The object of the invention is a steel wire rope as defined in the preamble of claim 1, an elevator provided with a steel wire rope as defined in the preamble of claim 10, a lubricant as defined in the preamble of claim 15, and the use of a lubricant for lubricating a steel wire rope as defined in the preamble of claim 20.
Ropes laid from metal wires, more particularly the hoisting ropes, i.e. suspension ropes, of elevators or other hoisting apparatuses are generally lubricated with some suitable lubricant. Lubrication improves the operation of ropes and reduces the wearing of the ropes, in which case the service life of the ropes lengthens. Lubrication also prevents the rusting of ropes. Ropes are usually lubricated in connection with the manufacture of the ropes, e.g. such that a lubricant is spread into the rope structure to be manufactured. Usually elevator ropes are steel wire ropes. A steel wire rope or one or more of the strands of a steel wire rope may comprise a core of a softer material, such as plastic or hemp.
Conventionally the lubricant used in steel elevator ropes is paraffin-based. A problem when using paraffin is, however, when the ropes get hot the structure of the oil thins, in which case the oil bound by the paraffin can easily detach from the rope. Another problem with paraffin-based lubricant is that the traction sheave-rope contact becomes more slippery at a higher temperature, due to which it can be difficult to get the friction factor between the traction sheave and the rope to meet the values required by elevator regulations. If the friction factor is too small, the ropes can slip on the traction sheave, which causes problems and can also be a safety risk. Other relatively thin lubricants have the same type of problems as oil mixed with paraffin.
The solution of the same applicant presented in the international patent publication No. WO2011144816 A1 shows a steel rope with a lubricant that comprises oil and relative high proportion of thickener, which thickener comprises one or more solid additives of a softer material than the steel wires of the rope. The present invention is an advantageous improvement to the solution of the WO publication.
Normally it is desired to make elevators and elevator structures as light as possible, in which case the elevator would be cheaper to manufacture and install. As the elevator car and the counterweight become lighter, however, the friction between the elevator ropes and the traction sheave decreases at the same time. The reduction in friction thus limits the making of lighter elevators; a general aim is to achieve high friction but, however, such that the ropes do not wear too quickly.
The idea of this invention is to equip an elevator with the type of elevator ropes in which lubricant that contains solid additives that are about equal hard as the steel wires in the steel rope or even harder, is used as a lubricant instead of oil, paraffin or oil mixed with paraffin. The hard additives make it possible to achieve friction between the elevator ropes and the traction sheave which is greater than with elevator ropes that are lubricated according to prior art.
The aim of this invention is to eliminate the aforementioned drawbacks and to achieve a steel wire rope, e.g. a suspension rope of a traction sheave elevator, that is lubricated with a lubricating grease type of lubricant, the friction factor between which suspension rope and traction sheave is greater than in existing solutions. In addition, one aim is to achieve a suspension rope of a traction sheave elevator, the service life of which suspension rope is longer than before. Yet another aim is to achieve a suspension rope of a traction sheave elevator in which the lubricant stays on the rope well during the operation of the rope. The aim of the invention is also to achieve a traction sheave elevator, in which the suspension ropes are lubricated with a lubricating grease type of lubricant. Additionally the aim of the invention is to achieve the use of a lubricating grease type of lubricant for lubricating a steel wire rope, such as the suspension rope of an elevator. And a particular aim of the invention is to improve the solution presented in the international patent publication No. WO2011144816 A1.
The steel wire rope according to the invention is characterized by what is disclosed in the characterization part of claim 1 and the elevator provided with the steel wire rope according to the invention is characterized by what is disclosed in the characterization part of claim 9. Correspondingly, the lubricant according to the invention is characterized by what is disclosed in the characterization part of claim 13, and the use of the lubricant for lubricating the steel wire rope according to the invention is characterized by what is disclosed in the characterization part of claim 17. Other embodiments of the invention are characterized by what is disclosed in the other claims.
An aspect of the invention relates to a way to lubricate a steel wire rope using a paste type lubricant, which comprises oil and hard powder substance. The essential or main part of the particles of the powder substance are of hardness about equal or greater than that of the steel wires of the rope. In all lubricants according to the invention the hardness of main part of the particles of the powder substance is at least 4 on the Mohs scale.
Suitable powder materials are for example Mn3O4 and MnO2, but other powder materials having about similar characteristics are suitable, too.
Preferably the powder material does not bind water in or on its particles. Advantageous powder materials are rather hydrophobic ones than hydrophilic ones.
Preferably the particles comprised in the lubricant are spheres or chunks or ovals. Advantageously the ratio of the longest dimension to the shortest dimension of a particle, i.e. the internal aspect ratio of the particle, is at most about 5. Preferably the internal aspect ratio is less than 2, more preferably less than 1.5, even more preferably at most about 1.2, most preferably as close to one as possible. In an ideal powder substance all or almost all particles are spheres or nearly spheres, thus resulting the average aspect ratio at most about 1.2.
An advantageous way to practice the invention is to apply the invention in connection with elevator ropes or their lubrication. A clear advantage is improved traction between the iron or steel traction sheave and steel wire ropes used as hoisting ropes. An advantage is also the extended life time of such hoisting ropes. The same advantages are reached also in connection of using rubber, polyurethane or corresponding material coated traction sheaves to drive the hoisting ropes. The traction sheave coating type could be for example like coatings disclosed in the embodiments of EP 1688384 A2.
Today a major part of the ropes used in elevators are in range of tensile strength between 1370 N/m2 and 1960 N/m2. Ropes made of steel wires of higher tensile strength are also used in elevators, particularly in case of elevators applying hoisting ropes thinner than 8 mm.
Preferably the lubricant comprises at least oil and more than 50% of the weight of the lubricant solid powder substance that acts as thickener. The thickener comprises one or more solid additives in small particles that are about as hard as the metal wires of the rope or harder, and preferably the thickener is non-organic.
Advantageously in the lubricant of the invention a thickener comprising one or more solid additives is mixed to the oil a large enough proportion, so that the mixture of the oil and thickener forms a paste.
The powder substance should be rather fine. Advantageously the particle size is below 75 μm. Preferable at least 50% of mass of the powder substance belongs to the particle size range from 1 to 10 μm.
Advantageously the lubricant also contains a small amount of binder agents, for example about 0 to 10% of the weight of the lubricant. Other additives may also be used, for example such ones improving storage properties.
An aspect of the invention is to lubricate metal ropes, in practice steel wire ropes, which possibly contain non-metal parts.
Another aspect of the invention is a traction sheave elevator, comprising at least an elevator car, possibly a counterweight and a plurality of suspension ropes, comprising one or more strands composed of steel wires, which ropes are led to pass over a traction sheave provided with a hoisting machine and which suspension ropes are lubricated with a lubricant that comprises at least oil. The lubricant of the suspension ropes of the traction sheave elevator according to the invention is in a form of paste and the powder substance in the lubricant comprises particles whose hardness is greater than 4 on the Mohs scale.
In addition, the powder substance comprises particles whose hardness is about equal to the hardness of the steel of the wires of the strands of suspension ropes, or greater than the hardness of the steel of the wires of the strands of suspension ropes.
Still another aspect of the invention is a rope lubricant for a steel wire rope, which rope comprises one or more strands composed of steel wires. The rope lubricant comprises oil and powder substance, which powder substance in the lubricant comprises particles whose hardness is greater than 4 on the Mohs scale.
Yet another aspect of the invention is a use of the aforementioned lubricant for lubricating a rope, e.g. a steel rope, that contains metal as a load-bearing material.
One advantage, among others, of the solution according to the invention is that the friction between the elevator ropes and the rope grooves of the traction sheave is greater than with conventional oil- or grease-lubricated elevator ropes. Another advantage is that, as a result of the better friction on the traction sheave, the slip control of the elevator ropes on the traction sheave also improves. From the advantages presented above follows the advantage that the torque of the motor can be utilized more efficiently, as the ratio of the rope forces on different sides of the traction sheave can be made greater, which enables an improvement of the ratio of the net useful load and the deadweight of the car. A further advantage is that the greater friction allows a smaller diameter of the traction sheave, or correspondingly a smaller contact angle of the elevator ropes and the traction sheave. One advantage is also that, owing to the better friction, smaller and lighter structures can be used in the elevator, which also results in a reduction of costs. An additional advantage is that the elevator ropes do not rust or wear easily, so consequently the lifetime of the rope is much longer compared e.g. to a rope lubricated with paraffin. Another advantage is that the lubricant penetrates inside the rope very well and stays attached to the rope well, and does not detach from it easily or splash into other parts of the elevator.
A further advantage is that with the invention the service life of the rope is longer than with ropes lubricated with conventional methods. One important aspect of the invention is that the friction factor between the traction sheave and the rope is sufficiently large owing to the amount of lubrication being correct and the lubricant having a friction factor higher than that of paraffin. Thus the rope does not slip on the traction sheave in the operating conditions of the elevator. A further advantage is that the lubricant stays tightly on the rope and does not detach from it easily, e.g. from the effect of centrifugal force, even if the rope becomes very warm. In this case higher speeds can be used safely. A further advantage is that the arrangement is simple and inexpensive to implement. Still a further advantage is that hard particles in the lubricant are not crushed, and a substantially round shape of the particles makes the particles act as a ball bearing. The hard, round shaped particles in the lubricant also prevent the opposing surfaces to touch each other.
Ropes, more particularly steel ropes that are lubricated with a lubricant comprising solid substances, such as grease, a grease compound or paste or corresponding, are also within the scope of the inventive concept. The lubricating is performed preferably onto a wire or strand of the rope before closing the lay structure of the rope.
Some inventive embodiments are also discussed in the descriptive section of the present application. The inventive content of the application can also be defined differently than in the claims presented below. The inventive content may also consist of several separate inventions, especially if the invention is considered in the light of expressions or implicit sub-tasks or from the point of view of advantages or categories of advantages achieved. In this case, some of the attributes contained in the claims below may be superfluous from the point of view of separate inventive concepts. Likewise the different details presented in connection with each embodiment of the invention can also be applied in other embodiments. In addition it can be stated that at least some of the subordinate claims can at least in suitable situations be deemed to be inventive in their own right.
In the following, the invention will be described in detail by the aid of an example of its embodiment with reference to the attached drawing, wherein
Owing to the difference between the counterweight 2 and the elevator car 1 plus the load at any given time in the car, the rope forces TCTW and TCAR exerted on the elevator ropes 3 are of different magnitudes on different sides of the traction sheave 4. When the elevator car 1 contains less than one-half of the nominal load, the counterweight is generally heavier than the elevator car 1 with load. In this case the rope force TCTW between the counterweight 2 and the traction sheave 4 is greater than the rope force TCAR between the elevator car 1 and the traction sheave 4. Correspondingly, when the elevator car 1 contains over one-half of the nominal load, the counterweight 2 is generally lighter than the elevator car 1 with load. In this case the rope force TCTW between the counterweight 2 and the traction sheave 4 is smaller than the rope force TCAR between the elevator car 1 and the traction sheave 4. In the situation presented in
The lubricant 8 of a suspension rope 3 of an elevator according to the invention comprises at least some base oil suited to the purpose, some thickener, i.e. solid powder-like additive, that is preferably non-organic, and later referred as “powder substance”, and also if necessary some binder agent, such as polyisobutene or some other suitable organic compound. The base oil, more briefly referred to as “oil”, is e.g. some suitable synthetic oil that contains various additives, such as e.g. wear resistance agents and corrosion resistance agents. The task of the oil is, among other things, to prevent water from entering the rope 3 and to protect the rope from corrosion and wear. Anti-fretting and possibly also anti-seize types of lubricants are applicable to the purpose according to the invention as a lubricant of an elevator rope 3, even though there are restrictions caused by the application.
The powder substance of the lubricant 8 comprises one or more fine-grained solid substances comprising small particles of different sizes. At least a part of the particles, preferably a majority of the particles are suitably hard. The hardness of those particles on the Mohs scale is about equal to the hardness of the steel of the wires 9 of the rope, or greater than the hardness of the steel of the wires 9. Preferably the solid powder substances belong to the spinel group of minerals where common crystal forms are cubic or isometric, for instance octahedral.
Steel wires most usually used in elevators belong to strength classes 1370 N/m2, 1570 N/m2, 1770 N/m2 and 1960 N/m2, where the strength is calculated as nominal tensile strength. However, even stronger steel wires are used. Commercial elevators are provided even with steel wires whose nominal tensile strength is between 2000-3000 N/m2. Usually stronger steel wires are also harder than steel wires with smaller strength.
The particles in the powder substance have a high specific weight. Thus the specific weight of the particles is many times greater than the specific weight of the used oil. For that reason the particles tend to descent onto the bottom of lubricant 8 at least in a long term storage. Preferably the lubricant 8 comprises additives that slow that kind of precipitation down or even prevent it.
The binder agent is arranged to keep the other materials of the lubricant 8, i.e. the oil, and the powder substance better together. The binder agent is e.g. an organically-based mass, such as a butene compound or some other substance suited to the purpose, e.g. a resin-based or wax-based substance.
The lubricant 8 is manufactured simply by mechanically mixing its different constituent parts with each other. The mixing ratios of the different constituents of the lubricant 8 are e.g. approx. 10-40%, preferably approx. 15-30%, suitably approx. 20%, oil; e.g. approx. 60-95%, preferably approx. 70-85%, powder substance; and e.g. approx. 0-5%, preferably approx. 0.2-3%, suitably approx. 0.3-0.6%, e.g. 0.4%, binder agent. The aforementioned percentage figures are percentages by weight. Owing to the large amount of powder substance, the structure of the lubricant 8 is a paste. With the help of the binder agent and powder substance, the lubricant 8 stays on the rope well and does not detach easily.
The lubricant 8 according to the invention differs from conventional lubricating grease in that, among other things, preferably the lubricant comprises a very high proportion of powder substance and less oil. The powder substance can account for e.g. at most 95%, in which case the proportion of base oil remains at 5% at the highest. Whereas with lubricating greases according to prior art the proportion of base oil in the grease is 80-90%, in which case the proportion of powder substance and other substances remains only at 10-20%.
Both the ropes had the nominal diameter of 8 mm. The rejection limit in the tests was set to the value where the diameter of the ropes had become 6% thinner from the nominal diameter. In that case the rejection limit was 8*0.94=7.52 millimeters.
It can be seen from
It can be seen from the graph that in the case of a steel rope lubricated with a paraffin-based lubricant according to prior art, which is represented by the curve p1 in
Correspondingly, in the case of a steel rope lubricated with the lubricant 8 according to the invention, which is represented by the curve n1 in
Besides the round or almost round shape, the hardness of at least a part of the particles 10, preferably a majority of the particles 10 on the Mohs scale is about equal to the hardness of the steel of the wires 9 of the rope, or greater than the hardness of the steel of the wires 9. One possible type of substances to be used are solid substances belonging to the spinel group of minerals which have crystal forms that are cubic or isometric, for instance octahedral, and therefore the particles of the these substances can approximately resemble spherical particles. For example, classified manganese (II, III) oxide, Mn3O4, is a substance that can be used as a powder substance in the lubricant 8 according to the invention. The hardness of Mn3O4 on the Mohs scale is about 5.5, which value corresponds to the hardness of the cutting edge of a good carbon steel blade of a knife.
It is also possible that manganese (IV) oxide or manganese dioxide, MnO2 is used as a powder substance in the lubricant 8 according to the invention. The hardness of MnO2 on the Mohs scale is about 5. In that case the hardness of MnO2 is also greater than the hardness of the steel of the most commonly used wires 9.
Preferably the hardness of the particles 10 of the main substance of the powder substance is greater than 4, for instance between 4 and 6, and suitably between 5 and 5.5 on the Mohs scale.
The inventor believes that the lubrication performance of the lubricant 8 according to the invention is that the more or less spherically shaped hard particles 10 of the powder substance form a layer between the sliding and/or rolling surfaces of the suspension rope 3 and traction sheave 4, which layer prevents the contact between surface asperities. At the same time the particles 10 form a complex slip plane 12, which is not easily sheared and thus increases the friction but at the same time reduces wear of the surfaces. Due to their more or less spherical shape the hard particles 10 do not cause abrasive wear. Because of the different sizes of the particles 10 they can lock each other effectively in a dynamic contact situation between the contact surfaces.
The size distribution of the particles 10 is preferably such that a part of the particles 10 are greater than the asperity of the surfaces of the suspension rope 3 and the groove of the traction sheave 4. For example, one possible size distribution of the particles 10 is as follows: the powder substance contains 0% particles greater than 63 μm, 1% particles between 20 and 63 μm, 16% particles between 6.3 and 20 μm, 63% particles between 2 and 6.3 μm, and 20% particles smaller than 2 μm. Other size distributions with other particle sizes and percent distributions are also possible. A part of the particles 10 are smaller than the asperity of the surfaces of the suspension rope 3 and the groove of the traction sheave 4. In case of greater proportion of small particles, the total surface area of the particles being in contact with oil is larger.
It is clearly verified by the tests described above that, owing to the high proportion of powder-like powder substance with hard and more or less spherical particles 10 contained in the lubricant 8, the lifetime of an elevator suspension rope 3 lubricated with the lubricant 8 is considerably longer than the lifetime of elevator ropes lubricated with prior-art lubricants, and in addition the friction factor between the rope 3 and the traction sheave 4 is greater than when using conventional lubricants, which enables more advantageous dimensioning.
One characteristic aspect, among others, of the elevator according to the invention is that the elevator is provided with suspension ropes 3 that are lubricated with the lubricant 8 that contains the powder substance with hard solid particles 10 mentioned above, and the load-bearing material of the suspension ropes 3 is metal, e.g. steel. The whole mass of the lubricant 8 comprises a suitable aforesaid percentage of the powder substance with the substantially hard and substantially spherical particles 10. In addition, the lubricant 8 can contain the aforementioned binder agents and other additives.
The use of the aforementioned lubricant 8 that contains powder substance for lubricating a rope laid from metal wires 9 is further characteristic for the solution according to the invention.
It is obvious to the person skilled in the art that different embodiments of the invention are not only limited to the examples described above, but that they may be varied within the scope of the claims presented below. Thus, for example, the composition of the lubricant and the mixture ratio of the different constituents can also be different to what is described above.
Likewise it is obvious to the person skilled in the art that instead of synthetic oil, mineral oils or vegetable oils suited to the purpose can also be used as an oil in the lubricant.
This application is a continuation of PCT International Application No. PCT/FI2016/050437 which has an International filing date of Jun. 16, 2016, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/FI2016/050437 | Jun 2016 | US |
Child | 16176604 | US |