1. Field of the Invention
The present invention relates to an access sheath for endoluminally accessing a body cavity and directing the passage of interventional devices therethrough into the cavity. Particularly, the present invention relates to an articulatable access sheath which directs the interventional devices into the cavity in a desired orientation. In some embodiments, the present invention relates to vascularly accessing an atrium of the heart to direct an interventional catheter toward a cardiac valve.
To access a target location within the human body from a remote location, a catheter is typically passed through one or more body lumens, such as through the vascular system, to the target location. When the vascular system is used, a guidewire and dilator is inserted into an artery or vein through a relatively small incision in the patient's body. The guidewire and dilator is then threaded through the patient's vasculature to reach the desired target area. Often the dilator is covered by a sheath which is passed with the dilator to the target location. The dilator is then removed and the sheath is used as a conduit for access for a variety of medical devices to access the target location. Such devices may include catheters, surgical instruments, fiber optic cables for visualization, lasers, electronic devices, or sensors capable of monitoring physiological parameters in situ, to name a few. Although such access reduces the need for traditional invasive surgery, challenges arise related to control, manipulation, and positioning of instruments near the target location, particularly within a target body cavity.
A device advanced to the cavity will typically protrude into the cavity at the angle in which it entered. If the target tissue is not within this pathway, the device will need to be steered toward the target tissue. If more than one device is used during a procedure, each device will need to be steered and repositioned when used. This increases the time and cost of the procedure and also the risk of misalignment.
For example, to gain access to the left atrium of the heart, the catheter and/or access sheath may be tracked from a puncture in the femoral vein, through the inferior vena cava, into the right atrium and through a puncture in the intra-atrial septum to the left atrium. This pathway may then be used to access the mitral valve which lies between the left atrium and the left ventricle. From the point of entry through the septum, the mitral valve may be located below and to the right or left requiring the devices which are inserted to be directed downward and perhaps laterally after entry, toward the mitral valve. In addition, devices used for applying interventional therapies to the mitral valve may require precise alignment with the valve commissures, leaflets, or coaptation line to perform the procedure. When such procedures require the use of more than one instrument, each instrument would be dependent upon proper positioning in relation to the valve. This would require that positioning or steering mechanisms be built into each instrument and each instrument would be required to be properly positioned when introduced. This adds cost, complexity, and time to the overall procedure.
To overcome some of these challenges, access sheaths have been developed to direct instruments that are passed therethrough. For example, an access sheath having a pre-shaped curve at its distal end has been developed to both assist in negotiating twists and branches common in a patient's arterial or venous system and to maintain a shape once positioned within a target cavity. Since the pre-shaped curve is fixed into the access sheath at the time of manufacture, the radius and extent of the curvature generally cannot be altered. Due to anatomical variations, extensive pre-surgical planning would be necessary to determine the correct curvature of the access sheath. Such tailoring would be prohibitively complex and a predicted curvature would most likely still require additional repositioning once inside the body. Continuously replacing the pre-shaped access catheter in hopes of obtaining the proper curvature would be expensive and time consuming, possibly placing the patient at additional risk.
Steerable guide catheters and delivery catheters have been developed to more effectively navigate through the tortuous pathways of some body lumens, particularly the vascular system. Typically steering is accomplished through a combination of torqueing the proximal end of the catheter and pulling various pullwires to deflect the distal end of the catheter. Unfortunately, torque transmission has not been perfected in such steerable catheters. Due to the length of the catheter body between a proximal control end and the distal tip, torsion can tend to accumulate as the proximal end of the catheter is twisted to rotate the tip. The accumulated torsional moment may release unevenly, resulting in skipping or rapid rotation of the distal tip inside the vessel. To optimize torque transmission, the walls of such steerable catheters generally comprise a series of layers. In a typical steerable catheter, a woven metal or polymeric tubular braid may be sandwiched between an inner tubular sleeve and an outer tubular jacket. As a consequence, improved torquability generally results in increased wall thickness, which in turn increases the outside diameter of the steerable catheter or reduces any given desired inside diameter. In addition, such a heavy braided construction is often difficult to deflect by actuation of pullwires. To overcome this, the deflectable section can be softened with coils or softer polymers to allow it to be deflected to a much greater extent. However, this reduces the catheter's ability to transmit torque to or through this softer section. In addition, these softer sections may not offer adequate support for interventional devices or tools which are later passed through its inner lumen.
For these reasons, it would be desirable to provide an access sheath having an articulatable distal end which does not rely on permanent pre-shaping or torque transmission for positioning the access sheath within a target body cavity in a desired orientation. The articulatable access sheath should have a large lumen diameter to accommodate the passage of a variety of interventional devices, should have good wall strength to avoid kinking or collapse of the sheath when bent around tight curves, and should have good column and tensile strength to avoid deformation when the interventional devices are passed through the lumen. The sheath articulation mechanisms should provide for a high degree of controlled deflection at the distal end of the sheath but should not take up significant lumen area to allow for passage of interventional devices. Further, the access sheath should be articulatable in a manner which allows compound curves to be formed, for example curvature within more than one plane. Such manipulation should allow fine control over the distal end to accommodate anatomical variations within the same type of body cavity and for use in different types of body cavities.
2. Description of the Background Art
Hermann et al. (U.S. Pat. No. 5,843,031) describes a large-diameter introducer sheath having a hemostasis valve and a removable steering mechanism. The steering mechanism is described to be within an obturator which is positioned within the sheath during positioning and is then removable. Adair (U.S. Pat. No. 5,325,845) describes a steerable sheath having an articulatable member which is deformable to allow articulation. Kordis (U.S. Pat. No. 5,636,634) describes a sheath which is positioned by a separate, dedicated steering catheter.
A number of the other references refer to guidewires or catheters which themselves are steerable by means of wires. For example, Stevens-Wright et al. (U.S. Pat. No. 5,462,527) describes a handle which applies tension selectively to two or four pull cables to steer an attached catheter. Stevens-Wright et al. (U.S. Pat. No. 5,715,817) further describes improvements in actuating the tip of the catheter described in Stevens-Wright et al. '527.
Hammerslag (U.S. Pat. No. 5,108,368) describes a steerable guidewire or catheter wherein the tip is deflectable through a full 360 degree range of motion by means of axially moveable deflection wires extending throughout. Hammerslag (U.S. Pat. No. 5,820,592) describes a guide catheter through which a torque control wire or a deflection wire extends. Manipulating an actuator controls the wire to steer or aim the guide catheter. Savage (U.S. Pat. No. 5,368,564) and Savage et al. (U.S. Pat. No. 5,507,725) also describe a steerable catheter having wire members extending through the catheter wall to manipulate the tip.
Likewise, the following also provide variations of the steerable catheters which utilize wires for manipulation: Accisano, III (U.S. Pat. No. 5,571,085), Krauter (U.S. Pat. No. 5,359,994), West et al. (U.S. Pat. No. 5,318,525), Nardeo (Pub. No. US 2001/0037084 A1), Bumbalough (U.S. Pat. No. 6,267,746), Webster, Jr. (U.S. Pat. No. 6,123,699), Lundquist et al. (U.S. Pat. No. 5,195,968) and Lundquist et al. (U.S. Pat. No. 6,033,378). Falwell et al. (U.S. Pat. No. 6,319,250) describes a catheter having any suitable steering mechanism known in the art.
The present invention provides devices, systems, methods and kits for endoscopically accessing a body cavity and providing a directed pathway toward a target tissue within the cavity. The directed pathway is provided by an access sheath which is positioned in a desired configuration, generally directed toward the target tissue. Interventional devices may then be passed through the sheath to the target tissue. Depending on the location of the target tissue and the desired angle of approach, the access sheath may be required to maintain one or more curves in one or more planes to properly direct the interventional devices. The access sheath of the present invention has a portion which comprises a series of articulating members to allow the sheath to form these curvatures. In addition, the access sheath has a locking feature to hold the articulating members in place and maintain the desired configuration. The articulating members may be positioned by an articulating mechanism within the sheath, such as pullwires which extend through at least one of the articulating members. Or, an articulatable obturator may be positioned within the sheath, wherein articulation of the obturator in turn moves the encasing sheath into the desired articulated position. The obturator is then removed and the sheath remains in the articulated position. Thus, the present invention allows the target tissue to be repeatedly accessed through the access sheath without the need to incorporate steering mechanisms into each interventional device or the need to spend additional time repositioning each interventional device upon use.
In a first aspect of the present invention, an articulatable access sheath is provided for accessing the body cavity. The access sheath comprises a shaft having a proximal end, a distal end and a central lumen therethrough. The distal end is sized appropriately for the intended method of approaching the body cavity. The body cavity may be approached laparoscopically, thorascopically, endoscopically, endovascularly, percutaneously or by any suitable method. Preferably, the distal end of the access sheath is passable through a body lumen, such as a blood vessel within the vascular system. This is particularly the case when approaching a chamber of the heart, which can be accessed either through the femoral vein and inferior vena cava or the superior vena cava into the right atrium, or through a femoral or axillary artery and the aorta into the left ventricle. The distal end may further be configured to penetrate the interatrial septum so as to be passed from the right atrium to the left atrium. Other body lumens through which the device may be positioned include the esophagus for approaching the stomach, the colon for approaching the gastrointestinal system, the trachea for approaching the lungs, or the urethra for approaching the urinary tract. In other instances, the distal end of the access sheath is passable directly through body tissues, such as in a direct access procedure to the heart. The access sheath may be positioned in a penetration in the chest wall and used to access the outside of the heart to perform diagnostic and interventional procedures such as ablation of the pulmonary veins to treat atrial fibrillation. Alternatively, the sheath may be passed through the wall of the heart to access the interior chambers thereof. The central lumen extends through the length of the shaft and is sized for passage of an interventional device, such as a catheter or tool, to perform procedures such as valve repair, electrophysiological mapping and ablation, and septal defect repair. To accommodate a variety of interventional devices, the central lumen is generally relatively large in comparison to the total cross section of the shaft.
The shaft also includes a portion which comprises a series of articulating members. The articulating members may have any suitable shape, however in preferred embodiments the members comprise interfitting domed rings. The ring aspect provides a hollow interior which forms the central lumen. The dome aspect provides a surface which is rotatable against an interfitting surface of an adjacent domed ring. Since the domed rings are individually rotatable, the series of articulating members can be positioned in a variety of arrangements to follow any pathway. Typically, the portion of the shaft comprising the series of articulating members is the distal end. This is because the distal end is usually advanced into the body cavity and benefits from articulation to properly direct interventional devices which are passed through. However, it may be appreciated that the articulating portion may be disposed at any location along the shaft and more than one portion having a series of articulating members may be present.
In some embodiments, the sheath includes at least one pullwire to articulate the articulating members. The pullwires extend through at least one of the articulating members to move the portion of the shaft having the articulating members into an articulated position. The pullwires can extend through the central lumen or through individual lumens in the walls of the articulating members. It may be appreciated that more than one pullwire may extend through any given lumen. To provide optimal positioning of the shaft, a plurality of pullwires are present at locations around the perimeter of the central lumen. The presence of each pullwire allows articulation of the shaft in the direction of the pullwire. For example, when pulling or applying tension to a pullwire extending along one side of the shaft, the shaft will bend, arc or form a curvature toward that side. To then straighten the shaft, the tension may be relieved for recoiling effects or tension may be applied to a pullwire extending along the opposite side of the shaft. Therefore, pullwires can be symmetrically placed along the sides of the shaft. Although any number of pullwires are possible, generally, four to eight pullwires are preferred.
Each pullwire is attached to the shaft at a location chosen to result in particular curvature of the shaft when tension is applied to the pullwire. For example, if a pullwire is attached to the most distal articulating member in the series, applying tension to the pullwire will compress the articulating members proximal to the attachment point along the path of the pullwire. This results in a curvature forming in the direction of the pullwire proximal to the attachment point. It may be appreciated that the pullwires may be attached to any location along the shaft and is not limited to attachment to articulating members.
When more than one curvature is desired, pullwires are attached at various attachment points, each attachment point providing a different curvature or altering the overall articulated position of the sheath. For example, when a first pullwire is fixedly attached to the shaft at a primary attachment point, applying tension to the first pullwire arcs the series of articulating members proximal to the primary attachment point to form a primary curve. If the distal end terminates in a distal tip and the primary attachment point is located at the distal tip, the primary curve will extend through the entire series of articulating members. If the primary attachment point is located mid-way along the series of articulating members, the primary curve will extend through the series of articulating members proximal to the primary attachment point. When a second pullwire is fixedly attached to the shaft at a secondary attachment point, applying tension to the second pullwire arcs the series of articulating members proximal to the secondary attachment point to form a secondary curve. The primary and secondary curves may lie in the same plane or in different planes. In some embodiments, the planes are substantially orthogonal.
In some embodiments, a third pullwire is fixedly attached to the shaft at a distal attachment point and applying tension to the third pullwire moves the distal end through an angle theta. In particular, when the distal attachment point is located near the distal tip, the third pullwire moves the distal tip through the angle theta. The angle theta will be described and illustrated in more detail in later sections. However, the angle theta generally serves to tip or angle the distal tip in relation to a center line to further refine the articulated position of the sheath. Often the angle theta lies in a plane which is different from at least the primary curve or the secondary curve and sometimes both. In fact, the angle theta may lie in a plane which is orthogonal to both the primary curve and the secondary curve.
Tension is applied to the pullwires by manipulation of actuators located on a handle. The handle is connected with the proximal end of the articulatable access sheath and remains outside of the body. The actuators may have any suitable form, including buttons, levers, knobs, switches, toggles, dials, or thumbwheels, to name a few. Each actuator may apply tension to an individual pullwire or to a set of pullwires, or may actuate the articulation element according to its type. Generally, a different actuator is used to form each curvature, such as the primary curvature and secondary curvature, and to cause movement through the angle theta. The handle may also include a locking actuator to actuate a locking mechanism.
Locking holds the articulating members in the articulated position. By such locking, the sheath is maintained in the articulated position while interventional devices are passed therethrough. The sheath will retain sufficient rigidity to deflect and guide a non-steerable interventional device through its central lumen and direct the device to the body cavity, particularly to the target tissue within the body cavity. In some embodiments, the locking feature comprises sufficient friction between articulating members so that the members are held in place, either by friction of one articulating member against another or by the presence of frictional elements between the articulating members. In other embodiments, the locking feature comprises a locking mechanism which includes a mechanism for holding at least one of the pullwires in the tensioned position. As described previously, tensioning of a pullwire typically draws a portion of the articulating members together, forming a curve. By holding the pullwire in this tensioned position, the articulated members can often maintain this arrangement. By holding more pullwires in place, the ability to maintain the arrangement is increased. Therefore, some locking mechanisms will hold all of the pullwires in a tensioned position. When individual pullwires control individual portions of the series of articulated members, the portions may be individually locked by holding tension in the appropriate pullwires. This may be useful, for example, when a desired primary curve is established and a secondary curve is undertaken. The primary curve may be locked in place prior to creating the secondary curve to allow independent creation of each curve.
Although only a few types of curves have been described in relation to the articulated position, it may be appreciated that any number of curves or shapes may be formed throughout the series of articulating members. In addition, permanent curves may also be provided throughout the portion of the shaft comprising the series of articulating members. Such permanent curves may be a result of the shapes of the articulating members, the way in which the articulating members are arranged or fit together, or of any other mechanism. Further, any number of curves or shapes may be pre-formed throughout portions of the shaft other than the portion of the shaft comprising the series of articulating members. And, alternative articulation elements may also be used, such as pushrods, thermally-controlled shape memory alloy wires, or hydraulic or pneumatic fluids, to name a few.
In a second aspect of the present invention, an access system for accessing a body cavity is provided. The access system comprises a sheath which includes a shaft having a proximal end, a distal end and a central lumen therethrough. Again, the distal end is sized appropriately for the intended method of approaching the body cavity. And, a portion of the shaft comprises a series of articulating members which are lockable in a fixed position. The access system further comprises an obturator sized for passage through the central lumen and having means for articulating the obturator. Articulation of the obturator positions the articulating members of the sheath in an articulated position which becomes the fixed position upon locking. The obturator is then removed so that interventional devices may be passed therethrough.
The portion of the shaft comprising the series of articulating members may be the same or similar to that described above in relation to the articulatable access sheath. Again, in preferred embodiments the articulating members comprise interfitting domed rings, each domed ring independently rotatable against an adjacent domed ring. And, pullwires may be present which pass through the at least one of the articulating members. However, in this embodiment, the pullwires are not used to position the articulating members, rather the pullwires are used to lock the articulating members in the fixed position. In some embodiments, the pullwires hold the articulating members in contact with enough frictional force to hold or lock the articulating members in the fixed position. In other embodiments, tension may be applied to some or all of the pullwires to further wedge the articulating members together and therefore lock them in place.
The articulating members are moved into the articulated position by action of the obturator. Once the obturator has been placed within the central lumen of the shaft, the obturator can be moved into any arrangement. For example, the obturator may be shaped to have bends, arcs, curves or angles. Such shaping can be achieved by any suitable mechanism, including pullwires which act similarly to those described above in relation to articulating the articulatable access sheath. The shaping of the obturator applies forces to the central lumen and transfers the shaping to the surrounding sheath. Again, the articulated position can include any number of curves, including a primary curve, secondary curve or angle theta, to name a few. And, the curves may lie in the same or different planes.
Articulation of the obturator can be achieved by manipulation of actuators located on an obturator handle. The obturator handle is connected with the proximal end of the obturator and remains outside of the body. Again, the actuators may have any suitable form, including buttons, knobs, switches, toggles, dials, or thumbwheels, to name a few. Each actuator may apply tension to an individual pullwire or to a set of pullwires. Generally, a different actuator is used to form each curvature, such as the primary curvature and secondary curvature, and to cause movement through the angle theta. The obturator handle may also include an obturator locking actuator to actuate an obturator locking mechanism.
The obturator locking mechanism locks the obturator in the articulated position. By such locking, the obturator is maintained in the articulated position while the sheath is then locked in position. In some embodiments, the locking mechanism of both the obturator and sheath include a mechanism for holding at least one of the pullwires in the tensioned position. Some locking mechanisms will hold all of the pullwires in a tensioned position. When individual pullwires affect individual portions of the obturator or the series of articulated members, the portions may be individually locked by holding tension in the appropriate pullwires.
Again, although only a few types of curves have been described in relation to the articulated position, it may be appreciated that any number of curves or shapes may be formed throughout the obturator. In addition, permanent curves may also be pre-set throughout obturator, such as by heat-setting. These permanent curves will then also be transferred to the surrounding sheath.
After the sheath has been locked in place, the obturator can then be unlocked and removed. Or, when the obturator has a permanent heat-set curve, the locked sheath will be sufficiently rigid enough to allow removal of the pre-curved obturator without changing the shape of the sheath. The sheath will also retain sufficient rigidity to deflect and guide a non-steerable interventional device through its central lumen and direct the device to the body cavity, particularly to the target tissue within the body cavity.
In other embodiments, the obturator may only form a single curve yet may be used to form compound or multiple curves in the sheath. For example, the obturator may be positioned in a first location along the sheath forming a first curve. The sheath is then locked in place in this first location to hold the first curve. The obturator may then be positioned in a second location along the sheath forming a second curve. Likewise, the sheath is then locked in the second location to hold the second curve. Hence, multiple or compound curves may be formed from an obturator capable of forming a single curve. This concept may be extrapolated to cover obturators capable of forming more than a single curve yet are used to form curves in sheath which are more complex or of a higher number.
In a third aspect of the present invention, methods of accessing a body cavity are provided. In one embodiment, the method includes advancing a sheath through a body lumen to the body cavity, wherein the sheath includes a shaft having a proximal end, a distal end, a central lumen therethrough, and a portion of the shaft comprises a series of articulating members. Although the sheath can be used to access any body cavity through any pathway, such as laparoscopically, thorascopically, endoscopically, endovascularly or percutaneously, the sheath may particularly be used to access one or more chambers of the heart. The chambers of the heart provide access to many tissues which may be targeted for treatment, such as valves, chordae tendinae, papillary muscles, the Purkinje system, pulmonary veins and coronary arteries, to name a few. When targeting the mitral valve, the left atrium may be accessed to approach the valve from above. To accomplish this, the sheath may be advanced through the vasculature to the right atrium and passed through the intra-atrial septum to the left atrium. The articulating members are then articulated to move the portion of the shaft comprising the series of articulating members into an articulated position. It may be appreciated that the mitral valve may alternatively be approached from below or from the ventricular side by accessing the left ventricle. This is typically achieved by advancing the sheath through the vasculature to the aorta, through the aortic valve and into the left ventricle. Examples of this approach and other approach methods are provided in U.S. patent application Ser. No. 09/894,463 filed on Jun. 27, 2001 incorporated by reference herein for all purposes. In a further alternative approach, the access sheath may be positioned through a surgical penetration in the chest wall and through a penetration in a wall of the heart to access the cardiac chambers. Preferably, for mitral valve and other procedures in the left side of the heart, the access sheath is introduced into the right atrium and then advanced across the interatrial septum into the left atrium.
As described previously, the articulated position may include any number of curves or shapes to properly direct the sheath toward the target tissue. When targeting the mitral valve via the right atrium, the distal end of the sheath extends into the open space of the right atrium. To direct the distal tip of the sheath toward the mitral valve, the sheath may be articulated to move the distal tip laterally, vertically, or angularly, to name a few. For example, the articulated position may include a primary curve in a primary plane parallel to the valve surface. This moves the distal tip laterally in relation to the valve. The articulated position may further include a secondary curve in a secondary plane; typically the secondary plane is different from the primary plane and optionally substantially orthogonal to the primary plane. This moves the distal tip vertically and angularly, directing the central lumen toward or away from the valve along the secondary plane. In addition to these or additional curves, the articulated position may further include an angle theta. This moves the distal end vertically and angularly through a plane which differs from the secondary plane. Consequently, the central lumen can be directed toward or away from the valve along a theta plane which is different than the secondary plane and optionally the primary plane.
Articulating the articulating members may be accomplished by any of the means described above. For example, the sheath may further comprise at least one pullwire which extends through at least one of the articulating members. Applying tension to the at least one pullwire would thus articulate the articulating members. Once the articulating members are moved into a desired articulated position, the articulating members are locked in place. Locking the articulating members may comprise holding the tension in the at least one pullwire with a locking mechanism. As described previously, locking may be accomplished by holding tension in all of the pullwires.
Once the sheath is locked in the articulated position, interventional devices are then passed through the central lumen, wherein the articulated position directs the interventional device into the body cavity. In this example, an interventional catheter or tool is passed through the central lumen into the left atrium and directed toward the mitral valve. Depending on the direction provided by the sheath, the interventional device may optionally be advanced through the valve, between the leaflets. The desired surgical procedure can then be performed. If additional catheters or tools are needed, the devices may easily be interchanged by removing one and advancing another while the sheath remains in the articulated position.
In another embodiment, the method includes advancing a sheath through a body lumen to a body cavity, wherein the sheath comprises a shaft having a proximal end, a distal end, a central lumen therethrough and a portion of the shaft comprises a series of articulating members. However, in embodiment the method includes passing an obturator through the central lumen and articulating the obturator to position the articulating members in an articulated position. The obturator may be articulated by any of the means described previously. The articulated members are then locked in the articulated position and the obturator is removed to allow passage of an interventional device through the central lumen, wherein the articulated position directs the device into the body cavity.
In a fourth aspect of the present invention, the devices, systems and methods of the present invention may be provided in one or more kits for such use. The kits may comprise an access sheath and instructions for use. The access sheath may be articulatable by means of mechanisms incorporated in the sheath, or the kit may include an articulatable obturator for use in articulating the sheath. Optionally, such kits may further include any of the other system components described in relation to the present invention and any other materials or items relevant to the present invention.
Other objects and advantages of the present invention will become apparent from the detailed description to follow, together with the accompanying drawings.
Referring to
The portion of the shaft 11 having the articulating members 18 is movable into an articulated position by actuation of one or more positioning mechanisms. Actuation of the positioning mechanisms is achieved with the use of actuators, such as actuators 22, 24, 26 located on a handle 20. The handle 20 is connected to the proximal end 12 of the shaft 11 and remains outside of the patient's body during use. Actuators 22, 24, 26 are used to bend, arc or reshape the portion of the shaft 11 comprising articulating members 18. For example, a primary curve actuator 22 can be used to actuate one or more pull wires to form a primary curve in the portion of the shaft 11 comprising the series of articulating members 18. Further, a secondary curve actuator 24 can be actuated to form a secondary curve in the portion of the shaft 11 comprising the series of actuating members 18. And a theta actuator 26 can be manipulated to move the distal tip 15 through an angle theta. In addition, a locking actuator 28 may be used to actuate a locking mechanism to lock the articulating members 18 in the articulated position. Actuators 22, 24, 26, are illustrated as thumbwheels and actuator 28 is illustrated as a rotating knob. It may be appreciated that such actuators 22, 24, 26, 28 and any additional actuators located on the handle 20 may take any suitable form including knobs, buttons, levers, switches, toggles, sensors or other devices. In addition, the handle 20 may include a numerical or graphical display of information such as data indicating the articulated position of the sheath 10.
Example Articulated Positions
Referring to
Referring now to
Similarly,
Further, the articulating members 18 may be configured to provide additional curves or shapes. For example, as illustrated in
The articulated position of the access sheath 10 illustrated in
It is then desired to move and tip the distal tip 15 so that the central lumen 16 is directed toward the target tissue, the mitral valve MV. In particular, the central lumen 16 is to be directed toward a specific area of the mitral valve MV, such as toward the opening 60 between the valve leaflets LF, so that a particular interventional procedure may be performed. A primary curve 40 may be formed by the series of articulating members 18, as described above. In this example, formation of the primary curve 40 moves the distal tip 15 within a primary plane, corresponding to previous plane X, parallel to the valve surface. This moves the distal tip 15 laterally along the short axis of the mitral valve MV, and allows the distal tip 15 to be centered over the opening 60. In this articulated position, any interventional devices which are passed through the central lumen 16 would be directed horizontally over the valve MV. To direct catheters or tools into the opening 60, it is necessary that the distal tip 15 is pointed downward towards the mitral valve MV.
Referring to
Thus, the access sheath 10 may include additional curvatures throughout the articulating members 18 and/or include the ability of the distal tip 15 to move angularly through an angle theta 50. This moves the tip vertically and angularly through a theta plane, corresponding to previous plane Y. Movement of the distal tip 15 through the angle theta 50 in either direction is shown in dashed line in
Articulating Members
Referring to
Also shown in
In addition, select portions of the articulating members 18 may be fixed together to create desired curves. For example, when the articulating members 18 comprise domed rings 84, two, three, four or more domed rings 84 positioned in a row may be fixed in their interfit positions to prevent movement or rotation between the rings 84. This may be achieved by any suitable method such as soldering, gluing, tying, or potting. Such fixing will create segments which cannot be articulated, however articulating members 18 on either side of these segments may be articulated. This may be useful in creating certain curves or shapes, particularly square shapes or sharp angles. It may also be appreciated that these select portions of articulating members 18 may be fixed to form either a straight segment or a curved segment.
Once the pullwires 80 have been adjusted to obtain a desired articulated position, the series of articulating members 18 may be locked in place to hold the access sheath 10 in the desired articulated position. Such locking is achieved by holding most or all of the pullwires 80 simultaneously to force each articulating member 18 against its neighboring member 18. Locking strength is dependent on a number of variables including shape, material, and surface texture of the articulating members 18. As shown in
A variety of articulation mechanisms can be used to articulate the access sheath. In preferred embodiments, pullwires 80 are used. Any number of pullwires 80 may be used to articulate the access sheath 10.
Similarly,
To increase stability of the curves during articulation, pins are used to keep the members 18 aligned, as illustrated in
Liners
Referring to
Articulation
As described previously, the pullwires 80 pass through the articulating members 18 and attach to the shaft 11 at various attachment points. Referring to
In the example illustrated in
Further, a third pullwire 128 may be present which is fixedly attached to the shaft 11 at a distal attachment point 130 so that pulling the third pullwire 128 moves the distal end through an angle theta 50 (see
Access System
Referring to
The articulating members 158 of the access sheath 150 may be the same or similar to the articulating members 18 of the articulatable access sheath 10. As mentioned, the articulating members may have any shape, particularly a shape which allows interfitting or nesting as shown in
The portion of the sheath 150 having the articulating members 158 is movable into an articulated position by action of the obturator 168 or other device which can fit within the central lumen 156. Once the obturator 168 has been placed within the central lumen 156 of the sheath 150, as shown, the obturator 168 can be moved into any configuration. For example, the obturator 168 can be shaped to have bends, arcs, curves or angles which in turn applies the same configuration to the surrounding sheath 150. Shaping of the obturator 168 can be achieved by any suitable mechanism, such as pullwires which extend through the obturator 158 and can be manipulated in a manner similar to the articulatable access sheath 10. Thus, the sheath 150 and obturator 168 can be moved into articulated positions similar to those shown in
Actuation of the positioning mechanisms is achieved with the use of actuators, such as actuators 170, 172, 174 located on an obturator handle 176. The obturator handle 176 may be connectable to a handle 160 of the sheath 150 at a connection joint 178. The actuators 170, 172, 173 are used to bend, arc or reshape the obturator 168 underlying the portion of the sheath 150 comprising articulating members 158. For example, a primary curve actuator 170 can be used to actuate one or more pull wires to form a primary curve in the portion of the sheath 150 comprising the series of articulating members 158. Further, a secondary curve actuator 172 can be actuated to form a secondary curve in the portion of the sheath 150 comprising the series of actuating members 158. And a theta actuator 174 can be manipulated to move the distal tip 155 through an angle theta.
Once the sheath 150 is in the desired configuration, a locking actuator 180 on the handle 160 may be used to actuate a locking mechanism to lock the articulating members 158 in the articulated position. Optionally, the obturator 168 may also be locked in place by an obturator locking mechanism actuated by an obturator locking actuator 186. Typically, the obturator 168 would be locked in place prior to the sheath 150 to hold the sheath in the desired orientation. Once the sheath 150 is then locked, the obturator 168 may be unlocked and removed. Again, it may be appreciated that such actuators 170, 172, 174, 180, 186 and any additional actuators located on the handles 160, 176 may take any suitable form including knobs, buttons, levers, switches, toggles, sensors or other devices. In addition, the handles 160, 176 may include a numerical or graphical display of information such as data indicating the articulated position of the sheath 150 and/or obturator 168.
It is then desired to move and tip the distal tip 155 so that the central lumen 156 is directed toward the target tissue, the mitral valve MV. In particular, the central lumen 156 is to be directed toward a specific area of the mitral valve MV, such as toward the opening 60 between the valve leaflets LF, so that a particular interventional procedure may be performed. A primary curve 200 may be formed due to actuation of the obturator 168, as described above. The obturator 168 applies forces to the central lumen 156 to reposition the articulating members 158. In this example, formation of the primary curve 200 moves the distal tip 155 within a primary plane, corresponding to previous plane X in
Referring to
Thus, the access sheath 150 may include additional curvatures throughout the articulating members 158 and/or allow the distal tip 155 to move angularly through an angle theta 204 by action of the obturator 168. This moves the tip 155 vertically and angularly through a theta plane, corresponding to previous plane Y in
Referring to
It may be appreciated that in some embodiments both the obturator 168 and the sheath 150 are independently steerable. In these embodiments, the obturator 168 and sheath 150 can be shaped or articulated by any suitable mechanism, such as pullwires which extend through the obturator 158 and separate pullwires which extend through the sheath 150 and can be manipulated to create bends, arcs, curves or angles. Thus, the sheath 150 and obturator 168 can be moved into articulated positions similar to those shown in
Referring now to
Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that various alternatives, modifications and equivalents may be used and the above description should not be taken as limiting in scope of the invention which is defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 12/392,670 filed Feb. 25, 2009 (now U.S. Pat. No. 7,682,319), which is a divisional of, and claims the benefit of priority from U.S. patent application Ser. No. 10/441,753 filed May 19, 2003 now abandoned, which is a continuation-in-part of, and claims the benefit of priority from U.S. patent application Ser. No. 09/894,463 filed Jun. 27, 2001 (now U.S. Pat. No. 6,752,813), which is a continuation-in-part of U.S. patent application Ser. No. 09/544,930 filed Apr. 7, 2000 (now U.S. Pat. No. 6,629,534), which is a non-provisional of, and claims the benefit of U.S. Provisional Application No. 60/128,690 filed on Apr. 9, 1999, the full disclosures of which are hereby incorporated herein by reference. This application is related to U.S. patent application Ser. Nos. 10/441,531 (now U.S. Pat. No. 7,563,267); Ser. No. 10/441,508; and Ser. No. 10/441,687 (now U.S. Pat. No. 7,226,467), the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2097018 | Chamberlain | Oct 1937 | A |
2108206 | Meeker | Feb 1938 | A |
3296668 | Aiken | Jan 1967 | A |
3378010 | Codling | Apr 1968 | A |
3557780 | Sato | Jan 1971 | A |
3671979 | Moulopouslos | Jun 1972 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4064881 | Meredith | Dec 1977 | A |
4112951 | Hulka et al. | Sep 1978 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4297749 | Davis et al. | Nov 1981 | A |
4425908 | Simon | Jan 1984 | A |
4458682 | Cerwin | Jul 1984 | A |
4484579 | Meno et al. | Nov 1984 | A |
4487205 | Di Giovanni et al. | Dec 1984 | A |
4498476 | Cerwin et al. | Feb 1985 | A |
4510934 | Batra | Apr 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4641366 | Yokoyama et al. | Feb 1987 | A |
4686965 | Bonnet et al. | Aug 1987 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4917089 | Sideris | Apr 1990 | A |
4944295 | Gwathmey et al. | Jul 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5015249 | Nakao et al. | May 1991 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5049153 | Nakao et al. | Sep 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5125758 | DeWan | Jun 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5190554 | Coddington, III et al. | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5275578 | Adams | Jan 1994 | A |
5282845 | Bush et al. | Feb 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5306283 | Conners | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5325845 | Adair | Jul 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5368564 | Savage | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5383886 | Kensey et al. | Jan 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5423858 | Bolanos et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5447966 | Hermes et al. | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5462527 | Stevens-Wright et al. | Oct 1995 | A |
5472044 | Hall et al. | Dec 1995 | A |
5476470 | Fitzgibbons | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5487746 | Yu et al. | Jan 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5520701 | Lerch | May 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5575802 | McQuilkin et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5593424 | Northrup, III | Jan 1997 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5618306 | Roth et al. | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5634932 | Schmidt | Jun 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5639277 | Mariant et al. | Jun 1997 | A |
5640955 | Ockuly et al. | Jun 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5702825 | Keital et al. | Dec 1997 | A |
5706824 | Whittier | Jan 1998 | A |
5709707 | Lock et al. | Jan 1998 | A |
5713910 | Gordon et al. | Feb 1998 | A |
5713911 | Racene et al. | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5718725 | Sterman et al. | Feb 1998 | A |
5719725 | Nakao | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741280 | Fleenor | Apr 1998 | A |
5749828 | Solomon et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5782845 | Shewchuk | Jul 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810847 | Laufer et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5814029 | Hassett | Sep 1998 | A |
5820592 | Hammerslag | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5824065 | Gross | Oct 1998 | A |
5827237 | Macoviak et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5833671 | Macoviak et al. | Nov 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843031 | Hermann et al. | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855271 | Eubanks et al. | Jan 1999 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5868733 | Ockuly et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879307 | Chio et al. | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5916147 | Boury | Jun 1999 | A |
5928224 | Laufer | Jul 1999 | A |
5944733 | Engelson | Aug 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5972020 | Carpentier et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5980455 | Daniel et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6019722 | Spence et al. | Feb 2000 | A |
6022360 | Reimels et al. | Feb 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6059757 | Macoviak et al. | May 2000 | A |
6060628 | Aoyama et al. | May 2000 | A |
6060629 | Pham et al. | May 2000 | A |
6063106 | Gibson | May 2000 | A |
6066146 | Carroll et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6088889 | Luther et al. | Jul 2000 | A |
6099505 | Ryan et al. | Aug 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6110145 | Macoviak | Aug 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6126658 | Baker | Oct 2000 | A |
6132447 | Dorsey | Oct 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6162233 | Williamson, IV et al. | Dec 2000 | A |
6165164 | Hill et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171320 | Monassevitch | Jan 2001 | B1 |
6182664 | Cosgrove | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190408 | Melvin | Feb 2001 | B1 |
6203531 | Ockuly et al. | Mar 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6210419 | Mayenberger et al. | Apr 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6267746 | Bumbalough | Jul 2001 | B1 |
6267781 | Tu | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6283962 | Tu et al. | Sep 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6306133 | Tu et al. | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6319250 | Falwell et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6368326 | Dakin et al. | Apr 2002 | B1 |
6402780 | Williamson et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6464707 | Bjerken | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6540755 | Ockuly et al. | Apr 2003 | B2 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6585761 | Taheri | Jul 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6669687 | Saadat | Dec 2003 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6701929 | Hussein | Mar 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709382 | Homer | Mar 2004 | B1 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719767 | Kimblad | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6740107 | Loeb et al. | May 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755777 | Schweich et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6860179 | Hopper et al. | Mar 2005 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6926715 | Hauck et al. | Aug 2005 | B1 |
6945978 | Hyde | Sep 2005 | B1 |
6949122 | Adams et al. | Sep 2005 | B2 |
6966914 | Abe | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
7004970 | Cauthen, III et al. | Feb 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7288097 | Séguin | Oct 2007 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7464712 | Oz et al. | Dec 2008 | B2 |
7497822 | Kugler et al. | Mar 2009 | B1 |
7533790 | Knodel et al. | May 2009 | B1 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7651502 | Jackson | Jan 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
20010004715 | Duran et al. | Jun 2001 | A1 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010010005 | Kammerer et al. | Jul 2001 | A1 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010022872 | Marui | Sep 2001 | A1 |
20010037084 | Nardeo | Nov 2001 | A1 |
20010039411 | Johansson et al. | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020022848 | Garrison et al. | Feb 2002 | A1 |
20020026233 | Shaknovich | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020055775 | Carpentier et al. | May 2002 | A1 |
20020058910 | Hermann | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020077687 | Ahn | Jun 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020107534 | Schaefer et al. | Aug 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020156526 | Hilavka et al. | Oct 2002 | A1 |
20020158528 | Tsuzaki et al. | Oct 2002 | A1 |
20020161378 | Downing | Oct 2002 | A1 |
20020169360 | Taylor et al. | Nov 2002 | A1 |
20020183766 | Seguin | Dec 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20030045778 | Ohline et al. | Mar 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078654 | Taylor et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Lisk et al. | Jun 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20030130669 | Damarati | Jul 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030171776 | Adams et al. | Sep 2003 | A1 |
20030187467 | Schreck | Oct 2003 | A1 |
20030195562 | Collier et al. | Oct 2003 | A1 |
20030208231 | Williamson, IV et al. | Nov 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20030233038 | Hassett | Dec 2003 | A1 |
20040002719 | Oz et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040019378 | Hlavka et al. | Jan 2004 | A1 |
20040024414 | Downing | Feb 2004 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040039443 | Solem et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040078053 | Berg et al. | Apr 2004 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040092962 | Thorton et al. | May 2004 | A1 |
20040097878 | Anderson et al. | May 2004 | A1 |
20040097979 | Svanidze et al. | May 2004 | A1 |
20040106989 | Wilson et al. | Jun 2004 | A1 |
20040111099 | Nguyen et al. | Jun 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040127981 | Rahdert et al. | Jul 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133062 | Pai et al. | Jul 2004 | A1 |
20040133063 | McCarthy et al. | Jul 2004 | A1 |
20040133082 | Abraham-Fuchs et al. | Jul 2004 | A1 |
20040133192 | Houser et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040152847 | Emri et al. | Aug 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040153144 | Seguin | Aug 2004 | A1 |
20040158123 | Jayaraman | Aug 2004 | A1 |
20040162610 | Laiska et al. | Aug 2004 | A1 |
20040167539 | Kuehn et al. | Aug 2004 | A1 |
20040186486 | Roue et al. | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040220593 | Greenhalgh | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040243229 | Vidlund et al. | Dec 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20050004583 | Oz et al. | Jan 2005 | A1 |
20050004665 | Aklog | Jan 2005 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050021056 | St. Goar et al. | Jan 2005 | A1 |
20050021057 | St. Goar et al. | Jan 2005 | A1 |
20050021058 | Negro | Jan 2005 | A1 |
20050033446 | Deem et al. | Feb 2005 | A1 |
20050038508 | Gabbay | Feb 2005 | A1 |
20050049698 | Bolling et al. | Mar 2005 | A1 |
20050055089 | Macoviak et al. | Mar 2005 | A1 |
20050059351 | Cauwels et al. | Mar 2005 | A1 |
20050149014 | Hauck et al. | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050228422 | Machold et al. | Oct 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050251001 | Hassett | Nov 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20050273160 | Lashinski et al. | Dec 2005 | A1 |
20050287493 | Novak et al. | Dec 2005 | A1 |
20060004247 | Kute et al. | Jan 2006 | A1 |
20060015003 | Moaddes et al. | Jan 2006 | A1 |
20060030866 | Schreck | Feb 2006 | A1 |
20060030867 | Zadno | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060064116 | Allen et al. | Mar 2006 | A1 |
20060064118 | Kimblad | Mar 2006 | A1 |
20060089671 | Goldfarb et al. | Apr 2006 | A1 |
20060089711 | Dolan | Apr 2006 | A1 |
20060135993 | Seguin | Jun 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060195012 | Mortier et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060252984 | Rahdert et al. | Nov 2006 | A1 |
20070038293 | St.Goar et al. | Feb 2007 | A1 |
20070100356 | Lucatero et al. | May 2007 | A1 |
20070118155 | Goldfarb et al. | May 2007 | A1 |
20070129737 | Goldfarb et al. | Jun 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080051703 | Thornton et al. | Feb 2008 | A1 |
20080051807 | St. Goar et al. | Feb 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080167714 | St. Goar et al. | Jul 2008 | A1 |
20080183194 | Goldfarb et al. | Jul 2008 | A1 |
20090163934 | Raschdorf, Jr. et al. | Jun 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090198322 | Deem et al. | Aug 2009 | A1 |
20090270858 | Hauck et al. | Oct 2009 | A1 |
20090326567 | Goldfarb et al. | Dec 2009 | A1 |
20100016958 | St. Goar et al. | Jan 2010 | A1 |
20100022823 | Goldfarb et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
3504292 | Jul 1986 | DE |
0 179 562 | Apr 1986 | EP |
0 179 562 | Jul 1989 | EP |
0 558 031 | Feb 1993 | EP |
0 684 012 | Nov 1995 | EP |
0 727 239 | Aug 1996 | EP |
1 674 040 | Jun 2006 | EP |
2768324 | Mar 1999 | FR |
1598111 | Sep 1981 | GB |
2151142 | Jul 1985 | GB |
59-85653 | May 1984 | JP |
09-253030 | Sep 1997 | JP |
11-089937 | Apr 1999 | JP |
2000-283130 | Oct 2000 | JP |
WO 8100668 | Mar 1981 | WO |
WO 9101689 | Feb 1991 | WO |
WO 9212690 | Aug 1992 | WO |
WO 9418881 | Sep 1994 | WO |
WO 9418893 | Sep 1994 | WO |
WO 9515715 | Jun 1995 | WO |
WO 9614032 | May 1996 | WO |
WO 9622735 | Aug 1996 | WO |
WO 9630072 | Oct 1996 | WO |
9718746 | May 1997 | WO |
WO 9718746 | May 1997 | WO |
WO 9725927 | Jul 1997 | WO |
WO 9726034 | Jul 1997 | WO |
WO 9738748 | Oct 1997 | WO |
WO 9739688 | Oct 1997 | WO |
WO 9748436 | Dec 1997 | WO |
WO 9807375 | Feb 1998 | WO |
WO 9824372 | Jun 1998 | WO |
WO 9830153 | Jul 1998 | WO |
WO 9832382 | Jul 1998 | WO |
WO 9835638 | Aug 1998 | WO |
WO 9900059 | Jan 1999 | WO |
WO 9907354 | Feb 1999 | WO |
WO 9913777 | Mar 1999 | WO |
WO 9966967 | Dec 1999 | WO |
WO 0002489 | Jan 2000 | WO |
WO 0003651 | Jan 2000 | WO |
WO 0003759 | Jan 2000 | WO |
WO 0012168 | Mar 2000 | WO |
WO 0044313 | Aug 2000 | WO |
WO 0059382 | Oct 2000 | WO |
WO 0060995 | Oct 2000 | WO |
WO 0100111 | Jan 2001 | WO |
WO 0100114 | Jan 2001 | WO |
WO 0103651 | Jan 2001 | WO |
WO 0126557 | Apr 2001 | WO |
WO 0126586 | Apr 2001 | WO |
WO 0126587 | Apr 2001 | WO |
WO 0126588 | Apr 2001 | WO |
WO 0126703 | Apr 2001 | WO |
WO 0128432 | Apr 2001 | WO |
WO 0128455 | Apr 2001 | WO |
WO 0147438 | Jul 2001 | WO |
WO 0149213 | Jul 2001 | WO |
WO 0149213 | Jul 2001 | WO |
WO 0150985 | Jul 2001 | WO |
WO 0154618 | Aug 2001 | WO |
WO 0156512 | Aug 2001 | WO |
WO 0166001 | Sep 2001 | WO |
WO 0170320 | Sep 2001 | WO |
WO 0189440 | Nov 2001 | WO |
WO 0195831 | Dec 2001 | WO |
WO 0195832 | Dec 2001 | WO |
WO 0197741 | Dec 2001 | WO |
WO 0200099 | Jan 2002 | WO |
WO 0201999 | Jan 2002 | WO |
WO 0203892 | Jan 2002 | WO |
WO 0234167 | May 2002 | WO |
WO 0234167 | May 2002 | WO |
WO 02060352 | Aug 2002 | WO |
WO 02062263 | Aug 2002 | WO |
WO 02062270 | Aug 2002 | WO |
WO 02062408 | Aug 2002 | WO |
WO 03001893 | Jan 2003 | WO |
WO 03003930 | Jan 2003 | WO |
WO 03020179 | Mar 2003 | WO |
WO 03028558 | Apr 2003 | WO |
WO 03037171 | May 2003 | WO |
WO 03047467 | Jun 2003 | WO |
WO 03049619 | Jun 2003 | WO |
WO 03073910 | Sep 2003 | WO |
WO 03073913 | Sep 2003 | WO |
WO 03105667 | Dec 2003 | WO |
WO 2004004607 | Jan 2004 | WO |
WO 2004012583 | Feb 2004 | WO |
WO 2004012789 | Feb 2004 | WO |
WO 2004014282 | Feb 2004 | WO |
WO 2004019811 | Mar 2004 | WO |
WO 2004030570 | Apr 2004 | WO |
WO 2004037317 | May 2004 | WO |
WO 2004045370 | Jun 2004 | WO |
WO 2004045378 | Jun 2004 | WO |
WO 2004045463 | Jun 2004 | WO |
WO 2004047679 | Jun 2004 | WO |
WO 2004062725 | Jul 2004 | WO |
WO 2004082523 | Sep 2004 | WO |
WO 2004082538 | Sep 2004 | WO |
WO 2004093730 | Nov 2004 | WO |
WO 2004112585 | Dec 2004 | WO |
WO 2004112651 | Dec 2004 | WO |
WO 2005002424 | Jan 2005 | WO |
WO 2005018507 | Mar 2005 | WO |
WO 2005027797 | Mar 2005 | WO |
WO 2005032421 | Apr 2005 | WO |
WO 2005062931 | Jul 2005 | WO |
WO 2005112792 | Dec 2005 | WO |
WO 2006105008 | Oct 2006 | WO |
WO 2006105009 | Oct 2006 | WO |
WO 2006115875 | Nov 2006 | WO |
WO 2006115876 | Nov 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100130924 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
60128690 | Apr 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10441753 | May 2003 | US |
Child | 12392670 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12392670 | Feb 2009 | US |
Child | 12699759 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09894463 | Jun 2001 | US |
Child | 10441753 | US | |
Parent | 09544930 | Apr 2000 | US |
Child | 09894463 | US |