the seal roll 21a and the seal roll 21b is controlled by opening/closing devices 22a and 22b.
The seal plate device 10 and the seal roll devices 20 are arranged between the exit side of the continuous annealing furnace 2 and the entry side of the snout 6 thus preventing the reducing gas from flowing to the outside of the continuous annealing furnace 2 more effectively and preventing the atmospheric air from entering into the continuous annealing furnace 2 more effectively when switching between a hot-dip-plated steel strip producing route and a cold-rolled steel strip producing route and when producing a cold-rolled steel strip.
The seal plate device 10 is a contact-type device that prevents the reducing gas from flowing to the outside of the furnace during line stop thus reducing the outflow of the reducing gas to the outside of the furnace as compared with the seal roll devices 20. Here, it may be possible to further prevent the reducing gas from flowing to the outside of the furnace by also closing the seal roll devices 20 during line stop.
The seal roll devices 20 are arranged in two stages because as illustrated in
The seal plate device 10 and the seal roll devices 20 arranged in two stages are installed along the transfer direction of the steel strip S in this order because the checking and cleaning of the seal roll devices 20 can be easily performed in a state that the reducing gas is prevented from flowing to the outside of the furnace by using the seal plate device 10 during line stop. The checking and cleaning of the seal roll devices 20 are performed to reduce the occurrence of product defects attributed to the seal roll devices 20. Furthermore, since the seal plate device 10 prevents the reducing gas from flowing to the outside of the furnace during line stop, the seal roll devices 20 can be opened in checking the seal roll devices 20. As a result, the checking and cleaning of the seal roll devices 20 become very easy.
In a furnace wall in the vicinity of the position where the seal roll devices 20 are arranged, an inspection window 23 is arranged so that the seal roll devices 20 can be visually checked. Due to such constitution, the seal roll devices 20 can be easily checked by way of the inspection window 23. Furthermore, in at least one space out of a space between the seal plate device 10 and the seal roll devices 20 arranged in two stages, and a space between the seal roll devices 20 arranged in two stages and the snout 6, it is desirable to form a working space having a height of 1.5 m or more in the furnace. Because such working space is formed, a worker can safely enter into the working space through the furnace wall in a safe state that the reducing gas hardly flows to the outside of the furnace through the seal plate device 10 during line stop, and can easily perform the checking and cleaning of the seal roll devices 20 in the working space.
By using the production apparatus of the steel strip having the above-described constitution, a hot-dip galvanized steel strip or a cold-rolled steel strip can be produced by the following procedures. Hereinafter, with reference to
[Method for Switching to Producing of Cold-rolled Steel Strip]
First of all, the explanation is made with respect to the operation of the production apparatus of the steel strip in the case of switching from the producing of the hot-dip galvanized steel strip to the producing of the cold-rolled steel strip.
Next, as illustrated in
Lastly, as illustrated in
The transfer direction of the steel strip S is turned by the deflector roll 40 arranged at the position of the in-tank immersion sink roll 31 thus producing the cold-rolled steel strip with substantially the same transfer path and transfer length as in the case of the hot-dip galvanized steel strip. Furthermore, substantially the same location tracking calculation processing of the steel strip S can be used irrespective of the steel strip S to be produced and hence, only one location tracking program is required in a computer and program change processing becomes unnecessary, and therefore a system is simplified.
Furthermore, a function and operation of tilting the snout 6 for changing the transfer path of the steel strip S also become unnecessary thus reducing the cost of equipment. In addition, the opening and closing operations or the like of the continuous annealing furnace 2 become unnecessary and hence, the efforts and times required for switching between the opening and the closing of the continuous annealing furnace 2 can be reduced thus improving production efficiency.
[Method for Switching to Producing of Hot-dip Galvanized Steel Strip]
Next, the explanation is made with respect to the operation of the production apparatus of the steel strip in the case of switching from the producing of the cold-rolled steel strip to the producing of the hot-dip galvanized steel strip.
Next, as illustrated in
Lastly, as illustrated in
The transfer direction of the steel strip S after passing through the snout 6 is turned by the in-tank immersion sink roll 31 arranged at the position of the deflector roll 40. As a result, the hot-dip galvanized steel strip can be produced with substantially the same transfer path and transfer length as in the case of the cold-rolled steel strip. Thus, as mentioned above, the system is simplified and the production efficiency is improved with reduced cost of equipment.
As can be clearly understood from the explanation above, with the use of the production apparatus of the steel strip according to one embodiment of the present invention, the seal plate device 10 and the seal roll devices 20 can be used to prevent the reducing gas in the continuous annealing furnace 2 from flowing to the outside of the furnace and to prevent the atmospheric air from entering into the furnace. Furthermore, the in-tank immersion sink roll 31 and the deflector roll 40 are located at the same position and hence, the transfer direction of the steel strip S is turned at the same direction turning point irrespective of the type of the steel strip S thus producing the hot-dip galvanized steel strip and the cold-rolled steel strip with substantially the same transfer path and transfer length. As a result, the producing of the hot-dip galvanized steel strip and the producing of the cold-rolled steel strip can be switched therebetween without taking considerable amount of efforts and times thus further simplifying the production apparatus and improving production efficiency.
Heretofore, although the embodiment to which the invention made by inventors is applied has been explained in conjunction with drawings, the present invention is not limited to the description and the drawings by way of the above-mentioned embodiment that merely constitutes one embodiment of the present invention. For example, with respect to plating, not only the hot dip galvanizing but also the aluminum plating, the composite plating of zinc and aluminum, or the like may be used. Furthermore, the steel grade of the cold-rolled steel strip is not limited in particular. In this manner, various modifications, embodiment examples, and techniques conceivable of by those skilled in the art or the like based on the present embodiment are arbitrarily conceivable without departing from the gist of the present invention.
According to the present invention, it is possible to provide a steel-strip production apparatus adapted to produce the hot-dip-plated steel strip and the cold-rolled steel strip with substantially the same transfer path and transfer length without taking considerable amount of efforts and times, while preventing the atmospheric gas in the continuous annealing furnace from flowing to the outside of the furnace and preventing the atmospheric air from entering into the furnace.
1 production apparatus of steel strip
2 continuous annealing furnace
5 hot-dip-galvanizing tank
6 snout
10 seal plate device
20 seal roll device
31 in-tank immersion sink roll
32 in-tank support roll
33 plated coating weight control device
40 deflector roll
S steel strip
Number | Date | Country | Kind |
---|---|---|---|
2014-163556 | Aug 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/072475 | 8/7/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/024537 | 2/18/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4408561 | Yokoyama | Oct 1983 | A |
4439212 | Wang | Mar 1984 | A |
6315829 | Ishii | Nov 2001 | B1 |
20030189276 | Hoshino | Oct 2003 | A1 |
20090308498 | Matsumura | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
101993997 | Mar 2011 | CN |
201915140 | Aug 2011 | CN |
S53132437 | Nov 1978 | JP |
S56-87450 | Jul 1981 | JP |
S59-40436 | Nov 1984 | JP |
S62-127427 | Jun 1987 | JP |
S62-127427 | Jun 1987 | JP |
S63-93829 | Apr 1988 | JP |
H01-147048 | Jun 1989 | JP |
H05-009592 | Jan 1993 | JP |
H07-118820 | May 1995 | JP |
H08-10819 | Jan 1996 | JP |
2590152 | Mar 1997 | JP |
H11-279731 | Oct 1999 | JP |
H11-286762 | Oct 1999 | JP |
2002-088414 | Mar 2002 | JP |
2002-275546 | Sep 2002 | JP |
2003-247025 | Sep 2003 | JP |
2008-024981 | Feb 2008 | JP |
2008024981 | Feb 2008 | JP |
4427527 | Mar 2010 | JP |
2010-215990 | Sep 2010 | JP |
Entry |
---|
Nov. 10, 2015 Search Report issued in International Patent Application No. PCT/JP2015/072475. |
Mar. 28, 2017 Office Action issued in Japanese Patent Application No. 2014-163556. |
Nov. 16, 2017 Office Action issued in Chinese Patent Application No. 201580042477.9. |
Mar. 2, 2018 Office Action issued in European Patent Application No. 15832186.9. |
Sep. 12, 2017 Office Action issued in Japanese Patent Application No. 2014-163556. |
Jul. 16, 2018 Office Action issued in Korean Patent Application No. 10-2017-7002996. |
Jul. 24, 2018 Office Action issued in Japanese Patent Application No. 2014-163556. |
Number | Date | Country | |
---|---|---|---|
20170218476 A1 | Aug 2017 | US |