Certain embodiments disclosed herein relate generally to prostheses for implantation within a lumen or body cavity and delivery systems for a prosthesis. In particular, the prostheses and delivery systems relate to replacement heart valves, such as replacement mitral heart valves.
Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow downstream, but block blood from flowing upstream. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation, which inhibit the valve's ability to control blood flow. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatuses to repair or replace impaired heart valves.
Prostheses exist to correct problems associated with impaired heart valves. For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves that can be delivered with less trauma to the patient than through open heart surgery. Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.
Development of prostheses including but not limited to replacement heart valves that can be compacted for delivery and then controllably expanded for controlled placement has proven to be particularly challenging. An additional challenge relates to the ability of such prostheses to be secured relative to intralumenal tissue, e.g., tissue within any body lumen or cavity, in an atraumatic manner.
Delivering a prosthesis to a desired location in the human body, for example, delivering a replacement heart valve to the mitral valve, can also be challenging. Attaining access to perform procedures in the heart or in other anatomical locations may require delivery of devices percutaneously through tortuous vasculature or through open or semi-open surgical procedures. The ability to control the deployment of the prosthesis at the desired location can also be challenging.
Embodiments of the present disclosure are directed to a prosthesis, such as but not limited to a replacement heart valve. Further embodiments are directed to delivery systems, devices and/or methods of use to deliver and/or controllably deploy a prosthesis, such as but not limited to a replacement heart valve, to a desired location within the body. In some embodiments, a replacement heart valve and methods for delivering a replacement heart valve to a native heart valve, such as a mitral valve, are provided.
In some embodiments, a delivery system and method are provided for delivering a replacement heart valve to a native mitral valve location. The delivery system and method may utilize a transseptal approach. In some embodiments, components of the delivery system facilitate bending of the delivery system to steer a prosthesis from the septum to a location within the native mitral valve. In some embodiments, a capsule is provided for containing the prosthesis for delivery to the native mitral valve location. In other embodiments, the delivery system and method may be adapted for delivery of implants to locations other than the native mitral valve.
The present disclosure includes, but is not limited to, the following embodiments.
Embodiment 1: A delivery system for delivering an expandable implant to a body location, the delivery system comprising an outer sheath assembly comprising an outer shaft having an outer lumen and a proximal end and a distal end, wherein the outer sheath assembly comprises an implant retention area configured to retain the expandable implant in a compressed configuration, and an inner assembly located within the outer lumen, the inner assembly comprising an inner shaft having an inner lumen and a proximal end and a distal end, wherein the inner assembly comprises an inner retention member configured to be releasably attached to the expandable implant, and wherein the delivery system is configured to be bent at least at one location to facilitate delivery of the expandable implant to the body location.
Embodiment 2: The delivery system of Embodiment 1, wherein the delivery system further comprises a nose cone assembly located within the inner lumen, the nose cone assembly comprising a nose cone shaft having a guide wire lumen, a proximal and distal end, and a nose cone at the distal end.
Embodiment 3: The delivery system of any one of Embodiments 1-2, wherein the delivery system is configured to form a proximal bend and a distal bend.
Embodiment 4: The delivery system of any one of Embodiments 1-3, wherein the outer shaft comprises a series of slots that rotate around a circumference of the outer shaft from the proximal end to the distal end.
Embodiment 5: The delivery system of any one of Embodiments 1-4, wherein at least a portion of the outer shaft comprises a braided tube attached radially on top of a slotted hypotube.
Embodiment 6: The delivery system of any one of Embodiments 1-5, wherein the outer shaft comprises a capsule at a distal end of the outer shaft forming the implant retention area, the capsule comprising at least 100 circumferentially extending slots along its length.
Embodiment 7: The delivery system of any one of Embodiments 1-5, wherein the outer shaft comprises a capsule at a distal end of the outer shaft forming the implant retention area, wherein the capsule comprises a flarable distal section configured to radially expand.
Embodiment 8: The delivery system of any one of Embodiments 1-7, wherein the inner shaft comprises an outer retention ring slideable along the inner shaft and at least one tab, wherein the at least one tab is moveable between a radially flared position and a radially compressed position, and wherein when the at least one tab is in the radially compressed position, the outer retention ring can slide over the at least one tab, and wherein when the at least one tab is in the radially flared position, the outer retention ring is prevented from moving proximally over the at least one tab.
Embodiment 9: The delivery system of Embodiment 2, wherein the inner shaft comprises at least one collar at least partially surrounding the inner shaft, wherein the at least one tab is located on the collar, and wherein the collar is configured to translate along the inner shaft.
Embodiment 10: The delivery system of any one of Embodiments 1-9, wherein the delivery system further comprises a steerable sheath surrounding the outer sheath assembly, wherein the steerable sheath is configured to form a first bend at a proximal bend location and a second bend at a distal bend location.
Embodiment 11: The delivery system of Embodiment 3, wherein the steerable sheath comprises a plurality of circumferential slots, a proximal pull wire attached at the proximal bend location, and a distal pull wire attached at the distal bend location, wherein a proximal force on the proximal pull wire forms the first bend and a proximal force on the distal pull wire forms the second bend.
Embodiment 12: The delivery system of Embodiment 3, wherein when a proximal force is applied to the distal pull wire, the delivery system is only bent at the second bend location.
Embodiment 13: The delivery system of Embodiment 3, wherein the steerable sheath comprises a pair of pull wires, wherein the pair of pull wires are circumferentially spaced apart at a proximal end portion of the steerable sheath and are circumferentially adjacent at a distal end portion of the steerable sheath.
Embodiment 14: The delivery system of Embodiment 4, further comprising a third pull wire located circumferentially between the pair of pull wires at the proximal end portion, wherein the third pull wire meets the pair of pull wires in the distal end portion.
Embodiment 15: The delivery system of Embodiment 3, wherein the steerable sheath comprises a pair of pull wires, wherein the pull wires are circumferentially adjacent at a proximal end portion of the steerable sheath and are circumferentially spaced apart at a distal end portion of the steerable sheath.
Embodiment 16: The delivery system of any one of Embodiments 1-15, wherein the outer sheath assembly comprises an axial runner containing a pull wire having an untensioned configuration and a tensioned configuration, wherein the outer sheath assembly can bend when the pull wire is in the untensioned configuration and wherein the outer sheath assembly cannot bend when the pull wire is in the tensioned configuration.
Embodiment 17: The delivery system of Embodiment 7, further comprising four of the axial runners spaced approximately 90 degrees apart, each of the four axial runners containing a pull wire having the untensioned configuration and the tensioned configuration, wherein each of the pull wires can be independently placed under tension.
Embodiment 18: The delivery system of Embodiment 1, wherein the outer sheath assembly comprises a helical backbone having a plurality of circumferentially extending slots along a length of the outer sheath assembly.
Embodiment 19: The delivery system of Embodiment 8, wherein the helical backbone is longitudinally thicker at a first circumferential portion than at a second circumferential portion.
Embodiment 20: The delivery system of Embodiment 8, wherein the first circumferential portion is approximately a first circumferential half and the second circumferential portion is approximately a second circumferential half.
Embodiment 21: The delivery system of Embodiment 1, wherein the outer sheath assembly comprises a pull wire, wherein the pull wire extends longitudinally straight at a proximal portion of the outer sheath assembly, and wherein the pull wire extends distally and circumferentially at a distal portion of the outer sheath assembly.
Embodiment 22: The delivery system of any one of Embodiments 1-21, wherein the outer sheath assembly comprises a longitudinally extending slot on at least a portion of an inner surface of the outer sheath assembly, and wherein the inner retention member comprises a tab configured to mate with and follow along the longitudinally extending slot.
Embodiment 23: The delivery system of Embodiment 10, wherein the slot extends circumferentially along at least a portion of the inner surface of the outer sheath assembly.
Embodiment 24: The delivery system of any one of Embodiments 1-23, wherein the inner retention member comprises a plurality of longitudinally extending slots, and wherein the inner retention member comprises a plurality of rotatable flaps each configured to rotatably cover one of the plurality of longitudinally extending slots.
Embodiment 25: The delivery system of any one of Embodiments 1-7, wherein the outer sheath assembly further comprises an outer retention ring configured to cover the inner retention member, wherein the outer retention ring is attached to the outer sheath assembly with at least one suture.
Embodiment 26: The delivery system of Embodiment 12, wherein an initial retraction of the outer sheath assembly uncovers the inner retention member from the outer sheath assembly while the outer retention ring remains over the inner retention member, and wherein further proximal retraction of the outer sheath assembly provides tension on the at least one suture to uncover the inner retention member from the outer retention ring.
Embodiment 27: The delivery system of Embodiment 1, wherein the outer sheath assembly comprises a distal section having a plurality of longitudinally spaced apart circumferential rings.
Embodiment 28: The delivery system of Embodiment 1, wherein a distal end of the outer sheath assembly comprises a capsule forming the implant retention area, the capsule having an outer polymer layer, a high melting temperature polymer layer radially inwards of the outer polymer layer, a metal layer radially inwards of the high melting temperature polymer layer, and a liner radially inwards of the metal layer, wherein the high temperature polymer layer comprises a polymer layer having a melting temperature of at least 150° C.
Embodiment 29: The delivery system of Embodiment 14, wherein the high melting temperature polymer layer comprises PTFE or ePTFE.
Embodiment 30: A delivery system for delivering an expandable implant to a body location, the delivery system comprising an outer sheath assembly comprising an outer shaft having an outer lumen and a proximal end and a distal end, wherein the outer sheath assembly comprises an implant retention area configured to retain the expandable implant in a compressed configuration, an inner assembly located within the outer lumen, the inner assembly comprising an inner shaft having an inner lumen and a proximal end and a distal end, wherein the inner assembly comprises an inner retention member configured to be releasably attached to the expandable implant, a rail assembly located within the inner lumen, the rail assembly comprising a rail shaft having a lumen and a proximal end and a distal end, wherein the rail assembly comprises one or more pull wires attached on an inner surface of the rail configured to provide an axial force on the rail shaft to steer the rail assembly, and a nose cone assembly located within the rail lumen, the nose cone assembly comprising a nose cone shaft having a guide wire lumen and a proximal and distal end.
Embodiment 31: The delivery system of Embodiment 15, wherein the rail is configured to form two bends, a proximal bend and a distal bend.
Embodiment 32: The delivery system of any one of Embodiments 30-31, wherein the outer shaft comprises a series of slots that rotate around a circumference of the outer shaft from a proximal end to a distal end.
Embodiment 33: The delivery system of any one of Embodiments 30-32, further comprising a proximal pull wire and a distal pull wire, wherein the proximal pull wire attaches to the rail shaft at a location proximal to an attachment point of the distal pull wire.
Embodiment 34: The delivery system of any one of Embodiments 30-33, wherein the outer shaft comprises a braided tube attached onto a slotted hypotube.
Embodiment 35: The delivery system of any one of Embodiments 1-34, wherein the outer shaft comprises a capsule on a distal end of the outer shaft, the capsule comprising over 100 slots along its length and a flarable distal section.
Embodiment 36: The delivery system of any one of Embodiments 30-35, further comprising a handle, wherein the handle is configured to move the outer sheath assembly, inner sheath assembly, and nose cone assembly along the rail assembly.
Embodiment 37: The delivery system of any one of Embodiments 30-36, wherein the inner shaft comprises a plurality of slots on a distal end of the inner shaft.
Embodiment 38: The delivery system of any one of Embodiments 30-37, further comprising the expandable implant, wherein the expandable implant is restrained between the inner retention member and the outer shaft.
Embodiment 39: A delivery system comprising an outer sheath assembly and/or an inner assembly and means for bending of the delivery system to facilitate delivery of an expandable implant to a body location.
Other embodiments of the present disclosure include but are not limited to a delivery system comprising one or more of the features described above or described further below. For example, in one embodiment a delivery system may comprise a capsule having one or more of the features as described herein. In another embodiment, a delivery system may comprise a shaft having one or more of the features described herein. In another embodiment, a delivery system may comprise a steerable outer sheath and collapsible capsule having one or more of the features as described herein. In another embodiment, a delivery system may comprise axial runners having one or more of the features as described herein.
The present specification and drawings provide aspects and features of the disclosure in the context of several embodiments of replacement heart valves, delivery systems and methods that are configured for use in the vasculature of a patient, such as for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's aortic or mitral valve. However, it is to be understood that the features and concepts discussed herein can be applied to products other than heart valve implants. For example, the controlled positioning, deployment, and securing features described herein can be applied to medical implants, for example other types of expandable prostheses, for use elsewhere in the body, such as within an artery, a vein, or other body cavities or locations. In addition, particular features of a valve, delivery system, etc. should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate. While certain of the embodiments described herein are described in connection with a transfemoral delivery approach, it should be understood that these embodiments can be used for other delivery approaches such as, for example, transapical approaches. Moreover, it should be understood that certain of the features described in connection with some embodiments can be incorporated with other embodiments, including those which are described in connection with different delivery approaches.
Delivery System
The delivery system 10 can be used to deploy a prosthesis, such as a replacement heart valve as described elsewhere in this specification, within the body. The delivery system 10 can receive and/or cover portions of the prosthesis such as a first end 301 and second end 303 of the prosthesis 70 illustrated in
In some embodiments, the delivery system 10 can be used in conjunction with a replacement aortic valve, such as shown in
Additional details and example designs for a prosthesis are described in U.S. Pat. Nos. 8,403,983, 8,414,644, 8,652,203 and U.S. Patent Publication Nos. 2011/0313515, 2012/0215303, 2014/0277390, 2014/0277422, 2014/0277427, 2018/0021129, and 2018/0055629, the entirety of these patents and publications are hereby incorporated by reference and made a part of this specification. Further details and embodiments of a replacement heart valve or prosthesis and its method of implantation are described in U.S. Patent Pub. Nos. 2015/0328000 and U.S. Patent Pub. No. 2016/0317301, the entirety of each of which is hereby incorporated by reference and made a part of this specification.
The delivery system 10 can be relatively flexible. In some embodiments, the delivery system 10 is particularly suitable for delivering a replacement heart valve to a mitral valve location through a transseptal approach (e.g., between the right atrium and left atrium via a transseptal puncture).
As shown in
As shown in cross-sectional view of
In particular, embodiments of the disclosed delivery system can utilize a steerable rail in the rail assembly 20 for steering the distal end of the delivery system 10, allowing the implant to be properly located in a patient's body. As discussed in detail below, the steerable rail can be, for example, a rail shaft that extends through the delivery system 10 from the handle generally to the distal end. A user can manipulate the bending of the distal end of the rail, thereby bending the rail in a particular direction. In preferred embodiments, the rail has more than one bend along its length, thereby providing multiple directions of bending. As the rail is bent, it presses against the other assemblies to bend them as well, and thus the other assemblies of the delivery system 10 can be configured to steer along with the rail as a cooperating single unit, thus providing for full steerability of the distal end of the delivery system. Once the rail is steered into a particular location in a patient's body, the prosthesis 70 can be advanced along the rail and released into the body.
Starting with the outermost assembly, the delivery system can include an outer sheath assembly 22 forming a radially outer covering, or sheath, to surround an implant retention area 16 and prevent the implant from radially expanding. Moving radially inward, the inner shaft assembly 18 can be composed an inner shaft with its distal end attached to inner retention member or inner retention ring 40 for axially retaining the prosthesis. The inner shaft assembly 18 can be located within a lumen of the outer sheath assembly 22. Moving further inwards, the rail assembly 20 can be configured for steerability, as mentioned above and further described below. The rail assembly 20 can be located within a lumen of the inner shaft assembly 18. Further, the most radially-inward assembly is the nose cone assembly 31 which includes the nose cone shaft 27 having its distal end connected to the nose cone 28. The nose cone assembly 31 is preferably located within a lumen of the rail shaft assembly 20. The nose cone assembly 31 can include a lumen for a guide wire to pass therethrough.
The shaft assembly 12, and more specifically the nose cone assembly 31, inner assembly 18, rail assembly 20, and outer sheath assembly 22, can be collectively configured to deliver a prosthesis 70 positioned within the implant retention area 16 (shown in
As will be discussed below, the inner retention member 40 and the outer sheath assembly 22 can cooperate to hold the prosthesis 70 in a compacted configuration. The inner retention member 40 is shown engaging struts 72 at the proximal end 301 of the prosthesis 70 in
As shown in
The delivery system 10 may be provided to users with a prosthesis 70 preinstalled. In other embodiments, the prosthesis 70 can be loaded onto the delivery system shortly before use, such as by a physician or nurse.
As shown in
However, in other embodiments, an outer retention member (or ring) 42 may be incorporated into the delivery system 10, as shown in
The outer retention member 42 can encircle a portion of the prosthesis 70, in particular the first end 301, thus preventing the prosthesis 70 from expanding. Further, the mid shaft 43 can be translated proximally with respect to the inner assembly 18 into the outer sheath assembly 22, thus exposing a first end 301 of the prosthesis 70 held within the outer retention member 42. In this way the outer retention member 42 can be used to help secure a prosthesis 70 to or release it from the delivery system 10. The outer retention member 42 can have a cylindrical or elongate tubular shape, and may be referred to as an outer retention ring.
The mid shaft 43 itself can be made of, for example, high density polyethylene (HDPE), as well as other appropriate materials as described herein. The mid shaft 43 can be formed of a longitudinally pre-compressed HDPE tube, which can provide certain benefits. For example, the pre-compressed HDPE tube can apply a force distally onto the outer retention member 42, thus preventing accidental, inadvertent, and/or premature release of the prosthesis 70. Specifically, the distal force by the mid shaft 43 keeps the distal end of the outer retention member 42 distal to the inner retention member 40, thus preventing the outer retention member 42 from moving proximal to the inner retention member 40 before it is desired by a user to release the prosthesis 70. This can remain true even when the delivery system 10 is bent/deflected at a sharp angle. Further disclosure for the outer retention member 42 and mid shaft 43 can be found in U.S. Pat. Pub. No. 2016/0317301, hereby incorporated by reference in its entirety.
Delivery System Assemblies
Starting with the outermost assembly shown in
The outer proximal shaft 102 may be a tube and is preferably formed of a plastic, but could also be a metal hypotube or other material. The outer hypotube 104 can be a metal hypotube which in some embodiments may be cut or have slots, as discussed in detail below. The outer hypotube 104 can be covered or encapsulated with a layer of ePTFE, PTFE, or other material so that the outer surface of the outer hypotube 104 is generally smooth.
The capsule 106 can be a tube formed of a plastic or metal material. In some embodiments, the capsule 106 is formed of ePTFE or PTFE. In some embodiments, this capsule 106 is relatively thick to prevent tearing and to help maintain a self-expanding implant in a compacted configuration. In some embodiments, the material of the capsule 106 is the same material as the coating on the outer hypotube 104. As shown, the capsule 106 can have a diameter larger than the outer hypotube 104, though in some embodiments the capsule 106 may have a similar diameter as the hypotube 104. The capsule 106 can be configured to retain the prosthesis 70 in the compressed position within the capsule 106.
The outer sheath assembly 22 is configured to be slidable over the inner assembly 18, the rail assembly 20, and the nose cone assembly 31.
Moving radially inwardly, the next assembly is the inner shaft assembly 18.
The inner shaft assembly 18 can include an inner shaft 122 generally attached at its proximal end to the handle 14, and an inner retention ring 40 located at the distal end of the inner shaft 122. The inner shaft 122 itself can include an inner proximal shaft 124 directly attached to the handle 14 at a proximal end and an inner hypotube 126 attached to the distal end of the inner proximal shaft 124. Thus, the inner retention ring 40 can be attached generally at the distal end of the inner hypotube 126. These components of the inner shaft assembly 18 can form a lumen for the other subassemblies to pass through.
Similar to the other assemblies, the inner proximal shaft 124 can comprise a tube, such as a hypodermic tube or hypotube (not shown). The tube can be made from one of any number of different materials including nitinol, cobalt chromium, stainless steel, and/or medical grade plastics. The tube can be a single piece tube or multiple pieces connected together. A tube comprising multiple pieces can provide different characteristics along different sections of the tube, such as rigidity and flexibility. The inner hypotube 126 can be a metal hypotube, which in some embodiments may be cut or have slots as discussed in detail below. The tube 126 can be covered or encapsulated with a layer of ePTFE, PTFE, or other material so that the outer surface of the inner hypotube 126 is generally smooth.
The inner retention member 40 can be configured as a prosthesis retention mechanism that can be used to engage with the prosthesis, as discussed with respect to
The inner shaft assembly 18 is disposed so as to be slidable over the rail assembly 20 and the nose cone assembly 31.
Next, radially inwardly of the inner shaft assembly 18 is the rail assembly 20 as shown in
Attached to an inner surface of the rail hypotube 136 are one or more pull wires which can be used apply forces to the rail hypotube 136 and steer the rail assembly 20. The pull wires can extend distally from the knobs in the handle 14, discussed below, to the rail hypotube 136. As noted above, pull wires can be attached at different longitudinal locations along the rail hypotube 136, thus providing for multiple bending regions in the rail hypotube 136, thereby allowing for multidimensional steering.
In some embodiments, two distal pull wires 138 can extend to a distal section of the rail hypotube 136 and two proximal pull wires 140 can extend to a proximal section of the rail hypotube 136. However, other numbers of pull wires can be used and the particular number of pull wires is not limiting. For example, a single pull wire can extend to a distal location and a single pull wire can extend to a proximal location. In some embodiments, ring-like structures attached inside the rail hypotube 136, known as pull wire connectors, may be provided as attachment locations for the pull wires. In some embodiments, the rail assembly 20 can include a distal pull wire connector and a proximal pull wire connector. In some embodiments, the pull wires can directly connect to an inner surface of the rail hypotube 136.
The distal pull wires 138 can be connected (either on its own or through a connector) generally at the distal end of the rail hypotube 136. The proximal pull wires 140 can connect (either on its own or through a connector) at a location approximately one quarter, one third, or one half of the length up the rail hypotube 136 from the proximal end. In some embodiments, the distal pull wires 138 can pass through small diameter pull wire lumens attached on the inside of the rail hypotube 136. This can prevent the wires 138 from pulling on the rail hypotube 136 at a location proximal to the distal connection. In some embodiments, these lumens can be attached to an outer surface of the nose cone shaft 31 distal to a location at which the proximal pull wires 140 attach to the rail hypotube 136.
For the pair of proximal pull wires 140, the wires can be spaced approximately 180 degrees from one another to allow for steering in opposite directions. Similarly, for pair of distal pull wires 138, the wires can be spaced approximately 180 degrees from one another to allow for steering in both directions. In some embodiments, the pair of distal pull wires 138 and the pair of proximal pull wires 140 can be spaced approximately 90 degrees from each other. In some embodiments, the pair of distal pull wires 138 and the pair of proximal pull wires 140 can be spaced approximately 0 degrees from each other. However, other locations for the pull wires can be used as well, and the particular location of the pull wires is not limiting.
The rail assembly 20 is disposed so as to be slidable over the nose cone assembly 31.
Moving further inwardly from the rail assembly is the nose cone assembly 31 also seen in
The nose cone shaft 27 may include a lumen sized and configured to slidably accommodate a guide wire so that the delivery system 10 can be advanced over the guide wire through the vasculature. However, embodiments of the system 10 discussed herein may be constructed for use without a guide wire and thus the nose cone shaft 27 can be solid. The nose cone shaft 27 may be connected from the nose cone 28 to the handle, or may be formed of different segments such as the other assemblies. Further, the nose cone shaft 27 can be formed of different materials, such as plastic or metal, similar to those described in detail above.
One or more spacer sleeves (not shown) can be used between different assemblies of the delivery system 10. For example, a first spacer sleeve can be located concentrically between the inner shaft assembly 18 and the rail assembly 20, generally between the inner and rail hypotubes 126/136. A second spacer sleeve can be located concentrically between the rail assembly 20 and the nose cone assembly 30, generally longitudinally within the rail hypotube 136. In some embodiments, only one spacer sleeve may be used (either the first spacer sleeve or the second spacer sleeve). In other embodiments, both spacer sleeves can be used. However, in further embodiments no spacer sleeves are used. The spacer sleeve can be made of a polymer material such as braided Pebax® and can be lined, for example with PTFE, on the inner diameter, though the particular material is not limiting. The spacer sleeve can advantageously reduce friction between the steerable rail assembly 20 and its surrounding assemblies. Thus, the spacer sleeves can act as a buffer between the rail assembly 20 and the inner/nose cone assembly 18/30. Further, the spacer sleeve can take up any gap in radius between the assemblies, preventing compressing or snaking of the assemblies during steering.
The spacer sleeve can be mechanically contained by the other lumens and components, and is thus not physically attached to any of the other components, allowing the spacer sleeve to be “floating” in that area. The floating aspect of the spacer sleeve allows it to move where needed during deflection and provide a support and/or lubricious bear surface/surfaces. Accordingly, the floating aspect allows the delivery system 10 to maintain flex forces. However, in some embodiments, the spacer sleeve can be connected to other components.
Hypotube Construction
As discussed above, the outer sheath assembly 22, the inner assembly 18, and the rail assembly 20 can contain an outer hypotube 104, an inner hypotube 126, and a rail hypotube 136, respectively. Each of these hypotubes can be laser cut to include a number of circumferential (i.e., transverse) slots, thereby creating a bending pathway for the delivery system to follow. While different slot assemblies are discussed below, it will be understood that any of the three hypotubes can have any of the slot configurations discussed below.
The outer hypotube 104, shown in
As shown, the slot locations may be staggered such that the spine 105 circumferentially rotates while progressing from the proximal end to the distal end of the outer hypotube 104. For example, the distal end of the spine 105 can be approximately 30°, 45°, 90°, 135°, or 180° offset from the proximal end of the spine 105. In some embodiments, the spine 105 remains in the same circumferential location from the proximal end to approximately halfway the length of the outer hypotube 104. At this point, the spine 105 can begin to circumferentially turn around the outer hypotube 104. The curve of the spine helps direct the outer hypotube 105 during steering of the rail assembly 20. The spine 105 generally follows the typical bend formed by the rail assembly 20 when entering the heart and directing towards the mitral valve, thus relieving some of the forces that may occur if the spine 105 was straight. However, in some embodiments the spine 105 of the outer hypotube 104 may be straight, and the particular configuration of the spine is not limiting.
Braided materials, such as the braided tube 1100 shown in
By locating a braided tube 1100 radially on top of a lasercut hypotube 1102, shown side by side in
Thus, extremely tight bends/curve can be achieved by the combination of braided material and lasercut hypotubes due to the advantageous tension and compression properties.
Moving radially inwardly in
The inner hypotube 126 can contain slots 1402 transverse to its luminal axis along the distal ¼, ⅓, or ½ of its length starting generally from the distal end. In some embodiments, each circumferential position location can have two slots spanning less than 180 degrees, thereby forming two spines 127 in the inner hypotube, unlike the single spine of the outer hypotube 104. These spines 127 can be spaced approximately 180 degrees apart, though in some embodiments different angles can be used depending on the desired bend. However, in some embodiments a single spine or more than two spines can be used. The additional spines can provide additional rigidity to the inner assembly 18.
The inner hypotube 126 can contain a single slot pattern 1402 forming the dual spines as discussed above. In some embodiments, the inner hypotube 126 can contain two different slot patterns. For example, at the distalmost end the slots may be configured for only one direction of bend (for example, only along an X axis), making this section strong and robust but less flexible. However, slots in section proximal can be configured to includes multiple bending axis (for example, along both X and Y axes), thus providing the inner hypotube 126 with more flexibility for steering. In some embodiments, the configuration of the inner hypotube 126 creates forces that tend to straighten (e.g., not bend). Thus, when the inner hypotube 126 is advanced over the rail hypotube 136, it will achieve a generally straight configuration.
Next, again moving radially inwardly,
Distally following the proximal pull wire connection area is the distal slotted hypotube section 135. This section is similar to the proximal slotted hypotube section 133 but has significantly more slots formed along an equivalent length. Thus, the distally slotted hypotube section 135 provides easier bending than the proximally slotted hypotube section 133. The proximal slotted section 133 can be configured to experience a bend of approximately 90 degrees with a half inch radius whereas the distal slotted section 135 can bend at approximately 180 degrees within a half inch. Further, as shown in
At the distalmost end of the distal slotted hypotube section 135 is the distal pull wire connection area 139 which is again a non-slotted section of the rail hypotube 136.
Capsule Construction
The capsule 106 can be formed from one or more materials, such as PTFE, ePTFE, PEBAX, ULTEM, PEEK, urethane, nitinol, stainless steel, and/or any other biocompatible material. Preferably, the capsule 106 is formed from one or more materials. Preferably, the capsule 106 is compliant and flexible while still maintaining a sufficient degree of radial strength to maintain a replacement valve within the capsule 106 without substantial radial deformation, which could increase friction between the capsule 106 and a replacement valve 70 contained therein. The capsule 106 also preferably has sufficient column strength to resist buckling of the capsule, and sufficient tear resistance to reduce or eliminate the possibility of the replacement valve tearing the capsule 106. Flexibility of the capsule 106 can be advantageous, particularly for a transseptal approach. For example, while being retracted along a curved member, the capsule 106 can flex to follow the curved member without applying significant forces upon the curved member, which may cause the curved member to decrease in radius. More specifically, the capsule 106 can bend and/or kink as it is being retracted along such a curved member such that the radius of the curved member is substantially unaffected.
In particular, a metal hypotube can provide radial strength and compression resistance, while specific slots/cuts in the hypotube can enable the flexibility of the capsule 106. In some embodiments, a thin liner and a jacket can surround the capsule 106, such as a polymer or elastomer layer, to prevent any negative interactions between the implant 70 and the capsule 106.
As shown in
In some embodiments, the capsule 106 can include one or more spines 111, where there are no slots 109. In some embodiments, the capsule 106 can have a single spine. In some embodiments, the capsule 106 can have dual spine. In some embodiments, the capsule 106 can have more than two spines, such as three, four, or five spines. Having two spines can be advantageous as it improves the compression strength while decreasing the size of cuts necessary to accomplish the same bend in a single spine configuration. In some embodiment, the spine 111 can be generally straight. In some embodiments, the spine 111 can have a substantially helical shape. In some embodiments, the spine 111 can rotate or change position around the circumference, thus allowing for different bending directions.
The flaring can be accomplished either by using a flexible polymer distal portion, or by a combination of a flexible polymer and lasercut as discussed below, and can be advantageous for recrimping the prosthesis 70 in a controlled manner. This can also eliminate the severity of the point of deployment when the valve expands aggressively, preventing damage to the distal end of the capsule 106. In some embodiments, the flarable section 107 can flare outwardly so that a distal end of the capsule 106 is at least 1, 2, 3, 4, 5, 10, 15, 20% or more of the diameter of the remainder of the capsule 106. In some embodiments, the flarable section 107 can flare outwards less than 2, 3, 4, 5, 10, 15, or 20% the diameter of the remainder of the capsule 106.
Handle
The handle 14 is located at the proximal end of the delivery system 10 and is shown in
The handle 14 is generally composed of two housings, a rail housing 202 and a delivery housing 204, the rail housing 202 being circumferentially disposed around the delivery housing 204. The inner surface of the rail housing 202 can include a screwable section configured to mate with an outer surface of the delivery housing 204. Thus, the delivery housing 204 is configured to slide (e.g., screw) within the rail housing 202, as detailed below. The rail housing 202 generally surrounds about one half the length of the delivery housing 204, and thus the delivery housing 204 extends both proximally and distally outside of the rail housing 202.
The rail housing 202 can contain two rotatable knobs, a distal pull wire knob 206 and a proximal pull wire knob 208. However, the number of rotatable knobs on the rail housing 202 can vary depending on the number of pull wires used. Rotation of the distal pull wire knob 206 can provide a proximal force, thereby providing axial tension on the distal pull wires 138 and causing the distal slotted section 135 of the rail hypotube 136 to bend. The distal pull wire knob 206 can be rotated in either direction, allowing for bending in either direction. Rotation of the proximal pull wire knob 208 can provide a proximal force, and thus axial tension, on the proximal pull wires 140, thereby causing the proximal slotted section 133 of the rail hypotube 136 to bend. The proximal pull wire knob 108 can be rotated in either direction, allowing for bending in either direction. Thus, when both knobs are actuated, there can be two bends in the rail hypotube 136, thereby allowing for three dimensional steering of the rail shaft 132, and thus the distal end of the delivery system 10. Further, the proximal end of the rail shaft 132 is connected on an internal surface of the rail housing 202.
The bending of the rail shaft 132 can be used to position the system, in particular the distal end, at the desired patient location, such as at the native mitral valve. In some embodiments, rotation of the pull wire knobs 206/208 can help steer the distal end of the delivery system 10 through the septum and left atrium and into the left ventricle so that the prosthesis 70 is located at the native mitral valve.
Moving to the delivery housing 204, the proximal ends of the inner shaft assembly 19, outer sheath assembly 22, and nose cone shaft assembly 30 can be connected to an inner surface of the delivery housing 204 of the handle 14. Thus, they can move axially relative to the rail assembly 20 and rail housing 202.
A rotatable outer sheath knob 210 can be located on the distal end of the delivery housing 204, being distal to the rail housing 202. Rotation of the outer sheath knob 210 will pull the outer sheath assembly 22 in an axial direction proximally, thus pulling the capsule 106 away from the implant 70 and releasing the implant 70. The distal end 303 of the implant 70 can be released first, followed by release of the proximal end 301 of the implant 70 as the outer sheath knob 210 is continued to rotate.
Located on the proximal end of the delivery housing 204, and thus proximal to the rail housing 202, can be a rotatable depth knob 212. As the depth knob 212 is rotated, the entirety of the delivery housing 204 moves distally or proximally with respect to the rail housing 202 which will remain in the same location. Thus, at the distal end of the delivery system 10, the inner shaft assembly 18, outer sheath assembly 22, and nose cone shaft assembly 30 move proximally or distally with respect to the rail assembly 20. Accordingly, the rail shaft 132 can be aligned at a particular direction, and the other assemblies can move distally or proximally with respect to the rail shaft 132 for final positioning. The components can be advanced approximately 1, 2, 3, 5, 6, 7, 8, 9, or 10 cm along the rail shaft 132. The components can be advanced more than approximately 1, 2, 3, 5, 6, 7, 8, 9, or 10 cm along the rail shaft 132. The capsule 106 can then be withdrawn, releasing the implant 70. The assemblies other than the rail assembly 20 can then be withdrawn back over the rail shaft 132 by rotating the depth knob 212 in the opposite direction.
Valve Delivery Positioning
Methods of using the delivery system 10 in connection with a replacement mitral valve will now be described. In particular, the delivery system 10 can be used in a method for percutaneous delivery of a replacement mitral valve to treat patients with moderate to severe mitral regurgitation. The below methods are merely examples of the how the delivery system may be used. It will be understood that the delivery systems described herein can be used as part of other methods as well.
As shown in
Accordingly, it can be advantageous for a user to be able to steer the delivery system 10 through the complex areas of the heart in order to position a replacement mitral valve in line with the native mitral valve. This task can be performed with or without the use of a guide wire with the above disclosed system. The distal end of the delivery system can be advanced into the left atrium 1078. A user can then manipulate the rail assembly 20 to target the distal end of the delivery system 10 to the appropriate area. A user can then continue to pass the bent delivery system 10 through the transseptal puncture and into the left atrium 1078. A user can then further manipulate the delivery system 10 to create an even greater bend in the rail assembly 20. Further, a user can torque the entire delivery system 10 to further manipulate and control the position of the delivery system 10. In the fully bent configuration, a user can then place the replacement mitral valve in the proper location. This can advantageously allow delivery of a replacement valve to an in situ implantation site, such as a native mitral valve, via a wider variety of approaches, such as a transseptal approach.
Reference is now made to
As shown in
As illustrated in
During delivery, the distal anchors 80 (along with the frame) can be moved toward the ventricular side of the annulus 106 with the distal anchors 80 extending between at least some of the chordae tendineae 110 to provide tension on the chordae tendineae 110. The degree of tension provided on the chordae tendineae 110 can differ. For example, little to no tension may be present in the chordae tendineae 110 where the leaflet 108 is shorter than or similar in size to the distal anchors 80. A greater degree of tension may be present in the chordae tendineae 110 where the leaflet 108 is longer than the distal anchors 80 and, as such, takes on a compacted form and is pulled proximally. An even greater degree of tension may be present in the chordae tendineae 110 where the leaflets 108 are even longer relative to the distal anchors 80. The leaflet 108 can be sufficiently long such that the distal anchors 80 do not contact the annulus 106.
The proximal anchors 82, if present, can be positioned such that the ends or tips of the proximal anchors 82 are adjacent the atrial side of the annulus 106 and/or tissue of the left atrium 1078 beyond the annulus 106. In some situations, some or all of the proximal anchors 82 may only occasionally contact or engage atrial side of the annulus 106 and/or tissue of the left atrium 1078 beyond the annulus 106. For example, as illustrate in
Delivery Method
The system 10 can first be positioned to a particular location in a patient's body, such as at the native mitral valve, through the use of the steering mechanisms discussed herein or other techniques.
Once the prosthesis 70 is loaded into the delivery system 10, a user can thread a guide wire into a patient to the desired location. The guide wire passes through the lumen of the nose cone assembly 30, and thus the delivery system 10 can be generally advanced through the patient's body following the guide wire. The delivery system 10 can be advanced by the user manually moving the handle 14 in an axial direction. In some embodiments, the delivery system 10 can be placed into a stand while operating the handle 14 controls.
Once generally in heart, the user can begin the steering operation of the rail assembly 20 using the distal pull wire knob 206 and/or the proximal pull wire knob 208. By turning either of the knobs, the user can provide flexing/bending of the rail assembly 20 (either on the distal end or the proximal end), thus bending the distal end of the delivery system 10 into the desired configuration. As discussed above, the user can provide multiple bends in the rail assembly 20 to direct the delivery system 10 towards the mitral valve.
The user can also rotate and/or move the handle 14 itself in a stand for further fine tuning of the distal end of the delivery system 10. The user can continually turn the proximal and/or distal pull wire knobs 208/206, as well as moving the handle 14 itself, to orient the delivery system 10 for release of the prosthesis 70 in the body.
In a next step, the user can rotate the depth knob 212. As discussed, rotation of this knob 212 advances the inner shaft assembly 18, outer sheath assembly 22, and nose cone assembly 30 over/through the rail assembly 20. Due to the rigidity of, for example, the inner shaft assembly 18, these assemblies proceed straight forward in the direction aligned by the rail assembly 20.
Once in the release position, the user can rotate the outer sheath knob 210, which translates the outer sheath assembly 22 (and thus the capsule 106) in a proximal direction towards the handle 14 as shown in
With reference next to the step of
During this step, the system 10 may be moved proximally or distally to cause the distal or ventricular anchors 80 to properly capture the native mitral valve leaflets. In particular, the tips of the ventricular anchors 80 may be moved proximally to engage a ventricular side of the native annulus, so that the native leaflets are positioned between the anchors 80 and the body of the prosthesis 70. When the prosthesis 70 is in its final position, there may or may not be tension on the chordae, though the distal anchors 80 can be located between at least some of the chordae.
If an outer retention ring 42 is used, the distal end 303 of the prosthesis 70 will remain in the outer retention ring 42 after retraction of the capsule 106. The outer retention ring 42 can then be retracted proximally to release the distal end 303 of the prosthesis 70.
As shown in
The capsule 106 can continue to be moved proximally such that the proximal end 310 of the prosthesis 70 can radially expand to its fully expanded configuration. After expansion and release of the prosthesis 70, the nose cone 28 can be withdrawn through the center of the expanded prosthesis 70 and into the outer sheath assembly 22. The system 10 can then be removed from the patient.
In some embodiments, the prosthesis 70 can be delivered under fluoroscopy so that a user can view certain reference points for proper positioning of the prosthesis 70. Further, echocardiography can be used for proper positioning of the prosthesis 70.
Following is a discussion of an alternative implantation method for delivering a replacement mitral valve to a mitral valve location. Elements of the below can be incorporated into the above discussion and vice versa. Prior to insertion of the delivery system 10, the access site into the patient can be dilated. Further, a dilator can be flushed with, for example, heparinized saline prior to use. The delivery system 10 can then be inserted over a guide wire. In some embodiments, any flush ports on the delivery system 10 can be pointed vertically. Further, if an introducer tube is used, integrated or otherwise, this can be stabilized. The delivery system 10 can be advanced through the septum until a distal end of the delivery system 10 is positioned across the septum into the left atrium 1078. Thus, the distal end of the delivery system 10 can be located in the left atrium 1078. In some embodiments, the delivery system 10 can be rotated, such as under fluoroscopy, into a desired position. The rail can be flex so that direct a distal end of the delivery system 10 towards the septum and mitral valve. The position of the delivery system 10, and the prosthesis 70 inside, can be verified using echocardiography and fluoroscopic guidance.
In some embodiments, the prosthesis 70 can be located, prior to release, above the mitral annulus 106, in line with the mitral annulus 106, or below the mitral annulus 106. In some embodiments, the prosthesis 70 can be located, prior to expansion, fully above the mitral annulus 106, in line with the mitral annulus 106, just below the mitral annulus 106, or fully below the mitral annulus 106. In some embodiments, the prosthesis 70 can be located, prior to expansion, partially above the mitral annulus 106, in line with the mitral annulus 106, or partially below the mitral annulus 106. In some embodiments, a pigtail catheter can be introduced into the heart to perform a ventriculogram for proper viewing.
In some embodiments, the position of the mitral plane and the height of any papillary muscles on the fluoroscopy monitor can be marked to indicate an example target landing zone. If needed, the delivery system 10 can be unflexed, reduced in rotation, and retracted to reduce tension on the delivery system 10 as well as reduce contact with the left ventricular wall, the left atrial wall, and/or the mitral annulus 106.
Further, the delivery system 10 can be positioned to be coaxial to the mitral annulus 106, or at least as much as possible, while still reducing contact with the left ventricular wall, the left atrial wall, and/or the mitral annulus 106 and reducing delivery system tension. An echo probe can be positioned to view the anterior mitral leaflet (AML), the posterior mitral leaflet (PML) (leaflets 108), mitral annulus 106, and outflow tract. Using fluoroscopy and echo imaging, the prosthesis 1010 can be confirmed to be positioned at a particular depth and coaxiality with the mitral annulus 106.
Afterwards, the outer sheath assembly 22 can be retracted to expose the ventricular anchors 80, thereby releasing them. In some embodiments, once exposed, the outer sheath assembly 22 can be reversed in direction to relieve tension on the outer sheath assembly 22. In some embodiments, reversing the direction could also serve to partially or fully capture the prosthesis 70.
The distal anchors 80 can be released in the left atrium 1078. Further, the proximal anchors 82, if included in the prosthesis 70, are not yet exposed. Moreover, the body of the prosthesis 70 has not undergone any expansion at this point. However, in some embodiments, one or more of the distal anchors 80 can be released in either the left atrium 1078 (e.g., super-annular release) or generally aligned with the mitral valve annulus 106 (e.g., intra-annular release), or just below the mitral valve annulus 106 (e.g., sub-annular release). In some embodiments, all of the distal anchors 80 can be released together. In other embodiments, a subset of the distal anchors 80 can be released while at a first position and another subset of the distal anchors 80 can be released while at a second position. For example, some of the distal anchors 80 can be released in the left atrium 1078 and some of the distal anchors 80 can be released while generally aligned with the mitral valve annulus 106 or just below the mitral valve annulus 106.
If the distal anchors 80 are released “just below” the mitral valve annulus 106, the may be released at 1 inch, ¾ inch, ½ inch, ¼ inch, ⅛ inch, 1/10 inch or 1/20 inch below the mitral valve annulus 106. In some embodiments, the distal anchors 80 the may be released at less than 1 inch, ¾ inch, ½ inch, ¼ inch, ⅛ inch, 1/10 inch or 1/20 inch below the mitral valve annulus 106. This may allow the distal anchors 80 to snake through the chordae upon release. This can advantageously allow the prosthesis 70 to slightly contract when making the sharp turn down toward the mitral valve. In some embodiments, this may eliminate the need for a guide wire assisting to cross the mitral valve. In some embodiments, the guide wire may be withdrawn into the delivery system 10 before or following release of the distal anchors 80.
In some embodiments, the distal anchors 80 can be released immediately after crossing the septum, and then the final trajectory of the delivery system 10 can be determined. Thus, the delivery system 10 can cross the septum, release the ventricular anchors 80, establish a trajectory, and move into the left ventricle to capture the leaflets.
As discussed in detail above, upon release from the delivery system 10, the distal anchors 80 can flip from extending distally to extending proximally. This flip can be approximately 180°. Accordingly, in some embodiments, the distal anchors 80 can be flipped in either the left atrium 1078 (e.g., super-annular flip), generally aligned with the mitral valve annulus 106 (e.g., intra-annular flip), or just below the mitral valve annulus 106 (e.g., sub-annular flip). The proximal anchors 82, if any, can remain within the delivery system 10. In some embodiments, all of the distal anchors 80 can be flipped together. In other embodiments, a subset of the distal anchors 80 can be flipped while at a first position and another subset of the distal anchors 80 can be released while at a second position. For example, some of the distal anchors 80 can be flipped in the left atrium 1078 and some of the distal anchors 80 can be flipped while generally aligned with the mitral valve annulus 106 or just below the mitral valve annulus 106.
In some embodiments, the distal anchors 80 may be positioned in line with the annulus 106 or just below the annulus 106 in the non-flipped position. In some embodiments, the distal anchors 80 may be position in line with the annulus 106 or just below the annulus 106 in the flipped position. In some embodiments, prior to flipping the distalmost portion of the prosthesis 70 can be located within or below the mitral valve annulus 106, such as just below the mitral valve annulus 106. However, flipping the anchors can cause, without any other movement of the delivery system 10, the distalmost portion of the prosthesis 70/anchors 80 to move upwards, moving it into the left atrium 1078 or moving it in line with the mitral annulus 106. Thus, in some embodiments the distal anchors 80 can begin flipping at the annulus 106 but be fully within the left atrium 1078 upon flipping. In some embodiments the distal anchors 80 can begin flipping below the annulus 106 but be fully within the annulus 106 upon flipping.
In some embodiments, the distal anchors 80 can be proximal (e.g., toward the left atrium 1078) of a free edge of the mitral leaflets 108 upon release and flipping. In some embodiments, the distal anchors 80 can be aligned with (e.g., toward the left atrium 1078) a free edge of the mitral leaflets 108 upon release and flipping. In some embodiments, the distal anchors 80 can be proximal (e.g., toward the left atrium 1078) of a free edge of the mitral valve annulus 106 upon release and flipping. In some embodiments, the distal anchors 80 can be aligned with (e.g., toward the left atrium 1078) a free edge of the mitral valve annulus 106 upon release and flipping.
Thus, in some embodiments the distal anchors 80 can be released/flipped above where the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments the distal anchors 80 can be released/flipped above where some the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments the distal anchors 80 can be released/flipped above where all the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments, the distal anchors 80 can be released/flipped above the mitral valve annulus 106. In some embodiments, the distal anchors 80 can be released/flipped above the mitral valve leaflets 108. In some embodiments, the distal anchors 80 can be released/flipped generally in line with the mitral valve annulus 106. In some embodiments, the distal anchors 80 can be released/flipped generally in line with the mitral valve leaflets 108. In some embodiments, the tips of the distal anchors 80 can be released/flipped generally in line with the mitral valve annulus 106. In some embodiments, the tips of the distal anchors 80 can be released/flipped generally in line with the mitral valve leaflets 108. In some embodiments the distal anchors 80 can be released/flipped below where some the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments the distal anchors 80 can be released/flipped below where all the chordae 110 attach to the free edge of the native leaflets 108. In some embodiments, the distal anchors 80 can be released/flipped below the mitral valve annulus 106. In some embodiments, the distal anchors 1024 can be released/flipped below the mitral valve leaflets 108.
Once the distal anchors 80 are released and flipped, the delivery system 10 can be translated towards the left ventricle 1080 through the mitral valve annulus 106 so that the distal anchors 80 enter the left ventricle 1080. In some embodiments, the distal anchors 80 can compress when passing through the mitral valve annulus 106. In some embodiments, the prosthesis 70 can compress when passing through the mitral valve annulus 106. In some embodiments, the prosthesis 70 does not compress when it passes through the mitral annulus 106. The distal anchors 80 can be delivered anywhere in the left ventricle 1080 between the leaflets 108 and the papillary heads.
In some embodiments, the distal anchors 80 are fully expanded prior to passing through the mitral valve annulus 106. In some embodiments, the distal anchors 80 are partially expanded prior to passing through the mitral valve annulus 106 and continued operation of the delivery system 10 can fully expand the distal anchors 80 in the left ventricle 1080.
When the distal anchors 80 enter the left ventricle 1080, the distal anchors 80 can pass through the chordae 110 and move behind the mitral valve leaflets 108, thereby capturing the leaflets 108. In some embodiments, the distal anchors 80 and/or other parts of the prosthesis 1010 can push the chordae 110 and/or the mitral valve leaflets 108 outwards.
Thus, after release of the distal anchors 80, the delivery system 10 can then be repositioned as needed so that the ends of the left distal anchors 80 are at the same level of the free edge of the native mitral valve leaflets 108. The delivery system 10 can also be positioned to be coaxial to the mitral annulus 106 if possible while still reducing contact with the left ventricular wall, the left atrial wall, and/or the annulus 106.
In some embodiments, only the distal anchors 80 are released in the left atrium 1078 before the prosthesis 70 is move to a position within, or below, the annulus. In some alternate embodiments, the distal end of the prosthesis 70 can be further expanded in the left atrium 1078. Thus, instead of the distal anchors 80 flipping and no portion of the prosthesis 70 body expanding, a portion of the prosthesis 70 can be exposed and allowed to expand in the left atrium 1078. This partially exposed prosthesis 1010 can then be passed through the annulus 106 into the left ventricle 1080. Further, the proximal anchors, if any, can be exposed. In some embodiments, the entirety of the prosthesis 70 can be expanded within the left atrium 1078.
To facilitate passage through the annulus 106, the delivery system 10 can include a leader element (not shown) which passes through the annulus 106 prior to the prosthesis 70 passing through the annulus 106. For example, the leader element can include an expandable member, such as an expandable balloon, which can help maintain the shape, or expand, the annulus 106. The leader element can have a tapered or rounded shape (e.g., conical, frustoconical, semispherical) to facilitate positioning through and expansion of the annulus 106. In some embodiments, the delivery system 10 can include an engagement element (not shown) which can apply a force on the prosthesis 70 to force the prosthesis 70 through the annulus 106. For example, the engagement element can include an expandable member, such as an expandable balloon, positioned within or above the prosthesis 70.
In some embodiments, to facilitate passage through the annulus 106, a user can re-orient the prosthesis 70 prior to passing the prosthesis 70 through the annulus 106. For example, a user can re-orient the prosthesis 70 such that it passes through the annulus 106 sideways.
However, if only the distal anchors 80 are flipped, and no other expansion occurs, the prosthesis can be partially expanded in the ventricle 1080. Thus, when the prosthesis 70 is in the proper location, the distal end can be allowed to expand to capture the leaflets 108. If the distal end is already expanded, no more expansion may take place or the distal end can be further expanded.
Further, the PML and AML 106 can be captured, for example by adjusting the depth and angle of the prosthesis 70. If a larger prosthesis diameter is needed to capture the leaflets 106, the outer sheath assembly 22 can be retracted until the desired diameter of the prosthesis 70 is achieved. Capture of the leaflets 106 can be confirmed through echo imaging. In some embodiments, a user can confirm that the prosthesis 70 is still in the appropriate depth and has not advanced into the left ventricle 1080. The position can be adjusted as needed.
In some embodiments, once the distal anchors 80 enter the left ventricle 1080 the system 10 can be pulled backwards (e.g., towards the left atrium 1078) to fully capture the leaflets 108. In some embodiments, the system 10 does not need to be pulled backwards to capture the leaflets 108. In some embodiments, systolic pressure can push the leaflets 108 upwards to be captured by the distal anchors 80. In some embodiments, systolic pressure can push the entire prosthesis 70 up towards the mitral annulus 106 after the leaflets 108 are captured and the prosthesis 70 is fully or partially released. In some embodiments, a user can rotate the delivery system 10 and/or prosthesis 70 prior to and/or while pulling the delivery system 10 backwards. In some instances, this can beneficially engage a greater number of chordae tendineae.
The outer sheath assembly 22 can be further retracted to fully expand the prosthesis. Once the prosthesis 70 is fully exposed, the delivery system 10 can be maneuvered to be coaxial and height relative to the mitral annulus 106, such as by flexing, translating, or rotating the delivery system 10. As needed, the prosthesis 70 can be repositioned to capture the free edge of the native mitral valve leaflets 108. Once full engagement of the leaflets 108 is confirmed, the prosthesis 70 can be set perpendicular (or generally perpendicular) to the mitral annular plane.
Following, the mid shaft assembly 21 can be withdrawn. The mid shaft assembly 21 can then be reversed in direction to relieve any tension on the delivery system 10.
Below is a discussion of proximal anchors 82, though some embodiments of the prosthesis 70 may not include them. In some embodiments, proximal anchors 82 may not be released from the system 10 until the distal anchors 80 have captured the leaflets 108. In some embodiments, proximal anchors 82 may be released from the system 10 prior to the distal anchors 80 capturing the leaflets 108. In some embodiments, the proximal anchors 82 can be released when the distal anchors 80 are super or intra annular and the expanded prosthesis 70 (either partially or fully expanded) can be translated through the mitral annulus 106. In some embodiments, the proximal anchors 82 could be released when the distal anchors 80 are sub-annular and the entire prosthesis 70 can be pulled up into the left atrium 1078 such that the proximal anchors 82 are supra-annular prior to release. In some embodiments, the proximal anchors 82 could be intra-annular prior to release and the systolic pressure could push the prosthesis 70 atrially such that the proximal anchors 82 end up supra-annular.
After, the leaflet capture and positioning of the prosthesis 70 can be confirmed, along with the relatively perpendicular position with respect to the mitral annular plane. In some embodiments, the nosecone 28 can then be withdrawn until it is within the prosthesis 70. The mid shaft assembly 21 can be further retracted until the prosthesis 70 is released from the delivery system 10. Proper positioning of the prosthesis 70 can be confirmed using TEE and fluoroscopic imaging.
Following, the delivery system 10 can be centralized within the prosthesis 70. The nosecone 28 and delivery system 10 can then be retracted into the left atrium 1078 and removed.
This intra-super annulus release can have a number of advantages. For example, this allows the distal anchors 82 to be properly aligned when contacting the chordae 110. If the distal anchors 82 were released in the left ventricle 1080, this could cause misalignment or damage to heart tissue, such as the leaflets 108 or chordae 110.
In an alternate delivery approach, the delivery system 10 can be translated into the left ventricle 1080 prior to release of the prosthesis 70. Thus, the distal end of the prosthesis 70, and thus the distal anchors 82, can be released and flipped partially, or fully within the left ventricle 1080. Accordingly, in some embodiments the anchors 70 can be released/flipped below the mitral annulus 106, just below the mitral annulus 106, and/or below the free edges of the leaflets 108. Further, the anchors 70 can be released above the papillary heads. Similar methodology as discussed above can then be used to properly position the prosthesis 70 and remove the delivery system 10 to deliver the prosthesis 1010. Further, in some embodiments the distal anchors 82 can be released without expanding the prosthesis initially in the ventricle 1080.
Torsional Pull Wire
In some embodiments, two pull wires can be attached at two points at generally the same circumferential area, as shown in
A second pull wire 404 can then be offset from the first section and wrapped around the outer diameter of the rail hypotube 136. In some embodiments, the second pull wire 404 can be approximately 45, 90, 135, etc. off-set from the first wire 402. The second wire 404 may wrap fully around the outer diameter, or may only partially wrap around the diameter, such as shown in
In some embodiments, more than two pull wires can be used to create the curve shown in
Steerable Integrated Sheath
In some embodiments, an integrated sheath can be used for steering of the delivery system 10 such as shown in
The integrated sheath 3502 can extend distally so that its distal end is located proximal to the capsule 3504. It can be advantageous for the integrated sheath 3502 to extend as distally as possible for more precise steering. In some embodiments, the integrated sheath 3502 can cover the capsule 3504 during deployment, where it could then be retracted. In other embodiments, the integrated sheath 3502 can extend to approximately a proximalmost portion of the capsule 3504. In other embodiments, the integrated sheath 3502 can be spaced proximally from the capsule 3504. Thus, when the capsule 3504 is retracted to release the implant 70, it may impact the integrated sheath 3502, causing bending or changing the position of the integrated sheath 3502. In some embodiments, the integrated sheath 3502 can be formed of a flexible distal portion 3501 connected at a proximal end to a rigid proximal portion 3503.
The capsule 3504 can be formed from a collapsible material. This allows the collapsible capsule 3504 to be withdrawn into the integrated sheath 3502 upon retraction. In some embodiments, the collapsible capsule 3504 can include a flared distal section for potential recapture of the implant 70. In some embodiments, the collapsible capsule 3504 can be formed of material that can be collapsed, such as ePTFE, cloth, polymer, etc. In some embodiments, the collapsible capsule 3504 can taper in outer diameter from the distal end to the proximal end for withdrawing into the integrated sheath 3502. Thus, the integrated sheath 3502 can “swallow” the collapsible capsule 3504 upon retraction, allowing the steering to be as distal as possible.
In some embodiments, a “laser-cut solution”, shown in
Alternatively, a different solution can be used which can steer the integrated sheath 3502. This can be a “polymer solution” as plastic/polymer/braid/coil materials can be used in conjunction with or instead of a metal lasercut hypotube. The polymer solution can utilize a number of different wire configurations that can achieve the bending. For example,
The first configuration shown in
For
Axial Runners
In some embodiments, it can be advantageous for a delivery system to use a flexible shaft with a number of wires which can act as axial runners as shown in
In order to achieve improved tensile strength in a shaft, one or more wires can be used. The drawback of adding spines or runners to a shaft, as done previously, is that they create a directional bias. Sometimes the bias is so extreme that the shaft is practically incapable of bending in one or more directions. For example, two axial runners 3402 arranged as shown in
However, if the wires were not terminated on the proximal end but allowed to float within their lumens, the shaft would retain its flexibility, as shown in
The wires 3404 can be configured to have two configurations, free floating and tensioned, which can be operated at the handle 14. When free floating, the wires 3404 have no tension in them. Thus, the shaft 3406 can be configured to bend in any direction as needed, and thus can have “universal flexibility”. However, when the wires 3404 are placed under tension (or locked), they force the shaft 3406 into a straight rigid configuration along that wire with the wires bearing the load, allowing for high ultimate tensile strength. In some embodiments, each of the wires 3404 can be individually tensioned and released, or multiple wires 3404 can be tensioned and released at the same time.
It will be understood that steering (and thus bending) the shaft 3406 would cause the relative distance from handle 14 to the distal end of the shaft to change depending on the direction and magnitude of the bend. If the shaft 3406 is pulled in tension with the wires, the force will translate through the wires 3404 instead of purely the shaft 3406. As a result, this will create a tensile strength similar to standard axial runners with significantly less elongation than one would see with just the shaft. Additionally, the shaft 3406 would exhibit similar flexibility to a shaft with no axial runners when the wires 3404 were free floating. Accordingly, embodiments of the flexible axial wires/runners would provide an advantageous way to have universal flexibility with great tensile strength.
Capsule with Spring Pattern
It can be advantageous for the capsule 106 to be both flexible and resistant to compression during use of the delivery system 10. For example, flexibility can allow the capsule 106 to retract back over the delivery system 10 curvature while deploying the prosthesis 70, and the compression resistance can allow for controlled deployment of the prosthesis 70 and the potential to reposition or recapture the prosthesis 70. Embodiments of the disclosure describe a capsule 106 which has both the flexibility and compression resistance.
In some embodiments, all of the thick portions 3604 can be circumferentially aligned throughout a length of the capsule 106, such as shown in
In some embodiments, for each full rotation (e.g., 360 degrees), approximately half can be thick portion 3604 and half can be thin portion 3602. In some embodiments, for each full rotation (e.g., 180 degrees), greater than half can be thick portion 3604. In some embodiments, for each full rotation (e.g., 180 degrees), less than half can be thick portion 3604. In some embodiments, for each full rotation (e.g., 180 degrees), greater than half can be thin portion 3602. In some embodiments, for each full rotation (e.g., 180 degrees), less than half can be thin portion 3602. The capsule 106 can be modified to provide a desired bending pattern.
The particular design of the capsule 106 disclosed herein can, in particular, allow for forward flexibility in two planes (in particular bending along the thin portion 3602). Further, the capsule 106 can bottom out when flexed backwards or under compression, due to the adjacent thick portions 3604. In this way, the coil can achieve the flexibility and compression requirements. This is generally illustrated in
Capsule with Laser Cut Pattern for Reducing Bend Strain
Disclosed herein are embodiments of a capsule 106 with a particular cut/slot pattern that can have reduced recoiling. Further, the cut configuration can allow for improved amount of flex cycles. Embodiments of the disclosed capsule 106 can include features in conjunction with those discussed above. The configuration discussed herein can also apply to hypotube 104, or other components/shafts in the disclosed delivery system 10.
As shown in
The open cut pattern 4004 includes a pair of arc cuts 4004 located circumferentially spaced away between the spines 4002. In some embodiments the arc cuts 4004 can be generally circumferentially adjacent to the spines 4002. The arc cuts 4004 can have their openings facing towards one another as shown in
Between and connecting the arc cuts 4004 is a slot/cut/opening 4006. The slot 4006 can vary in longitudinal thickness between the arc cuts 4004. In some embodiments, the slot 4006 can be thinnest near the arc cuts 4004 and be longitudinally thickest at the midpoint between the arc cuts 4004. In some embodiments, the thickest dimension of the slot 4006 is approximately 1.1, 1.3, 1.5, 1.7, 2.0, 2.5, or 3.0 times the thickness of the thinnest portion of the slot 4006. In some embodiments, the thickest dimension of the slot 4006 is greater than 1.1, 1.3, 1.5, 1.7, 2.0, 2.5, or 3.0 times the thickness of the thinnest portion of the slot 4006. In some embodiments, the thickest dimension of the slot 4006 is less than 1.3, 1.5, 1.7, 2.0, 2.5, or 3.0 times the thickness of the thinnest portion of the slot 4006. In some embodiment, the slot 4006 can be formed of generally curved lines, and thus having two elongated arc cuts facing to form the slot. In some embodiments, the slot 4006 can be formed of generally straight lines.
The spring cut pattern 4010 can also include two arc cuts 4012 spaced circumferentially apart, similar to that discussed above. However, instead of being connected by the slot 4006, the arc cuts 4012 are not connected to one another. Each pair of arc cuts 4012 includes a pair of circumferentially extending cuts 4014 spaced longitudinally apart. Each cut 4014 extends in the opposite direction from the arc cut 4012. The cut 4014 can extend at least 70%, 75%, 80%, 85%, 90%, or 95% of the circumferentially distance between the pair of arc cuts 4012. Further, each cut 4014 can extend from the arc cut 4012 spaced apart from the midpoint, such as approximately 15, 25, or 30% from an end the arc cut 4012, thereby preventing overlap of the cuts 4014 and keeping them longitudinally spaced apart. In some embodiments, the cuts 4014 are generally line cuts and do not change longitudinal thickness.
The cut pattern discussed above can distribute part of the strain on the spines to the material between the cut and the strain relief. In this way, the strain is effectively distributed, reducing plastic deformation even at extreme bend radii and increasing recoil force. In addition, the spring element partially fills the open cut, reducing the chance of an outer layer binding on the cut edge.
Shaft/Tube Reflow Prevention Layer
In some embodiments, manufacture of the delivery system 10 can encounter a situation wherein an outer “jacket” layer covering the hypotube 104 (or any of the other tubes), such as a polymer/rubber/plastic coating, flows onto and around the interior reinforced layer, thereby reducing flexibility. In particular, the jacket layer can flow into gaps/slots/cuts/braids, limiting flexibility. This can be particularly problematic in the outer hypotube 104, though it can affect other components/shafts/tubes as well and the particular component is not limiting. Embodiments of the disclosure can avoid such an issue by including an additional layer into the delivery system 10.
In some embodiments, a high melting temperature and/or a high flexibility polymer layer can be added above the typical shaft reinforcement layer but below the typical outer jacket layer. This additional layer can prevent the outer jacket material from flowing into typical shaft reinforcement layers (braid, coil, axial runners, pull wires, etc.) during typical shaft reflow processing, which significantly increases shaft flexibility while maintaining standard reinforced shaft performance features. In some embodiments, a smooth outer diameter (e.g., polymer material) can be maintained.
Alternative Valve Attachment Mechanism
Disclosed herein are prosthesis attachment mechanisms that can be incorporated into the above. In some embodiments, multiple of the disclosed can be incorporated into the delivery system 10. In some embodiments, certain components disclosed herein can be incorporated.
As discussed above, in some embodiments the delivery system 10 can include an inner retention member 40, an outer retention member 42, and an outer capsule 106 to attach the prosthesis 70 to the delivery system 10. In some variations, it can be advantageous to remove the outer retention member 42 and/or the mid shaft 43 to conserve space.
For example,
In some embodiments, the standard inner retention member 40 discussed above can be used. However, an additional material can then coat/overmold/cover the inner retention member 40 to increase the radial thickness of the inner retention member 40. This can allow an outer radius of the expanded inner retention member 40 to be close to or in contact with a radially inner surface of the capsule 42.
In some embodiments, this modification can be achieved through machining or dip-coating the inner retention member 40 in a softer material 4602 in order to provide a better locking seal against the capsule. Examples of a softer material are a soft rubber or plastic, such as for a polymer overmold. Some examples of softer material are silicone, EPDM, or Pebax®. The soft material 4602 can cover a portion of or all of the inner retention member 40. In some embodiments, the soft material 4602 can only cover the radial outer surface of the inner retention member 40. The soft material 4602 can be configured to still allow the capsule 106 and inner retention member 40 to translate with respect to one another. Thus, the softer material could interfere and compress with the capsule 106 causing increased friction. In some embodiments, the capsule 106 can have an inner surface with the softer material, and the inner retention member 40 may be made of a harder plastic, and or may be oversized.
Additionally, though not required, the capsule 106 can be reinforced to provide further strengthening against the radially expanding force of the prosthesis 70. In some embodiments, a distal end of the capsule 106 can include a reinforcing material. For example, a ring 4604 formed of a stronger material than the capsule 106 can be added on the distal end of the capsule 106. This ring 4604 can be added onto the distal end of the capsule 106. In some embodiments, the ring 4604 is attached radially inward of the capsule 106 so that the capsule 106 is not further distally extended. In some embodiments, the ring 4604 is attached radially outward of the capsule 106. The ring 4604 can be made of metal, hard plastic, or other material to strengthen the capsule 106. The ring 4604 can be used to stage deployment of the prosthesis 70, depending on the location and interference during use.
In some embodiments, an additional spine 4606 can be used instead of or in conjunction with the above. As shown in
In some embodiments, the track 4610 can include a portion 4611 that changes direction and moves circumferentially, or both circumferentially and longitudinally, such as shown in
As shown in
In some embodiments, the flaps 4710 can be made of a soft material, for example a polymer, plastic, rubber, etc. such that as the inner retention member 40 and the capsule 106 transition so that the inner retention member 40 extends distal of the capsule 106, the flaps 4710 fold over the grooves and lock the prosthesis 70 into place.
In some embodiments, the delivery system 10 can also include a two-layer twist lock mechanism. For example, the ring 40 or the capsule 106 can be twisted to block the grooves in the ring 40. Thus, the grooves can be covered and lock the prosthesis 70 into place. The twisting could be activated by the user or could occur automatically as the inner retention ring 40 is transitioned with respect to the capsule 106.
Alternatively, or in conjunction, as shown in
Once the capsule 106 is retracted, as shown in
Continuing to retract the capsule 106, as shown in
In some embodiments, a spring 4804 can be used in addition to or instead of the sutures 4802. Like the suture 4802, the spring 4804 can be attached between a proximal end of the outer retention member 42 and the capsule 106. The spring 4804 can provide active forward pressure on the outer retention member 42 to ensure the prosthesis 70 remains attached. The spring 4804 would compress during loading and stretch during deployment.
At or near the distal end of the inner shaft 112, but proximal to the inner retention ring 40, the inner shaft 112 can include a number of tabs/protrusions/extensions/backstops/locking features 4902. In some embodiments, the tabs 4902 can extend directly from the inner shaft 112. In some embodiments, the delivery system 10 can include an additional collar 4904, which can fully or partially surround the inner shaft 112. In some embodiments, the collar 4904 can be permanently attached to the inner shaft 112. In some embodiments, the collar 4904 may be movable along the inner shaft 112.
The tabs 4902 may have a radially compacted and a radially extended position. In the radially compacted position, an outer retention ring 42 can slide distally over the tabs 4902. Once the outer retention ring 42 has moved distally over the tabs 4902, the tabs may extend radially outwards, as shown in
In some embodiments, the tabs 4902 can be translated to their radially compressed position by an operator in order to proximally translate the outer retention ring 42. For example, sutures may be attached to the tabs 4902. Thus, an operator may pull proximally on the sutures, such as by hand or through a knob on the handle, to compact the tabs 4902. By compacting the tabs 4902, the outer retention ring 42 can automatically move proximally to release a portion of the prosthesis 70. In some embodiments, the collar 4904 may be withdrawn proximally, again by an operator such as the use of a suture or pull wire, to allow the outer retention ring 42 to be withdrawn proximally.
The tabs 4902 may be a laser cut of a tube in some embodiments. The tabs 4902 may be radially compressible inwards, e.g., becoming more parallel to the inner shaft 112.
As shown, the tabs 4902 can extend at an angle away from the inner shaft 112 in a distal direction. In some embodiments, an angled between the tab 4902 and the inner shaft 112 or collar 4904 in an extended position can be 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90 degrees
In some embodiments, there may be 1, 2, 3, 4, 5, or 6 tabs 4902. In some embodiments, the tabs 4902 may be evenly spaced around a circumference of the inner shaft 112 or collar 4904. In some embodiments, the tabs 4902 are not evenly spaced.
Additional Valve Prostheses
With reference next to
With reference first to the inner frame 1520, the inner frame 1520 can include an inner frame body 1522 and an inner frame anchoring feature 1524. The inner frame body 1522 can have an upper region 1522a, an intermediate region 1522b, and a lower region 1522c. As shown, the inner frame body 1522 can have a generally bulbous shape such that the diameters of the upper region 1522a and the lower region 1522c are less than the diameter of the intermediate region 1522b. The diameter of the upper region 1522a can be less than the diameter of the lower region 1522c. This can beneficially allow the use of a smaller valve body 1560 within the inner frame 1520 while allowing the inner frame body 1522 to have a larger diameter proximate the connection between the inner frame body 1522 and the inner frame anchoring feature 1524. This larger diameter can reduce the radial distance between the connection and the tip or end of the inner frame anchoring feature 1524. This can beneficially enhance fatigue resistance of the inner frame anchoring feature 1524 by reducing the length of the cantilever.
While the illustrated inner frame body 1522 is bulbous, it is to be understood that the diameters of the upper region 1522a, the intermediate region 1522b, and/or the lower region 1522c can be the same such that the inner frame body 1522 is generally cylindrical along one or more regions. Moreover, while the illustrated embodiment includes a lower region 1522a having a greater diameter than the upper region 1522c, it is to be understood that the diameters of the upper and lower regions 1522a, 1522c can be the same or the diameter of the upper region 1522a can be greater than the diameter of the lower region 1522c. Moreover, although the inner frame body 1522 has been described and illustrated as being cylindrical or having circular cross-sections, it is to be understood that all or a portion of the inner frame body 1522 can have a non-circular cross-section such as, but not limited to, a D-shape, an oval or an otherwise ovoid cross-sectional shape.
With reference next to the outer frame 1540 illustrated in
As shown in the illustrated embodiment, the outer frame 1540 can include an outer frame body 1542. The outer frame body 1542 can have an upper region 1542a, an intermediate region 1542b, and a lower region 1542c. When in an expanded configuration such as a fully expanded configuration, the outer frame body 1542 can have an enlarged shape with the intermediate region 1542b and the lower region 1542c being larger than the upper region 1542a. The enlarged shape of the outer frame body 1542 can advantageously allow the outer frame body 1542 to engage a native valve annulus, native valve leaflets, or other tissue of the body cavity, while spacing the upper end from the heart or vessel wall.
The upper region 1542a of the outer frame body 1542 can include a first section 1546a and a second section 1546b. The first section 1546a can be sized and/or shaped to generally match the size and/or shape of the inner frame 1520. For example, the first section 1546a can have a curvature which matches a curvature of the upper region 1522a of the inner frame body 1522. The second section 1546b can extend radially outwardly away from the inner frame 1520. As shown in the illustrated embodiment, the transition between the first section 1546a and the second section 1546b can incorporate a bend such that the second section 1546b extends radially outwardly at a greater angle relative to the longitudinal axis.
The intermediate region 1542b of the outer frame body 1542 can extend generally downwardly from the outwardly-extending section 1546b of the upper region 1542a. As shown, the intermediate region 1542b can have a generally constant diameter from an upper end to a lower end such that the intermediate region 1542b forms a generally cylindrical shape. The lower region 1542c of the outer frame body 1542 can extend generally downwardly from the lower end of the intermediate region 1542b. As shown, the lower region 1542c of the outer frame body 1542 can have a generally constant diameter from an upper end to a lower end such that the lower region 1542c forms a generally cylindrical shape. As shown, the diameters of the intermediate region 1542b and the lower region 1542c are generally equivalent such that the intermediate region 1542b and the lower region 1542c together form a generally cylindrical shape.
While the intermediate and lower regions 1542b, 1542c have been described as cylindrical, it is to be understood that the diameters of the upper end, the lower end, and/or the portion therebetween can be different. For example, a diameter of the portion between the upper end and the lower end can be larger than the upper end and the lower end such that the intermediate region 1542b and/or lower region 1542c forms a generally bulbous shape. In some embodiments, the diameter of the lower end can be larger than the diameter of the upper end. In other embodiments, the diameter of the upper end can be larger than the diameter of the lower end. Moreover, although the outer frame body 1542 has been described and illustrated as being cylindrical or having circular cross-sections, it is to be understood that all or a portion of the outer frame body 1542 can be have a non-circular cross-section such as, but not limited to, a D-shape, an oval or an otherwise ovoid cross-sectional shape.
The outer frame 1540, such as the outer frame body 1542 can be used to attach or secure the prosthesis 1500 to a native valve, such as a native mitral valve. For example, the intermediate region 1542b of the outer frame body 1542 and/or the outer anchoring feature 1544 can be positioned to contact or engage a native valve annulus, tissue beyond the native valve annulus, native leaflets, and/or other tissue at or around the implantation location during one or more phases of the cardiac cycle, such as systole and/or diastole. As another example, the outer frame body 1542 can be sized and positioned relative to the inner frame anchoring feature 1524 such that tissue of the body cavity positioned between the outer frame body 1542 and the inner frame anchoring feature 1524, such as native valve leaflets and/or a native valve annulus, can be engaged or pinched to further secure the prosthesis 1500 to the tissue.
With continued reference to the prosthesis 1500 illustrated in
The valve body 1560 can include a plurality of valve leaflets 1562, for example three leaflets 1562, which are joined at commissures. The valve body 1560 can include one or more intermediate components 1564. The intermediate components 1564 can be positioned between a portion of, or the entirety of, the leaflets 1562 and the inner frame 1520 such that at least a portion of the leaflets 1542 are coupled to the frame 1520 via the intermediate component 1564. In this manner, a portion of, or the entirety of, the portion of the valve leaflets 1562 at the commissures and/or an arcuate edge of the valve leaflets 1562 are not directly coupled or attached to the inner frame 1520 and are indirectly coupled or “float” within the inner frame 1520. For example, a portion of, or the entirety of, the portion of the valve leaflets 1562 proximate the commissures and/or the arcuate edge of the valve leaflets 1562 can be spaced radially inward from an inner surface of the inner frame 1520. By using one or more intermediate components 1564, the valve leaflets 1562 can be attached to non-cylindrical frames 1520 and/or frames 1520 having a diameter larger than that of the diameter of the valve leaflets 1562.
With reference next to the outer skirt 1580 illustrated in
With reference next to the inner skirt 1590 illustrated in
Although the prosthesis 1500 has been described as including an inner frame 1520, an outer frame 1540, a valve body 1560, and skirts 1580, 1590, it is to be understood that the prosthesis 1500 need not include all components. For example, in some embodiments, the prosthesis 1500 can include the inner frame 1520, the outer frame 1540, and the valve body 1560 while omitting the skirt 1580. Moreover, although the components of the prosthesis 1500 have been described and illustrated as separate components, it is to be understood that one or more components of the prosthesis 1500 can be integrally or monolithically formed. For example, in some embodiments, the inner frame 1520 and the outer frame 1540 can be integrally or monolithically formed as a single component.
With reference next to
With reference first to the outer frame 1640 illustrated in
As shown in the illustrated embodiment, the outer frame 1640 can include an outer frame body 1642. The outer frame body 1642 can have an upper region 1642a, an intermediate region 1642b, and a lower region 1642c. At least a portion of the upper region 1642a of the outer frame body 1642 can be sized and/or shaped to generally match the size and/or shape of an upper region 1622a of the inner frame 1620. As shown in the illustrated embodiment, the upper region 1642a of the outer frame body 1642 can include one or more struts which generally match the size and/or shape of struts of the inner frame 1620. This can locally reinforce a portion of the prosthesis 1600 by effectively increasing the wall thickness of the combined struts.
When in an expanded configuration such as in a fully expanded configuration, the outer frame body 1642 can have a shape similar to that of outer frame body 1542 described above in connection with
With continued reference to the outer frame 1600 illustrated in
The upper row of cells 1646a can have an irregular octagonal shape such as a “heart” shape. This additional space can beneficially allow the outer frame 1640 to retain a smaller profile when crimped. The cell 1646a can be formed via a combination of struts. As shown in the illustrated embodiment, the upper portion of cells 1646a can be formed from a set of circumferentially-expansible struts 1648a having a zig-zag or undulating shape forming a repeating “V” shape. The struts 1648a can extend radially outwardly from an upper end to a lower end. These struts can generally match the size and/or shape of struts of the inner frame 1620.
The middle portion of cells 1646a can be formed from a set of struts 1648b extending downwardly from bottom ends of each of the “V” shapes. The struts 1648b can extend radially outwardly from an upper end to a lower end. The portion of the cells 1646a extending upwardly from the bottom end of struts 1648b may be considered to be a substantially non-foreshortening portion of the outer frame 1640.
The lower portion of cells 1646a can be formed from a set of circumferentially-expansible struts 1648c having a zig-zag or undulating shape forming a repeating “V” shape. As shown in the illustrated embodiment, the struts 1648c can incorporate a curvature such that the lower end of struts 1648c extend more parallel with the longitudinal axis than the upper end of the struts 1648c. One or more of the upper ends or tips of the circumferentially-expansible struts 1648c can be a “free” apex which is not connected to a strut. For example, as shown in the illustrated embodiment, every other upper end or tip of circumferentially-expansible struts 1648b is a free apex. However, it is to be understood that other configurations can be used. For example, every upper apex along the upper end can be connected to a strut.
The middle and/or lower rows of cells 1646b-c can have a different shape from the cells 1646a of the first row. The middle row of cells 1646b and the lower row of cells 1646c can have a diamond or generally diamond shape. The diamond or generally diamond shape can be formed via a combination of struts.
The upper portion of cells 1646b can be formed from the set of circumferentially-expansible struts 1648c such that cells 1646b share struts with cells 1646a. The lower portion of cells 1646b can be formed from a set of circumferentially-expansible struts 1648d. As shown in the illustrated embodiment, one or more of the circumferentially-expansible struts 1648d can extend generally in a downward direction generally parallel to the longitudinal axis of the outer frame 1640.
The upper portion of cells 1646c can be formed from the set of circumferentially-expansible struts 1648d such that cells 1646c share struts with cells 1646b. The lower portion of cells 1646c can be formed from a set of circumferentially-expansible struts 1648e. Circumferentially-expansible struts 1648e can extend generally in a downward direction.
As shown in the illustrated embodiment, there can be a row of nine cells 1646a and a row of eighteen cells 1646b-c. While each of the cells 1646a-c are shown as having the same shape as other cells 1646a-c of the same row, it is to be understood that the shapes of cells 1646a-c within a row can differ. Moreover, it is to be understood that any number of rows of cells can be used and any number of cells may be contained in the rows.
As shown in the illustrated embodiment, the outer frame 1600 can include a set of eyelets 1650. The upper set of eyelets 1650 can extend from an upper region 1642a of the outer frame body 1642. As shown, the upper set of eyelets 1650 can extend from an upper portion of cells 1646a, such as the upper apices of cells 1646a. The upper set of eyelets 1650 can be used to attach the outer frame 1640 to the inner frame 1620. For example, in some embodiments, the inner frame 1620 can include one or more eyelets which correspond to the eyelets 1650. In such embodiments, the inner frame 1620 and outer frame 1640 can be attached together via eyelets 1650 and corresponding eyelets on the inner frame 1620. For example, the inner frame 1620 and outer frame 1640 can be sutured together through said eyelets or attached via other means, such as mechanical fasteners (e.g., screws, rivets, and the like).
As shown, the set of eyelets 1650 can include two eyelets extending in series from each “V” shaped strut. This can reduce the likelihood that the outer frame 1640 twists along an axis of the eyelet. However, it is to be understood that some “V” shaped struts may not include an eyelet. Moreover, it is to be understood that a fewer or greater number of eyelets can extend from a “V” shaped strut.
The outer frame 1640 can include a set of locking tabs 1652 extending from at or proximate an upper end of the upper region 1642a. As shown, the locking tabs 1652 can extend upwardly from the set of eyelets 1650. The outer frame 1640 can include twelve locking tabs 1652, however, it is to be understood that a greater number or lesser number of locking tabs can be used. The locking tabs 1652 can include a longitudinally-extending strut 1652a. At an upper end of the strut 1652a, the locking tab 1652 can include an enlarged head 1652b. As shown, the enlarged head 1652b can have a semi-circular or semi-elliptical shape forming a “mushroom” shape with the strut 1652a. The locking tab 1652 can include an eyelet 1652c which can be positioned through the enlarged head 1652b. It is to be understood that the locking tab 1652 can include an eyelet at other locations, or can include more than a single eyelet.
The locking tab 1652 can be advantageously used with multiple types of delivery systems. For example, the shape of the struts 1652a and the enlarged head 1652b can be used to secure the outer frame 1640 to a “slot” based delivery system, such as the inner retention member 40 described above. The eyelets 1652c and/or eyelets 1650 can be used to secure the outer frame 1640 to a “tether” based delivery system such as those which utilize sutures, wires, or fingers to control delivery of the outer frame 1640 and the prosthesis 1600. This can advantageously facilitate recapture and repositioning of the outer frame 1640 and the prosthesis 1600 in situ.
The outer frame 1640, such as the outer frame body 1642 can be used to attach or secure the prosthesis 1600 to a native valve, such as a native mitral valve. For example, the intermediate region 1642b of the outer frame body 1642 and/or the outer anchoring feature 1644 can be positioned to contact or engage a native valve annulus, tissue beyond the native valve annulus, native leaflets, and/or other tissue at or around the implantation location during one or more phases of the cardiac cycle, such as systole and/or diastole. As another example, the outer frame body 1642 can be sized and positioned relative to the inner frame anchoring feature 1624 such that tissue of the body cavity positioned between the outer frame body 1642 and the inner frame anchoring feature 1624, such as native valve leaflets and/or a native valve annulus, can be engaged or pinched to further secure the prosthesis 1600 to the tissue. As shown, the inner frame anchoring feature 1624 includes nine anchors; however, it is to be understood that a fewer or greater number of anchors can be used. In some embodiments, the number of individual anchors can be chosen as a multiple of the number of commissures for the valve body 1660. For example, for a valve body 1660 have three commissures, the inner frame anchoring feature 1624 can have three individual anchors (1:1 ratio), six individual anchors (2:1 ratio), nine individual anchors (3:1 ratio), twelve individual anchors (4:1 ratio), fifteen individual anchors (5:1 ratio), or any other multiple of three. In some embodiments, the number of individual anchors does not correspond to the number of commissures of the valve body 1660.
With continued reference to the prosthesis 1600 illustrated in
The valve body 1660 can include a plurality of valve leaflets 1662, for example three leaflets 1662, which are joined at commissures. The valve body 1660 can include one or more intermediate components 1664. The intermediate components 1664 can be positioned between a portion of, or the entirety of, the leaflets 1662 and the inner frame 1620 such that at least a portion of the leaflets 1642 are coupled to the frame 1620 via the intermediate component 1664. In this manner, a portion of, or the entirety of, the portion of the valve leaflets 1662 at the commissures and/or an arcuate edge of the valve leaflets 1662 are not directly coupled or attached to the inner frame 1620 and are indirectly coupled or “float” within the inner frame 1620.
With reference next to the outer skirt 1680 illustrated in
Although the prosthesis 1600 has been described as including an inner frame 1620, an outer frame 1640, a valve body 1660, and skirts 1680, 1690, it is to be understood that the prosthesis 1600 need not include all components. For example, in some embodiments, the prosthesis 1600 can include the inner frame 1620, the outer frame 1640, and the valve body 1660 while omitting the skirt 1680. Moreover, although the components of the prosthesis 1600 have been described and illustrated as separate components, it is to be understood that one or more components of the prosthesis 1600 can be integrally or monolithically formed. For example, in some embodiments, the inner frame 1620 and the outer frame 1640 can be integrally or monolithically formed as a single component.
From the foregoing description, it will be appreciated that an inventive product and approaches for implant delivery systems are disclosed. While several components, techniques and aspects have been described with a certain degree of particularity, it is manifest that many changes can be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.
Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.
Moreover, while methods may be depicted in the drawings or described in the specification in a particular order, such methods need not be performed in the particular order shown or in sequential order, and that all methods need not be performed, to achieve desirable results. Other methods that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional methods can be performed before, after, simultaneously, or between any of the described methods. Further, the methods may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, other implementations are within the scope of this disclosure.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than or equal to 10% of, within less than or equal to 5% of, within less than or equal to 1% of, within less than or equal to 0.1% of, and within less than or equal to 0.01% of the stated amount. If the stated amount is 0 (e.g., none, having no), the above recited ranges can be specific ranges, and not within a particular % of the value. For example, within less than or equal to 10 wt./vol. % of, within less than or equal to 5 wt./vol. % of, within less than or equal to 1 wt./vol. % of, within less than or equal to 0.1 wt./vol. % of, and within less than or equal to 0.01 wt./vol. % of the stated amount.
Some embodiments have been described in connection with the accompanying drawings. The figures are drawn to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed inventions. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
While a number of embodiments and variations thereof have been described in detail, other modifications and methods of using the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, materials, and substitutions can be made of equivalents without departing from the unique and inventive disclosure herein or the scope of the claims.
This application claims the benefit of U.S. Provisional Application No. 62/529,394, filed Jul. 6, 2017, entitled “STEERABLE RAIL DELIVERY SYSTEM” and U.S. Provisional Application No. 62/635,421, filed Feb. 26, 2018, entitled “STEERABLE RAIL DELIVERY SYSTEM”, the entirety of each of which is hereby incorporated by reference. The embodiments of this application also relate to and may be combined with embodiments disclosed in U.S. application Ser. No. 16/028,172, filed on Jul. 5, 2018, entitled “STEERABLE RAIL DELIVERY SYSTEM”, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3739402 | Cooley et al. | Jun 1973 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4079468 | Liotta et al. | Mar 1978 | A |
4204283 | Bellhouse et al. | May 1980 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4340977 | Brownlee et al. | Jul 1982 | A |
4470157 | Love | Sep 1984 | A |
4477930 | Totten et al. | Oct 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4553545 | Maass et al. | Nov 1985 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4865600 | Carpentier et al. | Sep 1989 | A |
4994077 | Dobben | Feb 1991 | A |
5326371 | Love et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5411552 | Andersen et al. | May 1995 | A |
5415667 | Frater | May 1995 | A |
5545214 | Stevens | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5573520 | Schwartz | Nov 1996 | A |
5697382 | Love et al. | Dec 1997 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5944690 | Falwell et al. | Aug 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
6086612 | Jansen | Jul 2000 | A |
6113631 | Jansen | Sep 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6251093 | Valley et al. | Jun 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6440164 | Di Matteo et al. | Aug 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6527800 | McGuckin, Jr. et al. | Mar 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6610088 | Gabbay | Aug 2003 | B1 |
6622367 | Bolduc et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6676698 | McGuckin, Jr. et al. | Jan 2004 | B2 |
6695878 | McGuckin, Jr. et al. | Feb 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6716207 | Farnholtz | Apr 2004 | B2 |
6729356 | Baker et al. | May 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6746422 | Noriega et al. | Jun 2004 | B1 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6767362 | Schreck | Jul 2004 | B2 |
6780200 | Jansen | Aug 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7192440 | Andreas et al. | Mar 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7553324 | Andreas et al. | Jun 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7628805 | Spenser et al. | Dec 2009 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753949 | Lamphere et al. | Jul 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7806919 | Bloom et al. | Oct 2010 | B2 |
7815673 | Bloom et al. | Oct 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7947075 | Goetz et al. | May 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7981151 | Rowe | Jul 2011 | B2 |
7993392 | Righini et al. | Aug 2011 | B2 |
8016877 | Seguin et al. | Sep 2011 | B2 |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8070800 | Lock et al. | Dec 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8075615 | Eberhardt et al. | Dec 2011 | B2 |
8080054 | Rowe | Dec 2011 | B2 |
8092520 | Quadri | Jan 2012 | B2 |
8109996 | Stacchino et al. | Feb 2012 | B2 |
8118866 | Herrmann et al. | Feb 2012 | B2 |
8136218 | Millwee et al. | Mar 2012 | B2 |
8137398 | Tuval et al. | Mar 2012 | B2 |
8157852 | Bloom et al. | Apr 2012 | B2 |
8167934 | Styrc et al. | May 2012 | B2 |
8182528 | Salahieh et al. | May 2012 | B2 |
8182530 | Huber | May 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8219229 | Cao et al. | Jul 2012 | B2 |
8220121 | Hendriksen et al. | Jul 2012 | B2 |
8221493 | Boyle et al. | Jul 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8236045 | Benichou et al. | Aug 2012 | B2 |
8246675 | Zegdi | Aug 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8252052 | Salahieh et al. | Aug 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8353953 | Giannetti et al. | Jan 2013 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8414644 | Quadri et al. | Apr 2013 | B2 |
8414645 | Dwork et al. | Apr 2013 | B2 |
8444689 | Zhang | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8460368 | Taylor et al. | Jun 2013 | B2 |
8470023 | Eidenschink et al. | Jun 2013 | B2 |
8475521 | Suri et al. | Jul 2013 | B2 |
8475523 | Duffy | Jul 2013 | B2 |
8479380 | Malewicz et al. | Jul 2013 | B2 |
8486137 | Suri et al. | Jul 2013 | B2 |
8491650 | Wiemeyer et al. | Jul 2013 | B2 |
8500733 | Watson | Aug 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8511244 | Holecek et al. | Aug 2013 | B2 |
8512401 | Murray, III et al. | Aug 2013 | B2 |
8518096 | Nelson | Aug 2013 | B2 |
8518106 | Duffy et al. | Aug 2013 | B2 |
8562663 | Mearns et al. | Oct 2013 | B2 |
8579963 | Tabor | Nov 2013 | B2 |
8579964 | Lane et al. | Nov 2013 | B2 |
8579965 | Bonhoeffer et al. | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8585756 | Bonhoeffer et al. | Nov 2013 | B2 |
8591570 | Revuelta et al. | Nov 2013 | B2 |
8597348 | Rowe et al. | Dec 2013 | B2 |
8617236 | Paul et al. | Dec 2013 | B2 |
8640521 | Righini et al. | Feb 2014 | B2 |
8647381 | Essinger et al. | Feb 2014 | B2 |
8652145 | Maimon et al. | Feb 2014 | B2 |
8652201 | Oberti et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8673000 | Tabor et al. | Mar 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8679404 | Liburd et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8721708 | Seguin et al. | May 2014 | B2 |
8721714 | Kelley | May 2014 | B2 |
8728154 | Alkhatib | May 2014 | B2 |
8728155 | Montorfano et al. | May 2014 | B2 |
8740974 | Lambrecht et al. | Jun 2014 | B2 |
8740976 | Tran et al. | Jun 2014 | B2 |
8747458 | Tuval et al. | Jun 2014 | B2 |
8747459 | Nguyen et al. | Jun 2014 | B2 |
8747460 | Tuval et al. | Jun 2014 | B2 |
8758432 | Solem | Jun 2014 | B2 |
8764818 | Gregg | Jul 2014 | B2 |
8771344 | Tran et al. | Jul 2014 | B2 |
8771345 | Tuval et al. | Jul 2014 | B2 |
8771346 | Tuval et al. | Jul 2014 | B2 |
8778020 | Gregg et al. | Jul 2014 | B2 |
8784337 | Voeller et al. | Jul 2014 | B2 |
8784478 | Tuval et al. | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790387 | Nguyen et al. | Jul 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808356 | Braido et al. | Aug 2014 | B2 |
8828078 | Salahieh et al. | Sep 2014 | B2 |
8828079 | Thielen et al. | Sep 2014 | B2 |
8834564 | Tuval et al. | Sep 2014 | B2 |
8845718 | Tuval et al. | Sep 2014 | B2 |
8858620 | Salahieh et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870950 | Hacohen | Oct 2014 | B2 |
8876893 | Dwork et al. | Nov 2014 | B2 |
8876894 | Tuval et al. | Nov 2014 | B2 |
8876895 | Tuval et al. | Nov 2014 | B2 |
8911455 | Quadri et al. | Dec 2014 | B2 |
8926693 | Duffy et al. | Jan 2015 | B2 |
8926694 | Costello | Jan 2015 | B2 |
8939960 | Rosenman et al. | Jan 2015 | B2 |
8945209 | Bonyuet et al. | Feb 2015 | B2 |
8951299 | Paul et al. | Feb 2015 | B2 |
8961593 | Bonhoeffer et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8974524 | Yeung et al. | Mar 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8986372 | Murry, III et al. | Mar 2015 | B2 |
8986375 | Garde et al. | Mar 2015 | B2 |
8992608 | Haug et al. | Mar 2015 | B2 |
8998979 | Seguin et al. | Apr 2015 | B2 |
8998980 | Shipley et al. | Apr 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011521 | Haug et al. | Apr 2015 | B2 |
9011523 | Seguin | Apr 2015 | B2 |
9011524 | Eberhardt | Apr 2015 | B2 |
9028545 | Taylor | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9034033 | McLean et al. | May 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9055937 | Rowe et al. | Jun 2015 | B2 |
9066801 | Kovalsky et al. | Jun 2015 | B2 |
9078749 | Lutter et al. | Jul 2015 | B2 |
9078751 | Naor | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9125738 | Figulla et al. | Sep 2015 | B2 |
9138312 | Tuval et al. | Sep 2015 | B2 |
9161834 | Taylor et al. | Oct 2015 | B2 |
9173737 | Hill et al. | Nov 2015 | B2 |
9180004 | Alkhatib | Nov 2015 | B2 |
9186249 | Rolando et al. | Nov 2015 | B2 |
9220594 | Braido et al. | Dec 2015 | B2 |
9241790 | Lane et al. | Jan 2016 | B2 |
9248014 | Lane et al. | Feb 2016 | B2 |
9277990 | Klima et al. | Mar 2016 | B2 |
9277993 | Gamarra et al. | Mar 2016 | B2 |
9289291 | Gorman, III et al. | Mar 2016 | B2 |
9289296 | Braido et al. | Mar 2016 | B2 |
9295551 | Straubinger et al. | Mar 2016 | B2 |
9326815 | Watson | May 2016 | B2 |
9331328 | Eberhardt et al. | May 2016 | B2 |
9339382 | Tabor et al. | May 2016 | B2 |
9351831 | Braido et al. | May 2016 | B2 |
9351832 | Braido et al. | May 2016 | B2 |
9364321 | Alkhatib et al. | Jun 2016 | B2 |
9445897 | Bishop et al. | Sep 2016 | B2 |
9456877 | Weitzner et al. | Oct 2016 | B2 |
9681968 | Goetz et al. | Jun 2017 | B2 |
9700329 | Metzger et al. | Jul 2017 | B2 |
9700411 | Klima et al. | Jul 2017 | B2 |
9795479 | Lim et al. | Oct 2017 | B2 |
9833313 | Board et al. | Dec 2017 | B2 |
9861473 | Lafontaine | Jan 2018 | B2 |
9861476 | Salahieh et al. | Jan 2018 | B2 |
9861477 | Backus et al. | Jan 2018 | B2 |
9867698 | Kovalsky et al. | Jan 2018 | B2 |
9877830 | Lim et al. | Jan 2018 | B2 |
9889029 | Li et al. | Feb 2018 | B2 |
9895225 | Rolando et al. | Feb 2018 | B2 |
9925045 | Creaven et al. | Mar 2018 | B2 |
10065015 | Leeflang | Sep 2018 | B2 |
10076638 | Tran | Sep 2018 | B2 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20020016623 | Kula et al. | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020045929 | Diaz | Apr 2002 | A1 |
20020052644 | Shaolian et al. | May 2002 | A1 |
20020072710 | Stewart | Jun 2002 | A1 |
20030105517 | White et al. | Jun 2003 | A1 |
20030120333 | Ouriel et al. | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030176914 | Rabkin et al. | Sep 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030220683 | Minasian et al. | Nov 2003 | A1 |
20040117009 | Cali et al. | Jun 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040186561 | McGuckin et al. | Sep 2004 | A1 |
20040193193 | Laufer | Sep 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040215325 | Penn et al. | Oct 2004 | A1 |
20040225353 | McGuckin et al. | Nov 2004 | A1 |
20040236411 | Sarac et al. | Nov 2004 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043682 | Kucklick et al. | Feb 2005 | A1 |
20050070844 | Chow | Mar 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050090887 | Pryor | Apr 2005 | A1 |
20050090890 | Wu et al. | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050107872 | Mensah et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137693 | Haug et al. | Jun 2005 | A1 |
20050159811 | Lane | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060095115 | Bladillah et al. | May 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060173537 | Yang et al. | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060212110 | Osborne et al. | Sep 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20060293745 | Carpentier et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070050021 | Johnson | Mar 2007 | A1 |
20070100432 | Case et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070255394 | Ryan | Nov 2007 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080065011 | Marchand | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080082164 | Friedman | Apr 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080097581 | Shanley | Apr 2008 | A1 |
20080147179 | Cai et al. | Jun 2008 | A1 |
20080147183 | Styrc | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080228254 | Ryan | Sep 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090182413 | Burkart et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090270972 | Lane | Oct 2009 | A1 |
20090276027 | Glynn | Nov 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281618 | Hill et al. | Nov 2009 | A1 |
20090287296 | Manasse | Nov 2009 | A1 |
20090292350 | Eberhardt et al. | Nov 2009 | A1 |
20090306768 | Quadri | Dec 2009 | A1 |
20100049313 | Alon | Feb 2010 | A1 |
20100069882 | Jennings et al. | Mar 2010 | A1 |
20100114305 | Kang et al. | May 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249894 | Oba et al. | Sep 2010 | A1 |
20100249911 | Alkhatib | Sep 2010 | A1 |
20100256723 | Murray | Oct 2010 | A1 |
20100305685 | Millwee et al. | Dec 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110029067 | McGuckin, Jr. et al. | Feb 2011 | A1 |
20110208297 | Tuval et al. | Aug 2011 | A1 |
20110208298 | Tuval et al. | Aug 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110264196 | Savage et al. | Oct 2011 | A1 |
20110313515 | Quadri et al. | Dec 2011 | A1 |
20120016192 | Jansen et al. | Jan 2012 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120041550 | Salahieh et al. | Feb 2012 | A1 |
20120059454 | Millwee et al. | Mar 2012 | A1 |
20120078360 | Rafiee | Mar 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120253131 | Malkowski | Oct 2012 | A1 |
20120271398 | Essinger et al. | Oct 2012 | A1 |
20120290062 | McNamara et al. | Nov 2012 | A1 |
20120310328 | Olson et al. | Dec 2012 | A1 |
20130006294 | Kashkarov et al. | Jan 2013 | A1 |
20130030519 | Tran | Jan 2013 | A1 |
20130030520 | Lee et al. | Jan 2013 | A1 |
20130035759 | Gross et al. | Feb 2013 | A1 |
20130053950 | Rowe et al. | Feb 2013 | A1 |
20130131788 | Quadri et al. | May 2013 | A1 |
20130144378 | Quadri et al. | Jun 2013 | A1 |
20130211508 | Lane et al. | Aug 2013 | A1 |
20130253635 | Straubinger et al. | Sep 2013 | A1 |
20130253642 | Brecker | Sep 2013 | A1 |
20130310928 | Morriss et al. | Nov 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20130338766 | Hastings et al. | Dec 2013 | A1 |
20130345786 | Behan | Dec 2013 | A1 |
20140018912 | Delaloye et al. | Jan 2014 | A1 |
20140025163 | Padala et al. | Jan 2014 | A1 |
20140031922 | Duffy | Jan 2014 | A1 |
20140039611 | Lane et al. | Feb 2014 | A1 |
20140052237 | Lane et al. | Feb 2014 | A1 |
20140052242 | Revuelta et al. | Feb 2014 | A1 |
20140088565 | Vongphakdy et al. | Mar 2014 | A1 |
20140100651 | Kheradvar et al. | Apr 2014 | A1 |
20140100653 | Savage et al. | Apr 2014 | A1 |
20140135909 | Carr | May 2014 | A1 |
20140142694 | Tabor et al. | May 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140172077 | Bruchman et al. | Jun 2014 | A1 |
20140172083 | Bruchman et al. | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140214153 | Ottma et al. | Jul 2014 | A1 |
20140214154 | Nguyen et al. | Jul 2014 | A1 |
20140214155 | Kelley | Jul 2014 | A1 |
20140214160 | Naor | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140222139 | Nguyen et al. | Aug 2014 | A1 |
20140222142 | Kovalsky et al. | Aug 2014 | A1 |
20140230515 | Tuval et al. | Aug 2014 | A1 |
20140236288 | Lambrecht et al. | Aug 2014 | A1 |
20140257467 | Lane et al. | Sep 2014 | A1 |
20140277390 | Ratz et al. | Sep 2014 | A1 |
20140277402 | Essinger et al. | Sep 2014 | A1 |
20140277422 | Ratz et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140296973 | Bergheim et al. | Oct 2014 | A1 |
20140296975 | Tegels et al. | Oct 2014 | A1 |
20140303719 | Cox et al. | Oct 2014 | A1 |
20140309728 | Dehdashtian et al. | Oct 2014 | A1 |
20140309732 | Solem | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140330368 | Gloss et al. | Nov 2014 | A1 |
20140330371 | Gloss et al. | Nov 2014 | A1 |
20140330372 | Weston et al. | Nov 2014 | A1 |
20140336754 | Gurskis et al. | Nov 2014 | A1 |
20140343669 | Lane et al. | Nov 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140350663 | Braido et al. | Nov 2014 | A1 |
20140350666 | Righini | Nov 2014 | A1 |
20140350668 | Delaloye et al. | Nov 2014 | A1 |
20140358223 | Rafiee et al. | Dec 2014 | A1 |
20140364939 | Deshmukh et al. | Dec 2014 | A1 |
20140364943 | Conklin | Dec 2014 | A1 |
20140371842 | Marquez et al. | Dec 2014 | A1 |
20140371844 | Dale et al. | Dec 2014 | A1 |
20140371845 | Tuval et al. | Dec 2014 | A1 |
20140371847 | Madrid et al. | Dec 2014 | A1 |
20140371848 | Murray, III et al. | Dec 2014 | A1 |
20140379067 | Nguyen et al. | Dec 2014 | A1 |
20140379068 | Thielen et al. | Dec 2014 | A1 |
20140379077 | Tuval et al. | Dec 2014 | A1 |
20150005863 | Para | Jan 2015 | A1 |
20150012085 | Salahieh et al. | Jan 2015 | A1 |
20150018938 | Von Segesser et al. | Jan 2015 | A1 |
20150018944 | O'Connell et al. | Jan 2015 | A1 |
20150039083 | Ratiee | Feb 2015 | A1 |
20150045880 | Hacohen | Feb 2015 | A1 |
20150073539 | Geiger | Mar 2015 | A1 |
20150127093 | Hosmer | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150148731 | McNamara et al. | May 2015 | A1 |
20150157457 | Hacohen | Jun 2015 | A1 |
20150157458 | Thambar et al. | Jun 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150196390 | Ma et al. | Jul 2015 | A1 |
20150209141 | Braido et al. | Jul 2015 | A1 |
20150238315 | Rabito et al. | Aug 2015 | A1 |
20150272737 | Dale et al. | Oct 2015 | A1 |
20150297346 | Duffy et al. | Oct 2015 | A1 |
20150327994 | Morriss et al. | Nov 2015 | A1 |
20150328000 | Ratz et al. | Nov 2015 | A1 |
20150328001 | McLean et al. | Nov 2015 | A1 |
20150335429 | Morriss et al. | Nov 2015 | A1 |
20150351903 | Morriss et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20150359629 | Ganesan et al. | Dec 2015 | A1 |
20160000591 | Lei et al. | Jan 2016 | A1 |
20160022961 | Rosenman | Jan 2016 | A1 |
20160030169 | Shahriari | Feb 2016 | A1 |
20160030170 | Alkhatib et al. | Feb 2016 | A1 |
20160030171 | Quijano et al. | Feb 2016 | A1 |
20160038281 | Delaloye et al. | Feb 2016 | A1 |
20160045311 | McCann | Feb 2016 | A1 |
20160074160 | Christianson et al. | Mar 2016 | A1 |
20160100746 | Okazaki | Apr 2016 | A1 |
20160106537 | Christianson et al. | Apr 2016 | A1 |
20160113765 | Ganesan et al. | Apr 2016 | A1 |
20160113766 | Ganesan et al. | Apr 2016 | A1 |
20160113768 | Ganesan et al. | Apr 2016 | A1 |
20160143732 | Glimsdale | May 2016 | A1 |
20160158010 | Lim et al. | Jun 2016 | A1 |
20160166383 | Lim et al. | Jun 2016 | A1 |
20160184097 | Lim et al. | Jun 2016 | A1 |
20160199206 | Lim et al. | Jul 2016 | A1 |
20160213473 | Hacohen et al. | Jul 2016 | A1 |
20160235529 | Ma et al. | Aug 2016 | A1 |
20160279386 | Dale et al. | Sep 2016 | A1 |
20160317301 | Quadri | Nov 2016 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170056171 | Cooper | Mar 2017 | A1 |
20170128209 | Morriss et al. | May 2017 | A1 |
20170165064 | Nyuli et al. | Jun 2017 | A1 |
20170216023 | Lane et al. | Aug 2017 | A1 |
20170216575 | Asleson et al. | Aug 2017 | A1 |
20170258614 | Griffin | Sep 2017 | A1 |
20170325954 | Perszyk | Nov 2017 | A1 |
20170348096 | Anderson | Dec 2017 | A1 |
20170367823 | Hariton et al. | Dec 2017 | A1 |
20180021129 | Peterson et al. | Jan 2018 | A1 |
20180028787 | McNiven | Feb 2018 | A1 |
20180049873 | Manash | Feb 2018 | A1 |
20180055629 | Oba et al. | Mar 2018 | A1 |
20180055636 | Valencia et al. | Mar 2018 | A1 |
20180085218 | Eidenschink | Mar 2018 | A1 |
20180110534 | Gavala et al. | Apr 2018 | A1 |
20190298557 | Murray, III | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2304325 | Oct 2000 | CA |
2827556 | Jul 2012 | CA |
102006052564 | Dec 2007 | DE |
1171059 | Jan 2002 | EP |
1255510 | Nov 2002 | EP |
1259194 | Nov 2002 | EP |
1281375 | Feb 2003 | EP |
1369098 | Dec 2003 | EP |
1472996 | Nov 2004 | EP |
1734903 | Dec 2006 | EP |
1827558 | Sep 2007 | EP |
1239901 | Oct 2007 | EP |
2124826 | Dec 2009 | EP |
1935377 | Mar 2010 | EP |
2237746 | Oct 2010 | EP |
2238947 | Oct 2010 | EP |
2285317 | Feb 2011 | EP |
2308425 | Apr 2011 | EP |
2319458 | May 2011 | EP |
2398543 | Dec 2011 | EP |
2496182 | Sep 2012 | EP |
2566416 | Mar 2013 | EP |
2745805 | Jun 2014 | EP |
2749254 | Jul 2014 | EP |
2750630 | Jul 2014 | EP |
2777617 | Sep 2014 | EP |
2815723 | Dec 2014 | EP |
2815725 | Dec 2014 | EP |
2898858 | Jul 2015 | EP |
2967858 | Jan 2016 | EP |
2926766 | Feb 2016 | EP |
2985006 | Feb 2016 | EP |
2168536 | Apr 2016 | EP |
2262451 | May 2017 | EP |
3184083 | Jun 2017 | EP |
2446915 | Jan 2018 | EP |
3057541 | Jan 2018 | EP |
3037064 | Mar 2018 | EP |
3046511 | Mar 2018 | EP |
3142603 | Mar 2018 | EP |
3294220 | Mar 2018 | EP |
1264471 | Feb 1972 | GB |
1315844 | May 1973 | GB |
2398245 | Aug 2004 | GB |
2002540889 | Dec 2002 | JP |
2008541865 | Nov 2008 | JP |
9749355 | Dec 1997 | WO |
0061034 | Oct 2000 | WO |
03092554 | Nov 2003 | WO |
2004030569 | Apr 2004 | WO |
2005011534 | Feb 2005 | WO |
2006070372 | Jul 2006 | WO |
2006085225 | Aug 2006 | WO |
2006089236 | Aug 2006 | WO |
2006127765 | Nov 2006 | WO |
2007025028 | Mar 2007 | WO |
2007058857 | May 2007 | WO |
2007123658 | Nov 2007 | WO |
2008013915 | Jan 2008 | WO |
2008070797 | Jun 2008 | WO |
2008103722 | Aug 2008 | WO |
2008125153 | Oct 2008 | WO |
2008150529 | Dec 2008 | WO |
2009026563 | Feb 2009 | WO |
2009033469 | Mar 2009 | WO |
2009045331 | Apr 2009 | WO |
2009053497 | Apr 2009 | WO |
2009091509 | Jul 2009 | WO |
2009094500 | Jul 2009 | WO |
2009134701 | Nov 2009 | WO |
2010005524 | Jan 2010 | WO |
2010008549 | Jan 2010 | WO |
2010022138 | Feb 2010 | WO |
2010037141 | Apr 2010 | WO |
2010040009 | Apr 2010 | WO |
2010057262 | May 2010 | WO |
2011008538 | Jan 2011 | WO |
2011025945 | Mar 2011 | WO |
2011057087 | May 2011 | WO |
2011111047 | Sep 2011 | WO |
2011137531 | Nov 2011 | WO |
2012177942 | Dec 2012 | WO |
2013028387 | Feb 2013 | WO |
2013075215 | May 2013 | WO |
2013120181 | Aug 2013 | WO |
2013175468 | Nov 2013 | WO |
2013192305 | Dec 2013 | WO |
2014018432 | Jan 2014 | WO |
2014099655 | Jun 2014 | WO |
2014110019 | Jul 2014 | WO |
2014110171 | Jul 2014 | WO |
2014121042 | Aug 2014 | WO |
2014139545 | Sep 2014 | WO |
2014145338 | Sep 2014 | WO |
2014149865 | Sep 2014 | WO |
2014163706 | Oct 2014 | WO |
2014164364 | Oct 2014 | WO |
2014194178 | Dec 2014 | WO |
2014204807 | Dec 2014 | WO |
2014205064 | Dec 2014 | WO |
2014210124 | Dec 2014 | WO |
2015077274 | May 2015 | WO |
2015148241 | Oct 2015 | WO |
2016016899 | Feb 2016 | WO |
Entry |
---|
Kronemyer, Bob, “CardiAQ Valve Technologies: Percutaneous Mitral Valve Replacement,” Start Up—Windhover Review of Emerging Medical Ventures, vol. 14, Issue No. 6, Jun. 2009, pp. 48-49. |
Bavaria, Joseph E. M.D.: “CardiAQ Valve Technologies: Transcatheter Mitral Valve Implantation,” Sep. 21, 2009. |
Ostrovsky, Gene, “Transcatheter Mitral Valve Implantation Technology from CardiAQ,” medGadget, Jan. 15, 2010, available at: http://www.medgadget.com/2010/01/transcatheter_mitral_valve_implantation_technology_from_cardiaq.html. |
Berreklouw, Eric, PhD, et al., “Sutureless Mitral Valve Replacement With Bioprostheses and Nitinol Attachment Rings: Feasibility In Acute Pig Experiments,” The Journal of Thoracic and Cardiovascular Surgery, vol. 142, No. 2, Aug. 2011 in 7 pages, Applicant believes this may have been available online as early as Feb. 7, 2011. |
Boudjemline, Younes, et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves,” JACC, vol. 46, No. 2, Jul. 19, 2005:360-5. |
Chiam, Paul T.L., et al., “Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Outcomes, and Planning Trials,” JACC: Cardiovascular Interventions, The American College of Cardiology Foundation, vol. 1, No. 4, Aug. 2008:341-50. |
Condado, Jose Antonio, et al., “Percutaneous Treatment of Heart Valves,” Rev Esp Cardio. 2006;59(12):1225-31, Applicant believes this may have been available as early as Dec. 2006. |
Vu, Duc-Thang, et al., “Novel Sutureless Mitral Valve Implantation Method Involving a Bayonet Insertion and Release Mechanism: A Proof of Concept Study in Pigs,” The Journal of Thoracic and Cardiovascular Surgery, vol. 143, No. 4, 985-988, Apr. 2012, Applicant believes this may have been available online as early as Feb. 13, 2012. |
Fanning, Jonathon P., et al., “Transcatheter Aortic Valve Implantation (TAVI): Valve Design and Evolution,” International Journal of Cardiology 168 (2013) 1822-1831, Applicant believes this may have been available as early as Oct. 3, 2013. |
Spillner, J. et al., “New Sutureless ‘Atrial- Mitral-Valve Prosthesis’ for Minimally Invasive Mitral Valve Therapy,” Textile Research Journal, 2010, in 7 pages, Applicant believes this may have been available as early as Aug. 9, 2010. |
Karimi, Houshang, et al., “Percutaneous Valve Therapies,” SIS 2007 Yearbook, Chapter 11, pp. 1-11. |
Leon, Martin B., et al., “Transcatheter Aortic Valve Replacement in Patients with Critical Aortic Stenosis: Rationale, Device Descriptions, Early Clinical Experiences, and Perspectives,” Semin. Thorac. Cardiovasc. Surg. 18:165-174, 2006 in 10 pages, Applicant believes this may have been available as early as the Summer of 2006. |
Lutter, Georg, et al., “Off-Pump Transapical Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 36 (2009) 124-128, Applicant believes this may have been available as early as Apr. 25, 2009. |
Ma, Liang, et al., “Double-Crowned Valved Stents for Off-Pump Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 28 (2005) 194-199, Applicant believes this may have been available as early as Aug. 2005. |
Pluth, James R., M.D., et al., “Aortic and Mitral Valve Replacement with Cloth-Covered Braunwald-Cutter Prosthesis, A Three-Year Follow-up,” The Annals of Thoracic Surgery, vol. 20, No. 3, Sep. 1975, pp. 239-248. |
Seidel, Wolfgang, et al., “A Mitral Valve Prosthesis and a Study of Thrombosis on Heart Valves in Dogs,” JSR—vol. II, No. 3—May, 1962, submitted for publication Oct. 9, 1961. |
Engager System, Precise Valve Positioning, Transcatheter Aortic Valve Implantation System, Transcatheter Aortic Valve Replacement—TAVR I Medtronic Engager, http://www.medtronic-engager.com/home/transcatheter-aortic-valve-repl., 2014 Medtronic, Inc. in 2 pages. Applicant believes this may have been available online as early as Aug. 25, 2013. |
Webb, John G., et al., “Transcatheter Aortic Valve Implantation: The Evolution of Prostheses, Delivery Systems and Approaches,” Archives of Cardiovascular Disease (2012) 105, 153-159. Applicant believes this may have been available as early as Mar. 16, 2012. |
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at TCT 2013. |
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at EuroPCR 2013. |
Sondergaard, Lars, “CardiAQ TMVR FIH—Generation 2,” Applicants believe this may have been presented in 2014 at the TVT symposium. |
CardiAQ Valve Technologies, “Innovations in Heart Valve Therapy,” In3 San Francisco, Jun. 18, 2008, PowerPoint presentation in 19 slides. |
Ratz, J. Brent, “LSI EMT Spotlight,” May 15, 2009. |
Raiz, J. Brent, “In3 Company Overview,” Jun. 24, 2009. |
“Company Overview,” at TVT on Jun. 25, 2009. |
Ruiz, Carlos E., “Overview of Novel Transcatheter Valve Technologies,” Applicant believes this may have been presented on May 27, 2010 at EuroPCR. |
“Update,” Applicant believes this may have been presented on Jun. 6, 2010 at TVT. |
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: A Short-term Experience in Swine Model,” Applicant believes this may have been presented on May 2011 at TVT. |
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: On-Going Experience in Swine Model,” Applicant believes this may have been presented on Nov. 2011 at TCT. |
Fitzgerald, Peter J. M.D., “Tomorrow's Technology: Percutaneous Mitral Valve Replacement, Chordal Shortening, and Beyond,” Transcatheter Valve Therapies (TVT) Conference. Seattle, WA. Applicant believes this may have been available as early as Jun. 7, 2010. |
Quadri, Arshad M.D., “Transcatheter Mitral Valve Implantation (TMVI) (An Acute In Vivo Study),” Applicant believes this may have been presented on Sep. 22, 2010 at TCT. |
Masson, Jean-Bernard, et al., “Percutaneous Treatment of Mitral Regurgitation,” Circulation: Cardiovascular Interventions, 2:140-146, Applicant believes this may have been available as early as Apr. 14, 2009. |
Horvath et al.: “Transapical Aortic Valve Replacement under Real-time Magnetic Resonance Imaging Guidance: Experimental Results with Balloon-Expandable and Self-Expanding Stents,” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038190/. Jun. 2011. |
Treede et al.: “Transapical transcatheter aortic valve implantation using the JenaValve™ system: acute and 30-day results of the multicentre CE-mark study.” http://ejcts.oxfordjournals.org/content/41/6/e131.long. Apr. 16, 2012. |
Taramasso et al.: “New devices for TAVI: technologies and initial clinical experiences” http://www.nature.com/hrcardio/journal/v11/n3/full/nrcardio.2013.221.html?message-global=remove#access. Jan. 21, 2014. |
Van Mieghem, et al., “Anatomy of the Mitral Valvular Complez and Its Implications for Transcatheter Interventions for Mitral Regurgitation,” J. Am. Coll. Cardiol., 56:617-626 (Aug. 17, 2010). |
Wayback Machine, Cleveland Clinic Lerner Research Institute, Transcatheter Mitral Stent/Valve Prosthetic, https:// web.archive.org/web/20130831094624/http://mds.clevelandclinic.org/Portfolio.aspx?n=331, indicated as archived on Aug. 31, 2013. |
Grube, E. et al, “Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome.” J Am Coll Cardiol. Jul. 3, 2007;50(1):69-76. Epub Jun. 6, 2007. |
Piazza, Nicoló, MD, et al., “Anatomy of the Aortic Valvar Complex and Its Implications for Transcatheter Implantation of the Aortic Valve,” Contemporary Reviews in Interventional Cardiology, Circ. Cardiovasc. Intervent., 2008;1:74-81, Applicant believes this may have been available as early as Aug. 2008. |
Feldman, Ted, MD. “Prospects for Percutaneous Valve Therapies,” Circulation 2007;116:2866-2877. Applicant believes that this may be available as early as Dec. 11, 2007. |
Backer, Ole De, MD, et al., “Percutaneous Transcatheter Mitral Valve Replacement—An Overview of Devices in Preclinical and Early Clinical Evaluation,” Contemporary Reviews in Interventional Cardiology, Circ Cardiovasc Interv. 2014;7:400-409, Applicant believes this may have been available as early as Jun. 2014. |
Preston-Maher, Georgia L., et al., “A Technical Review of Minimally Invasive Mitral Valve Replacements,” Cardiovascular Engineering and Technology, vol. 6, No. 2, Jun. 2015, pp. 174-184. Applicant believes this may have been available as early as Nov. 25, 2014. |
BioSpace, “CardiAQ Valve Technologies (CVT) Reports Cardiovascular Medicine Milestone: First-In-Humannonsurgical Percutaneous Implantation of a Bioprosthetic Mitral Heart Valve,” Jun. 14, 2012, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports/263900. |
BioSpace, “CardiAQ Valve Technologies (CVT) Reports First-In-Human Percutaneous Transfemoral, Transseptal Implantation With Its Second Generation Transcatheter Bioprosthetic Mitral Heart Valve,” Jun. 23, 2015, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports-first- in/382370. |
“CardiAQTM Valve Technologies reports Successful First-in-Human Trans-Apical implantation of its Second Generation Transcatheter Mitral Valve,” CardiAQ Valve Technologies Press Release, May 20, 2014. |
Dave Fornell, “Transcatheter Mitral Valve replacement Devices in Development,” Diagnostic and Interventional Cardiology, Dec. 30, 2014, p. 3, <http://www.dicardiology.com/article/transcatheter-mitral-valve-replacement-devices-development>. |
The Journal of the American College of Cardiology, “Transapical Mitral Implantation of the Tiara Bioprosthesis Pre-Clinical Results,” Feb. 2014, <http://interventions.onlinejacc.org/article.aspx?articleid=1831234>. |
Ratz, J. Brent et al., “Any experiences making an expandable stent frame?” Arch-Pub.com, Architecture Forums: Modeling, Multiple forum postings from Feb. 3, 2009 to Feb. 4, 2009, http://www.arch-pub.com. |
Neovasc corporate presentation, Oct. 2009, available at http://www.neovasc.com/investors/documents/Neovasc-Corporate-Presentation-October-2009.pdf. |
NJ350: Vote for Your Favorite New Jersey Innovations, Jun. 27, 2014, http://www.kilmerhouse.com/2014/06/nj350-vote-for-your-favorite-new-jersey-innovations/. |
Mack, Michael M.D., “Advantages and Limitations of Surgical Mitral Valve Replacement; Lessons for the Transcatheter Approach,” Applicant believes this may have been available as early as Jun. 7, 2010. Applicant believes this may have been presented at the Texas Cardiovascular Innovative Ventures (TCIV) Conference in Dallas, TX on Dec. 8, 2010. |
Bavaria, Joseph E. M.D. et al.: “Transcatheter Mitral Valve Implantation: The Future Gold Standard for MR?,” Applicant requests the Examiner to consider this reference to be prior art as of Dec. 2010. |
Number | Date | Country | |
---|---|---|---|
20190008639 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62635421 | Feb 2018 | US | |
62529394 | Jul 2017 | US |