STEER-BY-WIRE ARCHITECTURES

Information

  • Patent Application
  • 20200406954
  • Publication Number
    20200406954
  • Date Filed
    March 14, 2019
    5 years ago
  • Date Published
    December 31, 2020
    3 years ago
Abstract
A steer-by-wire steering system for motor vehicles includes an electronically controlled steering actuator acting on steered wheels of the vehicle responsive to a steering demand and a feedback actuator transmitting retroactive effects of the road to a steering wheel, wherein the feedback actuator and the steering actuator have a redundant power supply.
Description

The present invention relates to a steer-by-wire steering system for motor vehicles with the features of the preamble of claim 1.


In steer-by-wire steering systems, the position of the steered wheels is not directly coupled to the steering wheel. There is a connection between the steering wheel and the steered wheels by means of electrical signals. Instead of the mechanical coupling, a steering actuator for positioning the wheels and a feedback actuator are used to simulate the restoring forces on the steering wheel. In order to meet the safety requirements, the steering system must be designed in such a way that the functionality is always present. Mainly because of the costs incurred, an appropriate compromise must be found between the degree of fault tolerance and the number of redundant components.


It is the object of the present invention to specify a steer-by-wire steering system for motor vehicles which always operates reliably in order to meet the safety objectives.


This object is achieved by a steer-by-wire steering system with the features of claim 1. Advantageous developments of the invention are mentioned in the subordinate claims.


Accordingly, a steer-by-wire steering system for motor vehicles is provided comprising an electronically controlled steering actuator acting on the steered wheels depending on a driver's steering demand, and a feedback actuator transmitting the retroactive effect of the road to a steering wheel, wherein the feedback actuator and the steering actuator have a redundant power supply. In the event of a power failure, the steering system can therefore continue to work reliably.


It is preferred that the feedback actuator and the steering actuator are each connected to a first power supply and a second power supply.


Preferably, the two power supplies are designed in such a way that in the event of a failure of one of the two power supplies the other power supply ensures that the feedback actuator and the steering actuator can continue to be operated.


In one embodiment, two redundant motor vehicle communication channels are additionally provided, by means of which the feedback actuator communicates with both the motor vehicle and the steering actuator.


However, it may also be advantageous to provide two redundant private communication channels by means of which the feedback actuator communicates exclusively with the steering actuator. In this case, two redundantly designed motor vehicle communication channels are preferably provided, by means of which the feedback actuator communicates with the motor vehicle, wherein the motor vehicle communication channels and the private communication channels are designed such that the feedback actuator transmits relevant signals from the motor vehicle to the steering actuator and vice versa.


In a further embodiment, however, it may also be provided that the steering actuator communicates with the motor vehicle by means of the two redundantly designed motor vehicle communication channels. In this case, the motor vehicle communication channels and the private communication channels between the feedback actuator and the steering actuator are designed for the steering actuator to transmit relevant signals from the motor vehicle to the feedback actuator and vice versa.





Preferred embodiments of the invention are explained in more detail below on the basis of the drawings. Similar or similarly acting components are referred to in the figures with the same reference characters. In the figures:



FIG. 1: shows a schematic representation of a steer-by-wire steering system,



FIG. 2: shows a block diagram of an architecture of the steer-by-wire steering system,



FIG. 3: shows a block diagram of a second architecture of the steer-by-wire steering system, and



FIG. 4: shows a block diagram of a third architecture of the steer-by-wire steering system.





A steer-by-wire steering 1 is shown in FIG. 1. A rotation angle sensor that is not shown and which is attached to a steering shaft 2 detects the driver steering torque applied by turning the steering wheel 3. Furthermore, a feedback actuator 4 which is attached to the steering shaft 2 is used to transmit the retroactive effects from the roadway 70 to the steering wheel 3 and thus to give the driver feedback about the steering behavior and the driving behavior of the vehicle. The driver's steering demand is transmitted to a control unit 5 via the rotation angle of the steering shaft 2 which is measured by the rotation angle sensor and via signal lines. The control unit 5 controls an electric steering actuator 6, also called a steering actuator, which controls the position of the steered wheels 7 depending on the signal from the rotation angle sensor as well as other input variables, such as vehicle speed, yaw rate and the like. The steering actuator 6 causes an axial displacement of a rack rod by means of a threaded drive 8. The steered wheels 7 are connected to the rack rod via tie rods 9.



FIG. 2 shows a first embodiment of a cabling architecture for a steer-by-wire steering system. The feedback actuator 4 communicates on two vehicle communication channels 100, 101 with both the motor vehicle and the steering actuator 6. All required signals are transmitted on both vehicle communication channels 100,101 between the motor vehicle and the steer-by-wire system 1 and between the steering actuator 6 and the feedback actuator 4. The two motor vehicle communication channels 100,101 are designed redundantly. In the event of a failure of one of the motor vehicle communication channels 100,101, the other motor vehicle communication channel 100,101 can take over the communication completely, so that the system can continue to operate properly.


Furthermore, a redundant power supply is provided for both the feedback actuator 4 and the steering actuator 6. The feedback actuator 4 and the steering actuator 6 are each connected to a first power supply 200 and a second power supply 201. In the event of a failure of one of the two power supplies 200,201, the other, fault-free power supply 200,201 ensures that the feedback actuator 4 and the steering actuator 6 can continue to operate.



FIG. 3 shows a second embodiment of a cabling architecture for a steer-by-wire steering system. The feedback actuator 4 communicates with the steering actuator 6 on two redundant private communication channels 300,301. In the event of a failure of one private communication channel 300,301, the system can access the second private communication channel 300,301, which also transmits all signals needed to operate the steer-by-wire steering system. The steering actuator 6 communicates with the motor vehicle via the motor vehicle communication network and transmits the relevant signals from the motor vehicle to the feedback actuator 4 and vice versa by means of the private communication channels 300,301. For this purpose, two redundantly designed motor vehicle communication channels 400,401 are provided. In the event of a failure of one of the motor vehicle communication channels 400,401, the other motor vehicle communication channel 400,401 can take over the communication completely, so that the system can continue to operate properly. The feedback actuator 4 does not have a direct communication channel to the motor vehicle. It always communicates with the motor vehicle via the steering actuator 6.


Furthermore, a redundant power supply is provided for both the feedback actuator 4 and the steering actuator 6. The feedback actuator 4 and the steering actuator 6 are each connected to a first power supply 200 and a second power supply 201. In the event of a failure of one of the two power supplies 200,201, the other, fault-free power supply 200,201 ensures that the feedback actuator 4 and the steering actuator 6 can continue to operate.



FIG. 3 shows a third embodiment of a cabling architecture for a steer-by-wire steering system. The feedback actuator 4 communicates with the steering actuator 6 on two redundant, private communication channels 300,301. In the event of a failure of one private communication channel 300,301, the system can access the second private communication channel 300,301, which also transmits all signals needed to operate the steer-by-wire steering system. The feedback actuator 4 communicates with the motor vehicle via the motor vehicle communication network and transmits the relevant signals from the motor vehicle to the steering actuator 6 and vice versa via the private communication channels 300,301. For this purpose, two redundantly designed motor vehicle communication channels 500,501 are provided. In the event of a failure of one of the motor vehicle communication channels 500,501, the other motor vehicle communication channel 500,501 can take over the communication completely, so that the system can continue to operate properly. The steering actuator 6 does not have a direct communication channel to the motor vehicle. It always communicates with the motor vehicle via the feedback actuator 4.


Furthermore, a redundant power supply is provided for both the feedback actuator 4 and the steering actuator 6. The feedback actuator 4 and the steering actuator 6 are each connected to a first power supply 200 and a second power supply 201. In the event of a failure of one of the two power supplies 200,201, the other, fault-free power supply 200,201 ensures that the feedback actuator 4 and the steering actuator 6 can continue to operate.

Claims
  • 1.-7. (canceled)
  • 8. A steer-by-wire steering system for motor vehicles with steered wheels, the steering system comprising: an electronically controlled steering actuator acting on the steered wheels, the steering actuator configured to act on the steered wheels responsive to a steering demand, anda feedback actuator configured to transmit retroactive effects of a road to a steering wheel,wherein the feedback actuator and the steering actuator have a redundant power supply.
  • 9. The steer-by-wire steering system of claim 8 wherein the feedback actuator and the steering actuator are each connected to a first power supply and a second power supply.
  • 10. The steer-by-wire steering system of claim 8 wherein the two power supplies are configured such that in the event of a failure of one of the two power supplies, the feedback actuator and the steering actuator are continue to be operated by the respective other power supply.
  • 11. The steer-by-wire steering system of claim 8 wherein the steer-by-wire steering system comprises two redundant motor vehicle communication channels by means of which the feedback actuator communicates with both the motor vehicle and the steering actuator.
  • 12. The steer-by-wire steering system of claim 8 wherein the steer-by-wire steering system comprises two redundant private communication channels, by means of which the feedback actuator communicates with the steering actuator.
  • 13. The steer-by-wire steering system claim 12 wherein the steer-by-wire steering system comprises two redundantly configured motor vehicle communication channels, by means of which the feedback actuator communicates with the motor vehicle, wherein the motor vehicle communication channels and the private communication channels are designed such that the feedback actuator transmits relevant signals from the motor vehicle to the steering actuator and from the steering actuator to the motor vehicle.
  • 14. The steer-by-wire steering system claim 12 wherein the steer-by-wire steering system comprises two redundantly designed motor vehicle communication channels by which the steering actuator communicates with the motor vehicle, wherein the motor vehicle communication channels and the private communication channels are configured such that the steering actuator transmits relevant signals from the motor vehicle to the feedback actuator and from the steering actuator to the motor vehicle.
Priority Claims (1)
Number Date Country Kind
10 2018 106 872.7 Mar 2018 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/056366 3/14/2019 WO 00