The present invention is generally related to medical devices and methods. More specifically, the present invention provides a steerable distal support system for accessing stenosis, partial occlusions, or total occlusions in a patient's body lumen.
Cardiovascular disease frequently arises from the accumulation of atheromatous material on the inner walls of vascular lumens, particularly arterial lumens of the coronary and other vasculature, resulting in a condition known as atherosclerosis. Atheromatous and other vascular deposits restrict blood flow and can cause ischemia which, in acute cases, can result in myocardial infarction or a heart attack. Atheromatous deposits can have widely varying properties, with some deposits being relatively soft and others being fibrous and/or calcified. In the latter case, the deposits are frequently referred to as plaque. Atherosclerosis occurs naturally as a result of aging, but may also be aggravated by factors such as diet, hypertension, heredity, vascular injury, and the like.
Atherosclerosis can be treated in a variety of ways, including drugs, bypass surgery, and a variety of catheter-based approaches which rely on intravascular widening or removal of the atheromatous or other material occluding the blood vessel. Particular catheter-based interventions include angioplasty, atherectomy, laser ablation, stenting, and the like. For the most part, the catheters used for these interventions must be introduced over a guidewire, and the guidewire must be placed across the lesion prior to catheter placement. Initial guidewire placement, however, can be difficult or impossible in tortuous regions of the vasculature. Moreover, it can be equally difficult if the lesion is total or near total, i.e. the lesion occludes the blood vessel lumen to such an extent that the guidewire cannot be advanced across.
For these reasons, it is desired to provide devices and methods which can access small, tortuous regions of the vasculature. In particular, it is desired to provide systems which can access partial occlusions, total occlusions, stenosis, blood clots, or thrombotic material.
The present invention provides a steerable distal support system that may be used as a working channel for a variety of different interventional devices. The steerable distal support systems of the present invention includes an elongate body comprising deflectable distal tip that can allow the working channel to be steered through the body lumen.
The steerable distal support system of the present invention may be used as a support or access system and can be navigated to and positioned at the target site, with or without the use of a separate guidewire. The steerable distal support system of the present invention provides the flexibility, maneuverability, torqueability (usually 1:1), and columnar strength necessary for accurately advancing through the tortuous vasculature either over a standard guidewire or on its own. In embodiments, in which the proximal port assembly is removable, the steerable distal support system itself may be considered to be a hollow guidewire.
Many thin walled polymeric based catheters do not have sufficient maneuverability or torqueability to be advanced through tortuous body lumens on their own and must be navigated to an occlusion over a standard guidewire. In order for these polymeric catheters to be used as working channels, to physically support devices inserted within the catheter lumen intended to penetrate or otherwise treat such lesions, the wall thickness must be increased, which results in a reduction of the size of the inner axial lumen. In contrast, the steerable distal support systems of the present invention typically has a thin wall construction while still providing sufficient torqueability and maneuverability to be advanced through the body lumen, either over a standard guidewire or on its own. Consequently, the thin coil walls allows the axial lumen of the working channel to be maximized. This allows larger diameter devices to be inserted into the axial lumen than can be inserted into conventional polymeric based catheters. The larger lumen of the steerable distal support system of the present invention allows devices such as rotating guidewire or drive shafts, infusion guidewire, clot maceration guidewires, normal guidewires of varying stiffness clot macerators and other larger devices to be delivered to the target occlusion. Additionally, the larger diameter lumen of the steerable distal support system allows for infusion of clot dissolving or other fluids, and for aspiration of debris stirred up in the clot maceration process.
Unlike conventional infusion and catheter devices, the steerable distal support system encompassed by the present invention may have a steerable distal tip which has the same diameter as the rest of the elongate body. Additionally, a radio-opaque marker can be positioned on the extreme distal tip of the catheter. This allows the user to precisely identify the position of the distal tip of the device. Identification of the precise location of the extreme distal tip is advantageous as it allows devices inserted into the working channel to be positioned precisely at the front surface of the occlusion or stenosis.
The steerable distal support systems of the present invention typically includes an elongate body comprising a proximal portion, a distal portion, and a steerable or deflectable distal tip. The deflectable distal tip can be coupled or integrally formed with rest of the elongate body. In some embodiments, the distal tip will optionally have ribs or slots to facilitate deflection in the desired direction. The ribs can be even or tapered.
The steerable distal support system includes at least one pull wire that can extend through the elongate body to couple to the one or more portions of the distal tip. The pull wire is offset from a longitudinal axis of the distal tip and elongate body, such that axial manipulation of the pull wire deflects the distal tip in a desired direction. By torquing or twisting a proximal end of the steerable distal support system the deflected tip can be steered and advanced through the tortuous regions of the vasculature.
In use, the steerable distal support system may be advanced through the body lumen to the occlusion. Steering or deflection of the distal tip controls the position and orientation of the distal tip disposed within the body lumen and can avoid perforating the body lumen wall. For example, if the steerable distal support system is navigated to the occlusion and the distal tip of the steerable distal support system is pointed in a direction toward the vessel wall, the direction of the distal tip can be changed by deflecting the distal tip and torquing and twisting the proximal end of the steerable distal support system.
In one embodiment, the present invention provides a steerable distal support system. The system comprises a hollow unibody elongate body comprising an integral proximal portion, intermediate portion, and a deflectable distal tip. The proximal portion is stiffer than the intermediate portion. A proximal housing is coupled to the proximal portion of the elongate body. A pull wire extends through an axial lumen of the elongate body from the proximal housing to the deflectable distal tip. Proximal actuation of the pull wire deflects the deflectable distal tip.
At least a portion of the intermediate portion may comprise spiral etchings (formed with a laser or wire electronic discharge machine (EDM)) so that at least a portion of the intermediate portion comprise a spiral coil. The spiral coil in the intermediate portion typically comprises a decreasing pitch distally along the intermediate portion so as to create an increased flexibility in the intermediate portion of the elongate body.
Because the intermediate portion has laser etched spiral openings, the steerable distal support system typically comprises at least one of an inner liner and an outer liner coupled to at least a portion of at least one of an inner surface and outer surface of the intermediate portion and the deflectable distal tip. The liner is typically in the form of a tubing, which are positioned to maintain a substantially fluid tight axial lumen from the proximal portion to the distal tip.
In a specific configuration, the elongate body (e.g., proximal portion, intermediate portion, and distal tip) is comprised of a single laser etched hypotube.
To improve the tracking of the steerable distal support system, the steerable distal tip may comprise a radiopaque marker disposed on a distal end. To improve deflection, the deflectable distal tip may comprise ribs to facilitate deflection of the deflectable distal tip. In some configurations, the ribs are tapered toward a distal end of the deflectable distal tip.
Optionally, the steerable distal support system may further comprise an expandable centering assembly, such as an expandable basket, that is positioned between the intermediate portion and the steerable distal tip. In preferred configurations, the proximal portion, intermediate portion, expandable centering assembly, and steerable distal tip are comprised of a single hypotube. The expandable centering assembly typically comprises a plurality of even spaced struts that are separated by slots. The expandable centering assembly in an expanded configuration is configured to engage an inner surface of a body lumen wall, wherein in the expanded configuration the struts are separated by the slots so as to allow fluids to flow around the struts and through the slots.
These and other aspects of the invention will be further evident from the attached drawings and description of the embodiments of the invention.
The present invention provides a steerable distal support system that is in the form of catheter or hollow guidewire so as to define a working channel for an interventional device. The steerable distal support system of the present invention is typically comprised of one or more tubular bodies such as hypotubes. At least some of the hypotubes may be selectively etched to create spiral etchings that have a varying pitch along the length of the steerable distal support system so as to create one or more flexible, soft atraumatic coils. By varying the pitch of the spiral coils, a user may selectively create stiff and flexible portions along the length of the steerable distal support system. As will be described in greater detail below, the steerable distal support system in
As can be appreciated, the present invention is not limited to the use of a hypotube to form the elongate body of the present invention. As can be appreciated, other material may be used to form the elongate body. For example, the elongate body may be comprised of one or more tubes of cobalt-chromium or nitinol. Moreover, if desired the proximal portion, intermediate portion, and distal flexible tip may be composed of different tubes that have different properties (e.g., different wall thicknesses, diameters, etc.).
Steerable distal support system is typically sized to be inserted through coronary, neuro, or peripheral arteries and may have a variety of wall thicknesses, diameters, and lengths. However, in preferred embodiments, the steerable distal support system typically has a wall thickness between about 0.002 inches and about 0.006 inches, but may incorporate any thickness that is practical. The outer diameter of the steerable distal support system may be constant along the length of the elongate body or it may taper distally. In either embodiment, the outer diameter of the elongate body is typically between approximately 0.014 inches and approximately 0.039 inches and preferably between approximately 0.021 inches and approximately 0.039 inches. The length of the steerable distal support system may be varied to correspond to the distance between the percutaneous access site and the target site. For example, for a target site within the heart that is being accessed through the femoral artery, the steerable distal support system will typically have a length of approximately 190 cm. It should be noted however, that other embodiments of the steerable distal support system may have dimensions that are larger or smaller than the above described embodiments and the present invention is not limited to the above recited dimensions.
The elongate body of the steerable distal support system preferably has a flexibility, pushability, and torqueability (typically 1:1) to allow a user to advance the steerable distal support system directly through a tortuous blood vessel to a target site. Because of the high columnar strength of the elongate body there is typically no need for a separate guidewire to advance the steerable distal support system through the body lumen to the occlusion. However, as can be appreciated, to ease delivery of the steerable distal support system to the target site, a separate guidewire may be used, if desired. Most embodiments of the steerable system includes a deflectable tip which provides improved directional control of the steerable distal support system and any device disposed within the lumen of the steerable distal support system.
Proximal portion 14 is comprised of a proximal tube, typically a hypotube. A distal end of the proximal portion 14 is coupled to proximal end of intermediate portion 16. A distal end of the intermediate portion 16 may be coupled to a proximal end of a distal flexible tip 18. Proximal portion 14 is typically the most stiff portion and may or may not comprise spiral coils. Intermediate portion 16 typically has spiral etchings that form coils 22 and at least a portion of the intermediate portion has a greater flexibility than proximal portion 14. A distal end of the proximal portion 14 and a proximal end of the intermediate portion 16 (e.g., an elongate coil body) may comprise coupling members 24 that allow for coupling between the proximal portion 14 and intermediate portion 16. In the illustrated embodiment, proximal portion 14 and intermediate portion are threadedly coupled to each other.
A distal end of the intermediate portion 16 may be coupled to a proximal end of the flexible distal tip 18. Similar to above, the distal end of the intermediate portion 16 and the proximal end of the flexible distal tip 18 may comprise a coupling members 26 that allow for coupling between the intermediate portion 16 and the flexible distal tip 18. In the illustrated embodiment, the intermediate portion 16 and the flexible distal tip 18 are threadedly connected to each other. It will be appreciated, however, that the proximal portion 14, intermediate portion 16, and distal tip 18 may be connected to each other by any other conventional means, such as solder, adhesive, or the like.
A proximal end of the proximal portion 14 of the steerable distal support system 10 can be coupled to a proximal port assembly 20. As shown in
In some embodiments the flexible distal tip 18 is approximately one half centimeter in length and steerable in one direction. In other embodiments, the distal tip 18 can longer or shorter in length, and may be steerable in one direction, two directions, three directions, four directions, or the like. A guidewire or a device for treating lesions can be disposed within an axial lumen 36 (
As shown in
As noted above, the steerable distal support system 10 typically defines an axial lumen 36. Axial lumen 36 may be used for infusion or aspiration. Since at least a portion of the intermediate portion 16 and flexible distal tip 18 are etched to create spiral coil windings 22, if the etchings go completely through the intermediate portion 16 and/or the flexible tip 18, it may be possible for the infusion fluid to leak out between the spiral coils 22 before it reaches the distal tip 18. Consequently, at least a portion of the elongate body 12 may comprise at least one of an inner tubing 40 and an outer tubing 42 to provide a flexible, structural support that prevents liquids from moving between the blood vessel and the axial lumen 36 of the elongate member 12. In the embodiment illustrated in
The inner tubing 40 typically comprises a polyimide or Teflon® tubing having a wall thickness of about 0.001 inches to about 0.0005 inches. An inner surface of the inner tubing 42 may be coated with Teflon® or other materials to improve movement of the guidewire or interventional devices through the axial lumen 36. Similarly, the outer surface of the outer tubing 42 may optionally be coated with Teflon® or other biocompatible materials to facilitate advancement of the steerable distal support system 10 through the body lumen.
Referring now to
To shield the pull wire 46 from a guidewire and/or other interventional devices positioned within the axial lumen 36, the pull wire 46 may be positioned between the inner tubing 40 and the elongate body 12. In embodiments that do not include an inner tubing 40, the pull wire will be positioned within the axial lumen 36 that is defined by the inner surface of the proximal portion 14, intermediate portion 16 and flexible distal tip 18.
In an exemplary embodiment, the pull wire 46 has a diameter between 0.003 inches and 0.007 inches and is in the form of a strip or solid or braided wire. In one embodiment, the pull wire 46 is composed of 304SS Hyten®. The pull wire 46 preferably can withstand more than 400 kpsi of tensile force. It should be appreciated however, that the pull wire 46 can be modified to have a smaller or larger diameter and can be made from an alternative material, if desired. For example, the pull wire 46 can be comprised of a strip of stainless steel that can be moved longitudinally to deflect the distal tip 18. In one configuration, the pull wire 46 is soldered or otherwise connected to the distal end of flexible tip 18 and the remainder of the pull wire 46 extends proximally to the housing port assembly 20. To reduce the profile of the distal tip 18 and to increase the area of contact between the distal tip and the pull wire, the distal end (or the complete body) of the pull wire 46 can be flattened.
Manipulation of the proximal end of the pull wire 46 allows the user to deflect or steer the distal tip 18 without permanently impairing the inner structure of the steerable distal support system 10. The deflectable distal tip 18 provides a user with greater intraluminal control of navigating and steering the steerable distal support system to the target site. In other configurations, the pull wire is 46 can be soldered or otherwise connected to both the distal end of the distal tip 18 and to the junction between the intermediate portion 16 and distal tip 18. Therefore, if the distal tip 18 somehow breaks, the attached pull wire 46 can prevent the tip 18 from detaching from the steerable distal support system 10. A more complete description of the catheter can be found in commonly owned U.S. patent application Ser. No. 09/030,657, filed Feb. 25, 1998, the complete disclosure of which was previously incorporated by reference.
As shown in
In another method, the deflectable distal tip allows deflection of the distal tip to steer the catheter system through the correct branch vessel of the body lumen. As shown in
The unibody design of the embodiment in
Similar to the previous embodiment, elongate body 12 may comprise an inner tubing 40 (
Similar to the embodiment o
Another embodiment of a steerable distal support system that is encompassed by the present invention is illustrated in
While the embodiments of
Similar to the embodiments in
Additionally, a centering assembly, in the form of a centering basket 60 is positioned between the steerable distal tip 18 and the flexible intermediate portion 16. In preferred embodiments, the centering basket 60 is integrally formed from the same tubing that forms the distal tip 18 and intermediate portion 16. The centering basket 60 is formed in the hypotube by forming substantially curved or S-shaped openings or slots 62 so as to create a plurality of S-shaped struts 64. The struts maybe substantially evenly spaced. Typically, the slots 62 between the struts 64, in an unexpanded configuration, will have a width between about 0.0002 inches and about 0.0005 inches. As can be appreciated, it may be possible to form other sized or shaped slots 62 to form the struts 64 of the centering basket 60 (e.g., linear slots), but Applicants have found that the S-shaped slots 62 create struts 64 that do not kink or collapse when expanded.
If an outer tubing 42 is present, the outer tubing 42 may be disposed over the intermediate portion 16, but will not typically extend over the centering basket 60. In contrast, if an inner tubing 40 is present, the inner tubing 40 will typically extend through the intermediate portion and through the centering basket 60. However, in other embodiments, it may be possible to have the inner tubing 40 extend to a portion that is proximal of the centering basket 60.
Unlike conventional balloons, the centering basket 60 is composed of a plurality struts 64 that are separated by S-shaped slots 62. Consequently, when the centering basket 60 is in an expanded configuration (typically having the struts contacting the inner surface of the body lumen), blood will be allowed to flow through the S-shaped slots 62. Advantageously, unlike conventional balloons, the centering basket will not substantially interfere with the normal blood flow through the body lumen. The centering basket 60 is of particular importance when the centering basket 60 is positioned within a body lumen directly over peripheral blood vessels. Because of the slots 62 between the struts, blood will be allowed to flow through the primary blood vessel and the peripheral blood vessels.
In one specific configuration, knob 68 may include a screw-like mechanism for coupling to the second pull wire 66. Rotation of the expandable basket knob 68 and screw like mechanism causes proximal movement of the second pull wire 66 and expansion of the centering basket. Counter rotation of knob 68 causes the centering basket to move back to its unexpanded configuration (
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
The present invention is a continuation-in-part application of U.S. patent application Ser. No. 09/935,534, now U.S. Patent No. U.S. Pat. No. 6,746,422, which claims the benefit of U.S. Provisional Application No. 60/228,012, filed Aug. 23, 2000, the complete disclosures of which are incorporated herein by reference. The present application is also related to U.S. patent application Ser. No. 09/030,657, filed Feb. 25, 1998, now U.S. Pat. No. 6,059,767, U.S. Provisional Patent Application No. 60/195,154, filed Apr. 6, 2000, and U.S. patent application Ser. No. 09/644,201, filed Aug. 22, 2000, the complete disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4068660 | Beck | Jan 1978 | A |
4368730 | Sharrock | Jan 1983 | A |
4377169 | Banks | Mar 1983 | A |
4445509 | Auth | May 1984 | A |
4471779 | Antoshkiw et al. | Sep 1984 | A |
4490421 | Levy | Dec 1984 | A |
4516972 | Samson | May 1985 | A |
4534363 | Gold | Aug 1985 | A |
4538622 | Samson et al. | Sep 1985 | A |
4545390 | Leary | Oct 1985 | A |
4548206 | Osborne | Oct 1985 | A |
4554929 | Samson et al. | Nov 1985 | A |
4573470 | Samson et al. | Mar 1986 | A |
4586923 | Gould et al. | May 1986 | A |
4601705 | McCoy | Jul 1986 | A |
4613385 | Thomas et al. | Sep 1986 | A |
4616653 | Samson et al. | Oct 1986 | A |
4619263 | Frisbie et al. | Oct 1986 | A |
4641654 | Samson et al. | Feb 1987 | A |
4646719 | Neuman et al. | Mar 1987 | A |
4646742 | Packard et al. | Mar 1987 | A |
4676249 | Arenas et al. | Jun 1987 | A |
4708717 | Deane et al. | Nov 1987 | A |
4708718 | Daniels | Nov 1987 | A |
4715378 | Pope, Jr. et al. | Dec 1987 | A |
4717387 | Inoue et al. | Jan 1988 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4721117 | Mar et al. | Jan 1988 | A |
4723936 | Buchbinder et al. | Feb 1988 | A |
4739768 | Engelson | Apr 1988 | A |
4763647 | Gambale | Aug 1988 | A |
4767400 | Miller et al. | Aug 1988 | A |
4779628 | Machek | Oct 1988 | A |
4798598 | Bonello et al. | Jan 1989 | A |
4832047 | Sepetka et al. | May 1989 | A |
4846186 | Box et al. | Jul 1989 | A |
4899787 | Ouchi et al. | Feb 1990 | A |
4906241 | Noddin et al. | Mar 1990 | A |
4923462 | Stevens | May 1990 | A |
4925445 | Sakamoto et al. | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
4940062 | Hampton et al. | Jul 1990 | A |
4946466 | Pinchuk et al. | Aug 1990 | A |
4953553 | Tremulis | Sep 1990 | A |
4990134 | Auth | Feb 1991 | A |
5021044 | Sharkawy | Jun 1991 | A |
5030204 | Badger et al. | Jul 1991 | A |
5041085 | Osborne et al. | Aug 1991 | A |
5059851 | Corl et al. | Oct 1991 | A |
5060660 | Gambale et al. | Oct 1991 | A |
5067489 | Lind | Nov 1991 | A |
5107852 | Davidson et al. | Apr 1992 | A |
5115814 | Griffith et al. | May 1992 | A |
5116350 | Stevens | May 1992 | A |
5144959 | Gamble et al. | Sep 1992 | A |
5165421 | Fleischhacker et al. | Nov 1992 | A |
5174276 | Crockard | Dec 1992 | A |
5176661 | Evard et al. | Jan 1993 | A |
5178158 | de Toledo | Jan 1993 | A |
5184627 | de Toledo | Feb 1993 | A |
5195971 | Sirhan | Mar 1993 | A |
5209727 | Radisch, Jr. et al. | May 1993 | A |
5211636 | Mische | May 1993 | A |
5217482 | Keith | Jun 1993 | A |
5250034 | Appling et al. | Oct 1993 | A |
5267979 | Appling et al. | Dec 1993 | A |
5304131 | Paskar | Apr 1994 | A |
5306252 | Yutori et al. | Apr 1994 | A |
5314438 | Shturman | May 1994 | A |
RE34695 | Mar et al. | Aug 1994 | E |
5345945 | Hodgson et al. | Sep 1994 | A |
5346473 | Bowman | Sep 1994 | A |
5368035 | Hamm et al. | Nov 1994 | A |
5377690 | Berthiaume | Jan 1995 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5462523 | Samson et al. | Oct 1995 | A |
5484407 | Osypka | Jan 1996 | A |
5527298 | Vance et al. | Jun 1996 | A |
5527326 | Hermann et al. | Jun 1996 | A |
5569197 | Helmus et al. | Oct 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5591142 | Van Erp | Jan 1997 | A |
5606981 | Tartacower et al. | Mar 1997 | A |
5611777 | Bowden et al. | Mar 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
5776114 | Frantzer | Jul 1998 | A |
5820591 | Thompson et al. | Oct 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5848986 | Lundquist et al. | Dec 1998 | A |
5860938 | LaFontaine et al. | Jan 1999 | A |
5865800 | Mirarchi et al. | Feb 1999 | A |
5868685 | Powell et al. | Feb 1999 | A |
5897567 | Ressemann et al. | Apr 1999 | A |
5908395 | Stalker et al. | Jun 1999 | A |
6001112 | Taylor | Dec 1999 | A |
6022336 | Zadno-Azizi et al. | Feb 2000 | A |
6050972 | Zadno-Azizi et al. | Apr 2000 | A |
6059767 | Noriega | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6068623 | Zadno-Azizi et al. | May 2000 | A |
6093157 | Chandrasekaran | Jul 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6156046 | Passafaro | Dec 2000 | A |
6179851 | Barbut et al. | Jan 2001 | B1 |
6183432 | Milo | Feb 2001 | B1 |
6217567 | Zadno-Azizi et al. | Apr 2001 | B1 |
6258052 | Milo | Jul 2001 | B1 |
6299622 | Snow | Oct 2001 | B1 |
6312438 | Adams | Nov 2001 | B1 |
6355014 | Zadno-Azizi et al. | Mar 2002 | B1 |
6375628 | Zadno-Azizi et al. | Apr 2002 | B1 |
6482221 | Hebert et al. | Nov 2002 | B1 |
6500130 | Kinsella et al. | Dec 2002 | B2 |
6585717 | Wittenberger et al. | Jul 2003 | B1 |
6602264 | McGurckin | Aug 2003 | B1 |
6743208 | Coyle | Jun 2004 | B1 |
6746422 | Noriega et al. | Jun 2004 | B1 |
6824550 | Noriega et al. | Nov 2004 | B1 |
20040102719 | Keith et al. | May 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050020974 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60228012 | Aug 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09935534 | Aug 2001 | US |
Child | 10864075 | US |