The present invention relates to a steering gear for a steer-by-wire steering system of a motor vehicle having the features of the preamble of claim 1 and a steer-by-wire steering system having the features of the preamble of claim 8.
In steer-by-wire steering systems, the position of the steered wheels is not directly coupled to the steering input means, for example, a steering wheel. There is a connection between the steering wheel and the steered wheels via electrical signals. The steering action desired by the driver is detected by a steering angle sensor and, depending on the steering action desired by the driver, the position of the steered wheels is controlled via a steering actuator.
DE 10 2006 008 911 A1 discloses a steering system for a motor vehicle having a hollow shaft motor through whose hollow shaft there is guided a rod which can be driven in a longitudinal direction by means of the electric motor and which, when used in a power-assisted steering system, is constructed in a region as a toothed rod for engagement with a steering pinion. The hollow shaft is in this instance connected to a pulley in a rotationally secure manner. The pulley forms an intermediate transmission with respect to a roller member worm gear. This solution has been found to be disadvantageous since many components are required to ensure safety functions of a steer-by-wire steering system.
An object of the present invention is to provide a steering gear for a steer-by-wire steering system of a motor vehicle which has a small structural space requirement, comprises fewer components and at the same time provides more functional reliability.
This object is achieved with a steering gear for a steer-by-wire steering system of a motor vehicle having the features of claim 1 and a steer-by-wire steering system of a motor vehicle having the features of claim 8. Advantageous developments will be appreciated from the dependent claims.
Accordingly, a steering gear for a steer-by-wire steering system of a motor vehicle having a hollow shaft motor with a stator which is fixed to a housing and a rotatably supported rotor which is arranged coaxially with respect to a longitudinal axis and through which a worm gear extends is provided, wherein the worm gear comprises a spindle nut which is arranged coaxially relative to the longitudinal axis and which is connected in terms of driving to the rotor and which is located on a spindle which can be displaced by means of the hollow shaft motor along the longitudinal axis, and wherein the angle of inclination of the worm gear is less than 4.5°, in particular less than 4° and in a particularly preferred manner less than 3.5°.
In an advantageous embodiment, there is produced, particularly in ball screw drives, a degree of efficiency
with a conversion of a torque into an axial force, wherein φ is the friction angle and α is the angle of inclination. Below a defined value, the ball screw drive is self-locking, that is to say, in approximate terms the angle of inclination α<friction angle φ. The friction angle is preferably less than 4.4° and greater than 0.1°. The large translation ratio enables a compact configuration of the hollow shaft motor. Since no belt drive is required, components can be saved and the operational reliability can be increased.
In an advantageous embodiment, the worm gear is a roller member worm gear, in particular a ball screw drive or a roller screw drive. In another advantageous embodiment, the worm gear is a trapezoidal screw drive.
There may be provision for the rotor to be located directly on the nut and to be connected thereto in a rotationally secure manner. In this instance, it is advantageous for the rotor to surround the nut in a coaxial manner. However, an intermediate gear transmission which reduces the speed of the hollow shaft motor and which connects the rotor to the nut may also be provided.
There is further provided a steer-by-wire steering system for a motor vehicle, comprising:
Preferably, the spindle is itself constructed as a steering rod which, in order to steer the wheels of the motor vehicle, is connected to tie rods.
A preferred embodiment of the invention is explained in greater detail below with reference to the drawings. Components which are identical or which have the same function are given the same reference numerals in the Figures, in which:
The ball screw drive 11 has a large translation ratio (small angle of inclination α). This enables electric motors with a smaller torque to be used. The torque of an electric motor is substantially proportional to the diameter thereof. Structural space and costs can consequently be saved. Preferably, the angle of inclination α of the ball screw drive is less than 4°. In other words, the ratio of the thread pitch s with respect to the ball reference diameter of the ball screw spindle D is less than 0.22 since the following relationship applies:
In steer-by-wire steering systems without a mechanical fallback level, such a large transmission ratio is unproblematic since high sliding forces or self-locking are permitted. The use of a pulley can be dispensed with, whereby components can be saved and significant advantages are afforded with regard to operational reliability and which are of significant importance for steer-by-wire steering systems. In particular, as a result of the omission of a toothed belt, which under the safety requirements of a steer-by-wire steering system has to be considered to be a critical component, in this instance additional safety measures, such as redundant components, can be saved.
When a torque is converted into an axial force in ball screw drives, the degree of efficiency
is produced, wherein φ is the friction angle.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 120 266.0 | Aug 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/072285 | 8/20/2019 | WO | 00 |